RESTful writable APIs for the web of Linked Data using
relational storage solutions

Antonio Garrote
Universidad de Salamanca, Spain

agarrote@usal.es

ABSTRACT

Linked Data is rapidly becoming an important mechanism to
expose structured data in the web. The ability to inter-link
data sets from different providers using standard description
vocabularies and the same data model, opens new possibili-
ties in the way these data can be used. Despite of its growth,
Linked Data principles have not found yet widespread appli-
cation in the design of data APIs for web applications. The
lack of a write support for linked data repositories, the bar-
rier imposed by the required technological change and the
immature state of client and server semantic infrastructure
are some of the main causes for this lack of adoption.

This paper introduces a possible alternative for building
writable web APIs according to Linked Data principles, us-
ing the already deployed technology stack present in most
web applications. We propose the use of R2RML to lift rela-
tional data into the RDF model as well as to map SQL ma-
nipulation data queries into SPARQL update queries. Ad-
ditionally a RDF vocabulary describing a RESTful interface
for the mapped data that can be easily consumed from web
clients is proposed. The combination of both aspects al-
lows web developers to offer a familiar web API compatible
with linked data APIs that can be deployed along with the
already existing interface.

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Web-based ser-
vices; D.2.12 [Interoperability]: Data mapping

General Terms

Languages, Design

1. INTRODUCTION

The Linked Data initiative (LD) [5], [2], [1] is making the
semantic web a reality for the mainstream web developer.
Despite of its success, and the increasing volume of Linked
Data available in the web, the incipient use of LD in many
web applications is restricted to a static repository of data
that is queried or crawled as needed. The use of LD as the
main API for today’s web 2.0 applications is not a viable al-
ternative yet. A quick search in a popular repository of web

Copyright is held by the author/owner(s).
LDOWZ2011, March 29, 2011, Hyderabad, India..

Maria N. Moreno Garcia
Universidad de Salamanca, Spain

mnmg@usal.es

APIs ! shows only 34 RDF enabled APIs in contrast with
more than 1000 JSON interfaces. One of the main causes
of this situation is that the web of data, in its present form,
only supports a read interface. Other causes range from the
complexity introduced by the RDF data model and the lack
of support for semantic technologies like SPARQL in com-
mon web application clients like web browsers and smart-
phone SDKs, to the insufficient performance and scalability
concerns of key semantic web infrastructure components like
triple stores. [24]

Most of Web 2.0 application’s APIs are built on a techno-
logical stack that typically comprises the following elements:

e a persistence layer backed by a relational database
management system (RDBMS) or a mixture of a RDBMS
and some kind of NoSQL technology.

e a mapping framework exposing the relational model as
a set of more or less compliant RESTful web services.

e Plain JSON objects as the most prominent serializa-
tion format for application data.

e A security and access control framework based on mech-
anisms like APT keys and the OAuth protocol [11].

To make possible the transition from this model for build-
ing web APIs to a LD enabled one, technological options
that make easy the building of LD APIs must be available
for the web developer. One important step in this direction
is the R2RML: RDB to RDF Mapping Language (R2RML)
[22] W3C’s recommendation working draft. R2RML consists
of a generic vocabulary that can be used to map a relational
schema into RDF triples.

In this paper we will use the R2RML specification as a
starting point to build a mechanism capable of automating
the transformation of the relational persistence layer in a
Web 2.0 API, into an API compliant with the LD principles,
that can be offered as an alternative by a service provider.

The main contributions of this paper can be summarized
as follows:

e [t describes a generic translation of SPARQL 1.1 Up-
date [23] queries into SQL queries over a relational
schema, provided a R2RML mapping for that schema.

"http:/ /www.programmableweb.com/

e It introduces a common RESTful [10] interface for LD
enabled web APIs that transforms HT'TP request into
SPARQL queries.

e We collect a light vocabulary for the declarative de-
scription of APIs suitable for being automated as a
software library.

Different approaches for the translation of SPARQL Up-
date queries into SQL data manipulation operations have
recently been proposed. ONTOACCESS [12] introduces a
translation mechanism based in its own mapping language
R3M. The transformation algorithm maps whole tables and
columns into classes and properties in a certain ontology.
This approach simplifies the translation of SPARQL queries
since there is a direct relationship between any valid triple
and a single table in the database schema. Another recent
translation mechanism is described in [18] as an extension to
the D2RQ ? mapping language called D2RQ++ introducing
support for mapping blank nodes and dealing with database
constraints in the insertion and deletion of triples. D2RQ-++
also proposes the use of an external RDF triple store to
deal with triples in conflict with the database schema. Main
differences between ONTOACCESS, D2RQ++ and our ap-
proach are the consequence of the different characteristics
of the mapping languages used. These differences also im-
pose constraints on the kind of RDF graphs that can be
stored in the underlying relational system. R2RML allows
to map wvariable columns in the relational schema that can
store any kind of URI or literal directly into the database.
This makes possible to describe mappings capable of stor-
ing any possible triple in a RDF graph relational database
without requiring an auxiliary triple store without requiring
an external storage solution as proposed by the authors of
DRQ++. The drawback of these flexibility is that situations
where a triple of quad pattern can be inserted in more than
one mapped must be addressed in the construction of the
translation mechanism. R2RML also includes support for
named graphs in the mapping language. We add support
for this feature in our proposed solution that will be used
extensively to expose subsets of the RDF triples stored in
the database as RESTful resources.

