
A Main Memory Index Structure to Query Linked Data

Olaf Hartig
Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

hartig@informatik.hu-berlin.de

Frank Huber
Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

huber@informatik.hu-berlin.de

ABSTRACT
A possible approach to query Linked Data combines the actual
evaluation of a query with the traversal of data links in order to
discover and retrieve potentially relevant data. An implementation
of this idea requires approaches that support an efficient and flexi-
ble management of temporary, ad hoc data collections that emerge
during query execution. However, existing proposals for managing
RDF data primarily focus on persistent storage and query execution
for large datasets and, thus, are unsuitable in our dynamic scenario
which involves many small sets of data.

In this paper we investigate main memory data structures to store
Linked Data in a query execution system. We discuss the require-
ments for such a data structure, introduce three strategies that make
use of hash table based indexes, and compare these strategies em-
pirically. While this paper focuses on our query execution ap-
proach, the discussed data structures can also be applied to other
approaches that retrieve Linked Data from remote sources via URI
look-ups in order to process this data locally.

1. INTRODUCTION
In [12] we propose link traversal based query execution as a new

query execution paradigm tailored for the Web of Data. In contrast
to traditional query execution paradigms which assume knowledge
of a fixed set of potentially relevant data sources beforehand, our
approach conceives the Web of Data as an initially unknown set of
data sources. We make use of the characteristics of Linked Data,
in particular, the existence of links between data items of differ-
ent sources. The main idea of our approach is to intertwine the
construction of the query result with the traversal of data links that
correspond to intermediate solutions in the construction process.
This strategy allows the execution engine to discover potentially
relevant data during the query execution.

An important characteristic that distinguishes link traversal based
query execution from other approaches, such as query federation,
is the retrieval and query-local processing of Linked Data from
the Web. Moreover, the integration of result construction and link
traversal means that the query-local data collection is continuously
augmented with further data discovered during the query execu-
tion. To support this procedure a link traversal based query system
requires a data structure that stores the retrieved data while it is be-
ing processed. Such a data structure must allow the query operators
to efficiently add and access the retrieved data. For our query ex-
ecution approach, such an access includes the evaluation of triple
based queries. Furthermore, the data structure must also support
concurrent access in order to enable an efficient, multi-threaded im-

Copyright is held by the author/owner(s).
LDOW2011, March 29, 2011, Hyderabad, India.

plementation of our query approach. Disk-based data structures for
RDF1 are unsuitable for the task because they feature very costly
I/O operations and there is no need to persist data collections that
emerge during link traversal based query execution. However, ex-
isting data structures that manage RDF data in main memory do
not satisfy the outlined requirements as well, primarily because
they are optimized for path queries [14, 22] or for complete graph
queries [2, 5, 16] but not for simple triple based queries.

In this paper we investigate three main memory data structures
that satisfy the outlined requirements. All three data structures are
based on the same index structure for RDF. This index uses hash ta-
bles which store sets of RDF triples, arranged in six possible ways
to efficiently support all possible types of triple based queries. The
three studied data structures, which we call individually indexed
representation, combined index representation, and combined quad
index representation, differ in how they actually make use of the in-
dex structure: The individually indexed representation stores the
data resulting from each link traversal step in a separate index,
whereas, the combined and the quad index representation use a sin-
gle index for all data that the query engine retrieves during the exe-
cution of queries. These different, index utilization strategies result
in different characteristics of the three data structures: A single in-
dex enables a more efficient execution of triple based queries than
a collection of individual indexes. On the other hand, it is not as
straightforward to add, remove, or replace data in a single index that
multiple, parallel link traversal operations access concurrently than
it is for the individually indexed representation. However, the com-
bined index representation and the quad index representation that
we propose in this paper support concurrent access in an efficient
manner. Although we present and discuss the three data structures
in the context of link traversal based query execution, they can also
be applied to other approaches that retrieve Linked Data by look-
ing up URIs in order to process this data locally; for instance, the
navigational query approach proposed by Bouquet et al. [7] or the
data summary based query approach from Harth et al. [10]. Hence,
our main contributions are:
• three main memory data structures for ad hoc storing of

Linked Data that is consecutively retrieved from remote sour-
ces in order to be processed locally, including a discussion
how to access these data structures, and
• an evaluation that analyzes the proposed data structures and

compares them empirically.

This paper is structured as follows: First, we introduce prelim-
inaries in Section 2, including the link traversal based query exe-
cution paradigm. In Section 3 we discuss the requirements that a
data structure must support in order to be suitable for our usage

1RDF is the data model employed by Linked Data.

scenario. Based on these requirements we review existing work in
Section 4. Section 5 introduces the studied data structures that sat-
isfy our requirements, including the index structure they are based
on. We empirical evaluate these data structures in Section 6 and
conclude in Section 7.