This paper is organized in two main sections. In the first
one, the SPARQL to SQL translation using R2RML is de-
scribed. In the second part, a RESTful API for read-write
LD APIs, a vocabulary for the description of these APIs
and the operational details of the transformation of HTTP
requests into SPARQL queries according to this API are in-
troduced. The combination of both parts can be used to
build LD APIs using present day relational technologies.

A prototype implementation of the described SPARQL
mapping mechanism for R2RML as well as an executable
implementation of the API are currently being developed.
They can be found at 3.

2. SPARQL 1.1 OPERATIONS OVER RELA-
TIONAL DATA

W3C’s R2RML proposal consists of a generic vocabulary
that can be used to map a certain relational schema into

2http://www4.wiwiss.fu-berlin.de/bizer /d2rq/
3https://github.com/antoniogarrote/clj-r2rml

RDF triples. A formal description of a simplified R2RML
mapping is shown in listing 1 as an EBNF grammar.
<R2RMLMapping> ::= { <TableMapping> } ;
<TableMapping> ::= (table:String,

<subject : TermMapping >,

<graph:TermMapping >,
<propertyObj:{ TripleMapping }>) ;

<TripleMapping> ::= { (<property:TermMapping>,
<column : TermMapping >,
[rr:datatype],

[rr:laguage]) } ;
<TermMapping> ::= <VariableMapper> | <ConstantMapper> ;
<ConstantMapper> ::= rr:property | rr:constantValue

| rr:columnGraphIRI ;

<VariableMapper> ::= rr:propertyColumn | rr:column
| rr:columnGraph ;

Listing 1: R2RML mapping

This model formalizes a R2ZRML mapping as a collection
of TableMappings for each RDBMS mapped table. Each
TableMapping describes how the data stored in that table
can be transformed into RDF quads with subject, predicate,
object and an associated named graph. The components
of a quad are generated using a TermMapping defined in
the TableMapping. Each TermMapping can be constant or
variable. Constants TermMappings point to an URI or RDF
literal for the value of the quad component while variable
TermMappings refer to a column in the relational schema
where the value for the quad component can be retrieved.

W3C’s SPARQL 1.1 Update proposal [23] describes a stan-
dard query language to retrieve and modify RDF graphs
with a syntax similar to that of SQL. The main construct
of SPARQL queries are quad patterns that can be matched
against triples stored in RDF graphs. Listing 2 formalizes
the notion of triple pattern stored in a named graph as a
QuadPattern with variable and constant components.
<QuadPattern> ::= (<subject:Term>,

<property :Term>,

<object : Term>,
<graph:Term>) ;

<Term> ::= <VariableTerm> | <ConstantTerm >;
<ConstantTerm> ::= URI | RDF Literal ;
<VariableTerm> ::= {7a, $a, ?b, $b...}

Listing 2: Quad patterns

R2RML describes a transformation from the relational
model into the RDF model. In order to use R2RML map-

pings to build a generic transformation mechanism for SPARQL

1.1 Update operations over a RDF graph into SQL opera-
tions over an equivalent relational model, we need a way to
find the inverse transformation for a R2RML mapping as
shown in figure 1.

Listing 1 describes such an algorithm that expresses the
inverse transformation as a set of QuadMatchers generated
from a set of R2ZRML Triple Mappers.

The output of the function buildQuadMatchers consists of
a collection of QuadMatchers: tuples describing a pattern
that can be used to map a RDF compatible QuadPattern to
a RDBMS relation. The listing 2 describes a procedure to
check if a QuadPattern is compatible with a QuadMatcher.
The constant NULL value is used to identify matchers and
patterns in the default graph.

To allow the manipulation of triples through a REST-
ful HTTP interface, it is necessary to find SPARQL 1.1
queries compatible with the semantics of the HT'TP uni-
form interface methods. SELECT, INSERT DATA, and

TableMappings

Relational
Data

RDF quads

SPARQL
QuadMatchers

Figure 1: Different transformations encoded in a
R2RML mapping

R2RML
Document

Algorithm 1 Building of quad matchers for a R2RML map-
ping
Function: buildQuadMatchers
Input: mapping : RRRMLMapping
Output: Collection of QuadMatchers
Begin
quadMatchers < {}
for table Mapping in mapping do
table + table Mapping.table
subjetTerm < tableMapping.subject
for triple Mapping in table Mapping.triple Mapping do
property « tripleMapping.property
object «+ tripleMapping.object
graph <« tripleMapping.graph
quadMatchers U (table, graph, subject, property, object)
end for
end for
return quadMatchers

Algorithm 2 Procedure to check if a quad pattern and a
quad matcher built from a R2RML mapping are compatible

Function: compatible?
Input: p: quadPattern, m : QuadMatcher
Output: True or False
Begin
compatible < True
for patternComp in p, matcherComp in m do
if var?(patternComp) V var?(matcherComp) then
compatible A True
else
compatible A (patternComp = matcherComp)
end if
end for
return compatible

DELETE SPARQL 1.1 operations will be used to map the
GET, POST, PUT and DELETE operations of the HTTP
methods.

2.1 SPARQL SELECT operation

The transformation of SPARQL SELECT queries into ef-
ficient SQL queries has been an active research topic in the
last years. A relational algebra for SPARQL has been pro-
posed [8], and different translation mechanisms have been
defined [7], [9], [14].

Our approach is based on [7]. This translation schema
uses two functions « and [, capable of retrieving the ta-
ble and the column where the component of any RDF triple
pattern is stored in the database. The transformation mech-
anism imposes the restriction that this table must be unique
for every triple pattern in a SPARQL SELECT query. Nev-
ertheless, this assumption cannot be taken for granted for a
generic R2ZRML mapping.

In listing 3 a couple of procedures describing an algorithm
for translating an arbitrary QuadPattern into a SQL SE-
LECT query using a collection of QuadMatchers are intro-
duced. This algorithm takes as input a triple pattern for
a certain RDF graph in a SPARQL select query, parsed as
a QuadPattern and a R2ZRML mapping transformed into a
collection of QuadMatchers, and outputs a SQL SELECT
query composed of the UNION of different SQL SELECT
sub-queries for each QuadMatcher compatible with the Quad-
Pattern. If no QuadMatcher is compatible with the pattern,
the algorithm returns a failure. Projections and conditions
for SQL queries can be built checking the variable compo-
nents of the pattern and the matcher.

Algorithm 3 Composition of a SELECT query for a quad
pattern and a set of quad matchers

Function: select
Input: quad: QuadPattern, matchers : QuadMatcher
Output: SQL query or FAIL
Begin
compatible Matchers <— mapCompatibleQuadMatchers(quad, matchers)
query « FAIL
if compatibleMatchers # @ then
subselects < mapSubselects(quad, compatible Matchers)
query <+ join("UNION”, subselects)
end if
return query

Function: mapSubselects
Input: gquad: QuadPattern, matchers : QuadMatcher
Output: SQL subquery
Begin
subselects < {}
for matcher in matchers do
table <— matcher.table
projections < genProjections(quad, matcher)
conditions < genConditions(quad, matcher)

sql = "SELECT DISTINCT” + join(”,”, projections) + > FROM” +
table
if conditions # () then
sql + "WHERE” + join(”,”, conditions)
end if
subselects U sql
end for

return subselects

The output of this algorithm can be inserted in [7] algo-
rithm to build SQL queries for complex SPARQL queries
involving AND, OPT, UNION and FILTER constructs.

2.2 SPARQL 1.1 Update INSERT DATA op-
eration
SPARQL 1.1 Update INSERT operations have the form
shown in listing 3. INSERT queries can be directly trans-
formed into a collection of QuadPatterns where all the com-
ponents have a constant value.

INSERT DATA {

GRAPH <graph_uri>
{ triples }

Listing 3: SPARQL 1.1 Update INSERT operation

Insertion of QuadPatterns for an INSERT query and R2RML

mapping, requires to find the collection of QuadMatchers
compatible with each QuadPattern. Many different Quad-
Matchers can be compatible with each pattern, making pos-
sible the insertion of the triple in different tables of the data
base. It is also possible that there exists in the database
columns with NULL values that can be updated instead of
inserting new rows.

Listing 4 shows an algorithm that can be used to insert
triples into a data base, creating or updating table rows
according to the information of a R2RML mapping.

Algorithm 4 Generation of an insertion query for a quad
pattern and a set of quad matchers

Function: insert
Input: gquads : QuadPattern, matchers : QuadMatcher
Output: SQL DML query or FAIL
Begin
sortedQuads <+ sortBySubject(quads)
contexts < initialContext(quads)
for quad in sortedQuads do
compMatchers <+ mapCompatibleQuadMatchers(quad, matchers)
if compMatchers = () then
return FAIL
end if
contexts’ « mextLevel(quad, compMatchers, contexts)
contexts < minSchemaContexts(contewts’)
end for
sql + generateInsertionSQL(first(contexts))
return sql

The algorithm works building a tree of possible ways of
inserting the triples in the database, and selecting the ter-
minal node that minimizes a cost metric.

The function initialContexts queries the database and re-
trieves all the existing rows with the same subject as the
quads to be inserted. The resulting compatible rows are
stored as the only context structure in the contezts list, be-
coming the root node of a contexts tree. Then main loop
of the algorithm retrieves all the QuadMatchers compati-
ble with the next quad to be inserted and generates a new
level of contexts. Each generated context in the list of con-
texts represents a possible way of inserting the quad in the
database consistent with a compatible QuadMatcher. The
function neztLevel tries to update the existing rows to be in-
serted with the values for the columns resulting of applying
a compatible QuadMatcher to the QuadPattern to insert. If
no row of the context can be updated, for example, because
the existing row already inserts or updates the column with
a different value, a new row marked to be inserted, is added
to the context containing the new columns.

The function minSchemaContexts trims the contexts that
do not minimize the cost function shown in listing 5. This
metric uses the number of rows and columns inserted in
the database as factors. It grants that triples are inserted
into tables where rows with the same subject are stored in
the same row if possible. This feature is important if the
RDBMS tables are also used by an object-relational map-
ping framework storing each object in a single row of the
database.

Finally the function generatelnsertionSQL just translates
the first of the equivalent minimum contexts into a series of
INSERT or UPDATE operations over the RDBMS.

The figure 2 shows graphically the insertion of two quads
in the default graph using the R2RML mapping in the listing

Algorithm 5 Insertion cost metric

Function: insertionCost
Input: context : SchemaUpdateContext
Output: cost : integer
Begin
columns + 0
for rowMatch in context do
columns < columns + count(rowMatch.columns)
end for
return ((1 4 count(context.rows)) = columns)

UPDATE, test1, (t:a, NULL, valc)

(t:a, t:b, valb, test)

UPDATE, test1, (t:a, NULL, valc)

UPDATE, test1, (t:a, valb, valc) INSERT, test2, (t:3, t:b, valb)

(t:a, td, vald, test)

UPDATE, test1, (t:a, valb, valc)
INSERT, test2, (t:a, t:d, vald)

Figure 2: Insertion of two quads

4 for two relations test!(id,a,b) and test2(s,p,0).

@prefix lda: <http://restful_linked_data_api.org#> .
_:mapingl rr:table "testl” ;
rr:subjectMap [rr:column 7id”] ;
rr:propertyObjectMap [rr:property <test:a> ;
rr:column Ta”

rr:columnGraphIRI <test>]
rr:propertyObjectMap [rr:property <test:b> ;
rr:column ”b” ;
rr:columnGraphIRI <test>]
_:maping2 rr:table 7test2” ;
rr:subjectMap [rr:column 7s”] ;
rr:propertyObjectMap [rr:propertyColumn 7p” ;
rr:column "o
rr:columnGraphIRI <test> |

Listing 4: Example R2RML mapping

2.3 SPARQL DELETE operation

SPARQL 1.1 Update DELETE operations have the form
shown in listing 5. DELETE operations can also be directly
transformed into a set of SQL operations. As a first step, the
WHERE clause of the query must be executed as a SELECT
operation, and the retrieved bindings applied to the modify
template of the DELETE query so they can be transformed
into a collection of QuadPatterns.

DELETE {

GRAPH <graph_uri>

{ .. modify template .. }
}
‘WHERE

GRAPH <graph_uri>
{ .. pattern .. }

}

Listing 5: SPARQL 1.1 Update INSERT operation

Algorithm 6 removes the compatible quads stored in a
RDBMS according to a SPARQL 1.1 Update DELETE op-

eration and a R2RML mapping. The algorithm updates the
columns for RDF properties and objects with NULL value
instead of removing the whole triple, since the subject col-
umn can be shared by other triples stored in the same row.
After removing all the triples, the function removeEmpty-
Rows delete all the rows in the tables of the mapping where
all the property and object columns have a NULL value.

Algorithm 6 Composition of a query to remove a quad
pattern matching a set of quad matchers

Function: delete
Input: quads: {QuadPattern}, matchers : {QuadMatcher}
Output: SQL DELETE DML query
Begin
sql « 77
for quad in quads do

compatible Matchers < mapCompatibleQuadMatchers(quad, matchers)

for matcher in compatible Matchers do
columnMatches < genColumnMatches(quad, matcher)
if count(columnMatches) > 0 then
table < matcher.table
sql - sql + "UPDATE” + nameSQL(table) + 7 SET”
conds = {}
values = {}
for colummnMatch in columnMatches do
if isNotSubject?(columnMatch) then
values U nameSQL(columnMatch.column) +” = NULL”
end if
conds UnameSQL(columnMatch.column) 47 ="
+nameSQL(columnMatch.value)
end for
sqlUjoin(values,”,”) +*WHERE” + join(conds,” AND”) + ;7
end if
end for
end for
return sql

2.4 Limitations and additional extensions

The described mechanism has omitted important features
of RDF that can be added to the simplified version presented
in this section. Some of the features include:

e RDF data types or literals
e Mapping of URIs to table index values.

e Blank nodes

RDF data types can be easily added to the mapping al-
gorithm using the translation of SQL data types into XML
Schema data types provided by the A Direct Mapping of
Relational Data to RDF [15] W3C’s working draft. Using
this translation, the function that checks the compatibility
between typed QuadPatterns and typed QuadMatchers can
also check if the type for the column matches the type of the
pattern component. Both structures can also be extended
adding support for an optional language in the positions of
subject, predicate or object and adding additional checks in
the compatibility function

The problem of mapping URIs in triples to their final
value in a relational table can be solved extending R2RML
with a new predicate rr:URIMappingEzpression similar to
rranverseFxpression. This new property will introduce a
transformation for the value of the URI into the suitable
SQL value, that can be used into SPARQL operations.

Support of blank nodes has been proved to be problem-
atic when the column storing the blank node is marked as
AUTO_INCREMENT. In these cases, the solution found in-
volves the generation of a pseudo-unique integer value that
is assigned to the newly created blank node identifier.

Another important limitation of the proposed mapping is
that it can only be used with updatable tables. The original
read-only scope of R2RML makes easy to translate tuple
values into URIs using a logical table consisting of a com-
plex SQL query as the starting point of the mapping. This is
not possible when supporting modifications in the tables and

mechanisms like the proposed rr: URIMappingExpression prop-

erty must be used to transform URIs into the final values to
be stored in table rows.

3. DECLARATIVE MAPPING OF RDF GRAPHS

AS RESTFUL SERVICES

The previous section of this document has described a
mechanism to manage RDF graphs stored in a relational
database using SPARQL queries built using a R2RML map-
ping. In this section we will introduce a RDF'S vocabulary
describing a RESTful API, aligned with the principles of the
LD initiative, that can be used to access a RDF graph by
any client software supporting the HTTP protocol.

In the same way that R2RML describes a mapping from
the relational model into the RDF model, the proposed API
vocabulary describes a mapping from a set of HTTP re-
quests to the SPARQL query language.

The described interface must meet certain requirements:

e It must be a viable alternative for present day web ap-
plications, exposing new capabilities in a familiar way
for web developers not used to semantic web technolo-
gies.

e It must be compliant with REST architectural princi-
ples [10] as well as with Linked Data recommendations
[5]-

e [t must support not only the retrieval of data but also
the creation, update and destruction of resources.

e [t must reuse existing work and vocabularies in the
area of Linked Data APIs where possible.

3.1 API alternatives for the web of LD

There are currently different proposals to describe inter-
faces allowing access to RDF graphs for web clients. A pos-
sible categorization of these APIs could be:

¢ SPARQL endpoints
¢ RDF over HTTP

e Entity Attribute Value (EAV) mappings over
HTTP

SPARQL endpoints offer a very general interface to access
RDF graphs using the expressivity power of the SPARQL
query language. The SPARQL protocol for RDF W3C rec-
ommendation standardized a SOAP based protocol to access
such an endpoint. Despite of its genericity, SPARQL end-
points and the SPARQL protocol for RDF violates some of
the constraints imposed by the Linked Data and REST ar-
chitectural styles, for example, the non dereferenceability of
the URIs stored in the graph. The use of SPARQL end-
points also imposes important requirements on the clients
accessing the service. They must deal with the building of

SPARQL queries, the creation of the correct SOAP requests
and the parsing of RDF /XML responses.

The exchange of RDF graphs using the HTTP protocol
according to the REST architecture is another alternative
to build a HTTP interface for RDF graphs. In this case, the
central abstraction is the named graph (NG) [6]. The RDF
dataset stored in a service is partitioned into several graphs
identified by an URI and this URI is exposed as a HTTP ac-
cessible resource. HTTP methods are mapped to SPARQL
1.1/Update operations creating, editing, retrieving and de-
stroying NGs. the SPARQL 1.1 Uniform HTTP Protocol for
Managing RDF graphs W3C’s recommendation [17] or the
Pubby frontend [20] are examples of such interfaces. This
kind of APIs are compatible with REST and Linked Data
principles but support less expressive queries over the RDF
graph. From the client point of view, using this kind of APIs
requires the support of the RDF data model and some of the
RDF serialization formats provided by the service (Turtle,
N3, RDF /XML, JSON).

A simpler kind of HTTP interfaces for RDF graphs con-
sists of EAV mappings for RDF graphs that are exchanged
using the HTTP protocol. In this kind of APIs, the server
hides the RDF data model mapping sets of triples sharing
the same subject as pairs of key-values objects. These ob-
jects are encoded in HTTP requests parameters and they are
returned in HTTP responses, using serialization formats like
JSON objects with plain attribute names. Examples of this
kind of APIs are the Linked Data API Proposal (LD-API)
[3] and RDF backed versions of the Open Data Protocol
API [19]. EAV interfaces are compliant with REST princi-
ples and they have a familiar interface for most web develop-
ers. They usually introduce ad-hoc mechanisms to deal with
practical web development issues like the pagination of re-
sources in collections. On the other hand, they present some
problems from the Linked Data perspective like the use of
hidden URIs in objects attributes, what could prevent the
effective linking among services.

The API and the description vocabulary we are going to
introduce are based on the exchange of RDF graphs using
the HTTP protocol according to the SPARQL 1.1 Uniform
HTTP Protocol for Managing RDF graphs W3C’s draft rec-
ommendation. Using this protocol, information resources in
the service can be described as triples stored in a named
graph that can be exposed through the service API. This
level of granularity is equivalent to the one that can be found
in most RESTful APIs [25]. Additionally, we will introduce
some convenient features commonly found in EAVs APIs,
like the LD-API proposal, to facilitate the use of the API
by restricted web clients.

3.2 Declaration of linked resources

Listing 10 contains a RDF graph encoded using the Tur-
tle syntax that describes a couple of resources: a collection
of blogs and each blog. These resources expose using the
HTTP protocol the relational data stored in the BLOGS
SQL table accessed using the R2RML mapping shown in
the same listing.

@prefix testblog: <http://example.org/blog#> .

@prefix lda: <http://restful_linked_data_api.org#> .
@prefix api: <http://purl.org/linked—data/api/vocab#> .
@prefix rr: <http://www.w3.org/ns/r2rml#> .

@prefix sioct: <http://rdfs.org/sioc/types#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#>.

testblog:
a lda:API ;
lda:exposes testblog:blogs, testblog:blog .

testblog:blogs
a lda:Resource ;
api:uriTemplate "http://testblog.org/lodapi/blogs” ;
lda:endpoint
[a lda:R2RMLSparqlEndpoint ;
lda:has_r2rml_mapping testblog:bogsMapping ;
lda:has_r2rml_graph rr:columnGraphIRI];
lda:has_operation lda:GET, lda:POST ;

lda:named_graph_creation_mechanism testblog:blogsMappingUriMinter

testblog:blogsMappingUriMinter
a lda:NamedGraphCreationMechanism ;
lda:uri_template “"http://testblog.org/lodapi/blogs/{id}” ;
lda: mapped_uri_parts
[lda: mapped_component_value 7id” ;
lda:uri_generator lda:UniqueldInt]

testblog:blog
a lda:Resource ;
api:uriTemplate ”"http://testblog.org/lodapi/blogs/{id}” ;
lda:endpoint
[a lda:R2RMLSparqlEndpoint ;
lda :hasR2RMLMapping testblog:blogsMapping ;
lda : hasR2RMLGraph rr:columnGraph];
lda: has_operation lda:GET, lda:PUT, lda:DELETE .

testblog:blogsMapping
a rr:TriplesMap ;
rr:logicalTable ”blogs” ;
rr:class sioct:Weblog ;

rr:subjectMap [a rr:IRIMap;
rr:column 7id”];
rr:propertyObjectMap | rr:property dc:creator ;
rr:column ”author”];
rr:propertyObjectMap [rr:property dc:title;
rr:column 7title” J;
rr:propertyObjectMap [rr:property dcterms:created;

rr:column ”“created_at” ;
rr:datatype xsd:dateTime].

Listing 6: Blogs resources mapping

The main parts of the resource declaration are

e api:uriTemplate Designates a dereferenceable URI in-
dentifying a set of Named graphs that can be addressed
using the mapped HTTP operations. The property is
reused from the LD-API specification, as well as the
semantics for validating an URI against an URI tem-
plate.

e lda:endpoint a SPARQL endpoint capable of process-
ing the SPARQL Update query generated by the map-
ping of the HTTP method. Two main kinds of end-
points are valid: a list of R2RML triplesMap that are
interpreted as a collection of patterns in a SPARQL
query according to the first part of this paper or a
void:sparqlEndpoint an external endpoint supporting
the SPARQL 1.1 Uniform HTTP Protocol for Manag-
ing RDF graphs protocol.

e [da:has_operation contains the collection of HTTP op-
erations that will be valid on the named graph being
exposed as a resource. lda:GET, lda:PUT, lda:POST,
and lda:DELETE are supported. These operations
are interpreted according to the SPARQL 1.1 Uniform
HTTP Protocol for Managing RDF graphs protocol.

e lda:named_graph_creation_mechanism describes how new
named graphs are created in the service endpoint. The
mechanism must specify an URI template for the new
NG and what parts of the URI template for the named
graph will be generated. Two generation mechanisms
are supported lda: UniqueldInt, lda: UUID. The first one
generates a new unique integer, and the second one an
UUID.

The proposed language for mapping resources to SPARQL
endpoints makes possible to associate the same R2ZRML map-
ping to different named graphs. This can be achieved us-
ing the lda:hasR2RMLGraph property in the declaration of
R2RMLSparqlEndpoints. 1f the rr:table-graph-ri property
is specified, the R2RML mapping is augmented with that
property and the resolved URI template for that resource.
On the other hand, if the rr:column-graph property and the
name of a column are used, the mapped value of that col-
umn will be matched against the URI of the resource in
the generated SPARQL query. This feature can be used to
restrict the results of the generated queries or to link the
triples stored in different relational tables with foreign keys
and expose them as a single RESTful resource.

3.3 Service Processing Model

Software implementations supporting the description of
resources using the previous vocabulary must accept HTTP
requests and process them following three main stages:

e Mapping the HTTP request to a SPARQL query

e Execution of the SPARQL query in the associated SPARQL

endpoint

e Formatting of the resulting RDF graph as the repre-
sentation of the resource agreed in the HT'TP content
negotiation process

The semantics of the SPARQL query to be build for each

HTTP method matches the semantics described in the SPARQL

1.1 Uniform HTTP Protocol for Managing RDF' graphs pro-
tocol draft.

3.3.1 GET requests

GET requests retrieve the whole graph associated to the
resource using the SPARQL query

CONSTRUCT { ?s ?p 7o }
WHERE

GRAPH <graph_uri> { ?s ?p o0 }

Listing 7: SPARQL query for a HTTP GET opera-
tion

as specified in the SPARQL 1.1 Uniform HTTP Protocol
for Managing RDF graphs protocol.

This query can be executed in a RDBMS with a R2RML
mapping, building a SELECT SPARQL query and returning
the retrieved variable bindings as the triples of the RDF
graph to return.

Support for pagination is provided via two special HTTP
request parameters _pageSize and _page. The meaning of
these parameters is equivalent to the one specified in the
LD-API proposal. They are translated into values for the
LIMIT and OFFSET clauses of the constructed SPARQL
query. If these parameters are present the SPARQL query
is also modified to be sorted by subject using the ORDER
BY 7s SPARQL clause.

3.3.2 POST requests

POST requests create a new named graph in the associ-
ated SPARQL endpoint, inserting into that graph the RDF
triples encoded in the HTTP request.

The SPARQL 1.1 Update query constructed according to
the the SPARQL 1.1 Uniform HTTP Protocol for Managing
RDF graphs protocol has the form

INSERT DATA

GRAPH <graph_uri> {.. RDF payload .. }

Listing 8: SPARQL query for a HTTP POST oper-
ation

where graph_uri is minted using the mapping information
associated to the api:uriTemplate, and lda:mapped_uri_parts
properties.

A similar problem to the generation of the named graph
URI is the generation of the URI for the resource to be cre-
ated. This URI will be used as the subject of the triples
containing the meta-data for the resource. Clients creat-
ing the new resource must submit a RDF graph containing
a RDF graph with at least a single blank node identifying
the new resource to be created. The API implementation
will replace the blank node with a new minted URI of the
form graph_uri#self, before inserting the triple graph in the
SPARQL end point. If the RDF graph in the HTTP request
payload contains more than one blank node, the identifier
of the blank node for the resource to be created must be
passed as an URL encoded parameter with name _self.

A distinction must be made between the named graph
created to store the triples of the resource and the resource
itself. The generated URI for the named graph must be
deferencable as it is an information resource whose repre-
sentation can be retrieved by the clients requesting a cer-
tain representation. On the other hand, the subject of the
knowledge being encoded as an RDF graph is a non infor-
mation resource that should not be directly dereferenced.
The authority to create this new URI for the resource be-
longs to the provider of the service API [13]. The use of a
blank node allows the client to provide a description of the
resource without knowing in advance the URI that will be
introduced by the server.

If the RDF payload of the HTTP request contains triples
with subjects consisting of non blank node identifiers, the
API implementation must return a 403 forbidden error re-
sponse.

If the creation of the named graph is successful, the API
implementation must return a 201 created response code
with the location header pointing the URI of the newly cre-
ated named graph according to the SPARQL 1.1 Uniform
HTTP Protocol for Managing RDF graphs draft.

3.3.3 PUT requests

PUT HTTP requests are handled by the API implemen-
tation specification as a request to replace the knowledge as-
sociated to a named graph by knew knowledge encoded as a
RDF graph. According to the SPARQL 1.1 Uniform HTTP
Protocol for Managing RDF graphs protocol, the implemen-
tation must translate the HTTP request into a SPARQL
request of the form

DROP SILENT GRAPH <graph_uri >;
INSERT DATA {

GRAPH <graph_uri> { ..
1.

RDF payload .. }

Listing 9: SPARQL query for a HTTP PUT opera-
tion

This query can be executed using the mapping of SPARQL
INSERT DATA query for a R2RML mapping discussed in
the previous section. The DROP SPARQL query can be
executed using a DELETE query with a pattern matching
any triple in the graph. The deletion of all the triples in
the graph will also imply the deletion of the graph and the
failure of any posterior query against the same graph.

The RDF payload of the HTTP request must contain only
RDF triples with the URI of the underlying resource, match-
ing the pattern graph_uri#self and blank node IDs. The
request must fail with a 403 forbidden response code other-
wise.

3.3.4 DELETE requests

DELETE HTTP requests are interpreted by the API im-
plementation as requesting the deletion of the named graph
and all the contained triples. The generated SPARQL query
according to the SPARQL 1.1 Uniform HTTP Protocol for
Managing RDF graphs protocol is

DROP GRAPH <graph_uri >.

Listing 10: SPARQL query for a HTTP PUT oper-
ation

This operation can be implemented using the DELETE
operation discussed in the previous section using a pattern
that matches any triples in the named graph.

3.3.5 JSON support in requests and responses

JSON is the data format of choice for most of today’s Web
2.0. In order to provide an useful interface for web develop-
ers, it is important to offer a JSON encoding of RDF graphs
in requests and responses that can be used with the same
easiness as in common entity-attribute-value JSON objects
but, at the same time, can be transformed into a valid RDF
graph.

JSON-LD [16] provides such a representation. Using a
feature named type-coercion, RDF graphs can be encoded
as plain javascript objects with an additional nested object
containing the mapping from keys and values to RDF prop-
erties, URIs and literals.

Any HTTP request and response requesting a JSON me-
dia type for the encoding of the request payload or returned
representation, must use type coerced JSON-LD as the ex-
change format.

3.3.6 Results formatting

After obtaining a successful response from the SPARQL
endpoint the API implementation must return the retrieved
knowledge to the client using the media type representation
agreed using the content negotiation mechanism built into
the HTTP protocol.

The media types specified in the LD-API specification
must be accepted by any implementation of this API.

The API implementation must also accept a number of
common parameters that can be passed to the API imple-
mentation to make the protocol more useful for restricted
HTTP clients like web browser javascript applications.

e _callback parameter can be passed as a request param-
eter forcing the server to return a JSON-LD encoded
representation of the resulting RDF graph passed as
the single argument in the invocation of the javascript
function passed as value of the parameter. This tech-
nique known as JSONP allows javascript applications
being executed inside a browser to bypass the single
domain restriction imposed by the browser.

e _format specifies a format for the requested represen-
tation. The parameter takes precedence over the value
of the Accept HTTP header.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have attempted to describe a possible
technical solution for the problem of building writable LD
APIs that can be adopted by present day web developers
using the standard technological stack deployed in today’s
web applications. Special attention has been paid to offer-
ing an interface suitable for common web APIs clients like
javascript web applications and smartphones.

The state of the current implementation relies on several
technologies and standards in an immature state. SPARQL
1.1 Update, SPARQL 1.1, the SPARQL 1.1 Uniform HTTP
Protocol for Managing RDF graphs, LD-JSON and R2RML
are still recommendation drafts susceptible of change. The
solution here proposed must consequently be adapted to the
changes in these proposals. Additional work needs to be
done to improve the performance of the mapping of SPARQL
queries using R2RML. Proper benchmarking against triple
stores and equivalent relational solutions need to be carried
on to ensure that the translation mechanism is a viable so-
lution.

The problem of exposing APIs with closed world seman-
tics, adding some kind validation mechanism in the creation
of resources in the API is also an important research task,
that is required for the proposed API to be suitable in many
common use cases. The generation of machine processable
descriptions of LD APIs using vocabularies like voID [21] is
also an important feature that LD APIs must address.

Technological solutions like the presented in this paper
can play an important role in the transition from Web 2.0
APIs towards LD compliant APIs. The use of a techno-
logical stack already deployed and the declarative nature of
the solution can lower the entry barrier for many web devel-
opers, for example, it makes possible to offer both kind of
APIs in the same application. On the other hand, the use of
a well defined interface that can be used with different kind
of SPARQL end points, makes possible the future substitu-
tion of a relational backend mapped using R2ZRML by some
technology specialized in the manipulation of RDF graphs.

Nevertheless, the factor that can push the adoption of LD
style APIs is the added value new web applications taking
advantage of the use of shared vocabularies and the capac-
ity of linking resources in one API with other resources can
bring to application users. Related work in authentication
schemes for the web of data like WebID [4] and access priv-
ileges is also required to make possible the interaction of
users with resources across different linked APIs.

S.
1]

2]

[10]

[11]

12

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Linked data, connect distributed data across the web.
http://linkeddata.org/.

Linking open data, w3c sweo community project.
http://wuw.w3.org/wiki/SweolG/TaskForces/
CommunityProjects/LinkingOpenData.
linked-data-api: Api and formats to simplify use of
linked data by web-developers, December 2010.
http://code.google.com/p/linked-data-
api/wiki/Specification.

Webid w3cs space, January 2011.
http://www.w3.org/wiki/WebID.

Tim Berners-Lee. Linked data, July 2006.
http://wuw.w3.org/DesignIssues/LinkedData.html.
Jeremy J. Carroll, Christian Bizer, Pat Hayes, and
Patrick Stickler. Named graphs, provenance and trust.
In Proceedings of the 14th international conference on
World Wide Web, WWW ’05, pages 613-622, New
York, NY, USA, 2005. ACM.

Artem Chebotko, Shiyong Lu, and Farshad Fotouhi.
Semantics preserving sparql-to-sql translation. Data
Knowl. Eng., 68:973-1000, October 2009.

Richard Cyganiak. A relational algebra for SPARQL.
2005.

Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji,
and Z. Meral Ozsoyoglu. A complete translation from
sparql into efficient sql. In Proceedings of the 2009
International Database Engineering E#38;
Applications Symposium, IDEAS 09, pages 31-42,
New York, NY, USA, 2009. ACM.

Roy T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

E. Hammer-Lahav. The oauth 1.0 protocol. RFC 5849,
April 2010.

Matthias Hert, Gerald Reif, and Harald C. Gall.
Updating relational data via sparql/update. In
Proceedings of the 2010 EDBT/ICDT Workshops,
EDBT 10, pages 24:1-24:8, New York, NY, USA,
2010. ACM.

Tan Jacobs. Architecture of the world wide web,
volume one (uri ownership). Technical report, 2004.
http://www.w3.org/TR/webarch/#uri-ownership.
Jing Lu, Feng Cao, Li Ma, Yong Yu, and Yue Pan. An
effective sparql support over relational databases. In
Vassilis Christophides, Martine Collard, and Claudio
Gutierrez, editors, Semantic Web, Ontologies and
Databases, volume 5005 of Lecture Notes in Computer
Science, pages 57—76. Springer Berlin / Heidelberg,
2008.

Juan Sequeda Marcelo Arenas, Eric Prud’hommeaux.
A direct mapping of relational data to rdf. W3C
working draft, W3C, November 2010.
http://wuw.w3.org/TR/rdb-direct-mapping/.

Manu Sporny Mark Birbeck. Json-1d - linked data
expression in json. Technical report, 2011.
http://json-1d.org/.

Chimezie Ogbuji. Sparql 1.1 uniform http protocol for
managing rdf graphs. W3C working draft, W3C,
October 2010.
http://www.w3.org/TR/sparqlli-http-rdf-update/.
Sunitha Ramanujam, Vaibhav Khadilkar, Latifur

(19]

20]

(21]

(22]

23]

24]

(25]

Khan, Steven Seida, Murat Kantarcioglu, and Bhavani
Thuraisingham. Bi-directional translation of relational
data into virtual rdf stores. In Proceedings of the 2010
IEEE Fourth International Conference on Semantic
Computing, ICSC ’10, pages 268-276, Washington,
DC, USA, 2010. IEEE Computer Society.

Microsoft Research. Open data protocol.

http://www.odata.org/developers/protocols/overview.

Chris Bizer Richard Cyganiak. Pubby: A linked data
frontend for sparql endpoints, June 2007.
http://www4.wiwiss.fu-berlin.de/pubby/.

Michael Hausenblas et alt. Richard Cyganiak.
Describing linked datasets with the void vocabulary.
Technical report, W3C, 2010.
http://www.w3.0rg/2001/sw/interest/void/.
Seema Sundara Richard Cyganiak and Souripriya Das.
R2rml: Rdb to rdf mapping language. W3C working
draft, W3C, October 2010.
http://www.w3.org/TR/r2rml/.

Alexandre Passant Simon Schenk, Paul Gaeron.
Sparql 1.1 update. W3C working draft, W3C, October
2010. http://www.w3.org/TR/sparqlll-update/.
W3C. Large triple stores report.
http://www.w3.org/wiki/LargeTripleStores.

Erik Wilde and Michael Hausenblas. Restful sparql?
you name it!: aligning sparql with rest and resource
orientation. In Proceedings of the 4th Workshop on
Emerging Web Services Technology, WEWST ’09,
pages 39-43, New York, NY, USA, 2009. ACM.