2. PRELIMINARIES
This section introduces the preliminaries for the work presented

in this paper, including a brief, informal introduction of our query
approach: Link traversal based query execution is a novel query
execution paradigm developed to exploit the Web of Data to its
full potential. Since adhering to the Linked Data principles [3] is
the minimal requirement for publication in the Web of Data, link
traversal based query execution relies solely on these principles in-
stead of assuming the existence of source-specific query services.

The Linked Data principles require to describe data using the
RDF data model. RDF distinguishes three distinct sets of RDF
terms: URIs, literals, and blank nodes. Let U be the infinite set
of URIs, L an infinite set of literals, and B an infinite set of blank
nodes that represent unnamed entities. An RDF triple is a 3-tuple
(s, p, o) ∈ (U ∪B)× U × (U ∪B ∪ L).

In the Web of Data each entity has to be identified via a single
HTTP scheme based URI. Let ULD ⊂ U be the (possibly infinite)
set of all these URIs. By looking up such a URI we retrieve RDF
data about the entity identified by the URI. Conceptually, we un-
derstand the result of such a URI look-up as a descriptor object:

Definition 1. A descriptor object is a set of RDF triples, i.e. a
finite subset D ⊂ (U ∪ B) × U × (U ∪ B ∪ L), which i) was
retrieved by looking up the URI u ∈ ULD of an arbitrary entity
and which ii) describes that entity. To denote the URL of the Web
resource from which a descriptor object D was actually retrieved
we write url(D).

The query language for RDF data is SPARQL [17] which is
based on graph patterns and subgraph matching. The basic building
block of a SPARQL query is a basic graph pattern (BGP), that is, a
finite subset of the set (U ∪B∪V)× (U ∪V)× (U ∪B∪L∪V)
where V is an infinite set of query variables, distinct from U , B and
L. The elements of a BGP are called triple patterns. We adjusted
the semantics of BGP queries2 for our link traversal based query
execution approach. While we outline the idea in the following, we
refer to [11] for a formal definition.

To provide results for a BGP query, a link traversal based query
execution engine intertwines the construction of such query results
with the traversal of data links in order to discover data that might
be relevant to answer the executed query. By using the descriptor
objects retrieved from looking up the URIs in a query as a start-
ing point, a link traversal based query execution engine evaluates a
certain triple pattern of the BGP. The intermediate solutions result-
ing from this triple pattern evaluation usually contain further URIs.
These URIs link to additional data which may provide further, in-
termediate solutions for the same or for other patterns of the BGP.
To determine results of the whole BGP query the execution engine
alternates between evaluating triple patterns and looking up URIs;
finally, the intermediate solutions for the triple patterns have to be
joined. A comprehensive example of link traversal based query
execution can be found in [13], in which we also compare our ap-
proach to other approaches that execute SPARQL queries over the
Web of Data.
2While we consider only BGP queries in this paper, the results for a
BGP that might be determined using link traversal based query ex-
ecution, can be processed by the SPARQL algebra which provides
operators for the other types of graph patterns in SPARQL queries.

As can be seen from the outlined procedure, instead of evaluat-
ing a BGP query over a fixed set of RDF triples, our link traversal
based approach executes BGPs over a dataset that is continuously
augmented with descriptor objects retrieved during query execution
itself. Formally, we define such a query-local dataset as follows:

Definition 2. A query-local dataset is a set of descriptor objects
where for each two distinct descriptor objects D1 and D2 in the
query-local dataset it must hold url(D1) 6= url(D2).

3. REQUIREMENTS
In this section we discuss the requirements for a data structure

that stores the query-local dataset. We first describe the core func-
tional requirements, introduce important non-functional properties,
and, finally, mention properties that are not necessary.

3.1 Core Functional Requirements
The data structure must store a query-local dataset and it must

support the following four operations over the query-local dataset:

• find – This operation finds RDF triples in the query-local
dataset that match a given triple pattern. Formally, an RDF
triple t = (s, p, o) is a matching triple for a triple pattern
(s̃, p̃, õ) in a query-local datasetD iff it holds3 t ∈

S
D∈D D

and

(s̃ /∈ V ⇒ s̃ = s)∧ (p̃ /∈ V ⇒ p̃ = p)∧ (õ /∈ V ⇒ õ = o)

Due to this definition the find operation must report each
matching triple only once, even if it occurs in multiple de-
scriptor objects.

• add – This operation adds a given descriptor object to the
query-local dataset. The query execution system performs
this operation for each descriptor object that has been re-
trieved during the execution of a query.

• remove – The remove operation removes a descriptor object
that was retrieved from a given URL from the query-local
dataset. This operation is necessary to enable an invalidation
strategy in query systems that (re-)use the query-local dataset
for the execution of multiple queries. While such a reuse can
be beneficial w.r.t. query execution costs and result complete-
ness [11], it bears the risk of providing query results based
on stale data. Thus, an invalidation strategy should identify
potentially stale descriptor objects and remove them from the
query-local dataset.

• replace – This operation replaces a specific descriptor object
with a more recent version that has been retrieved from the
same URL. This operation is useful for invalidation strategies
that immediately retrieve new versions of (potentially) stale
data.

Due to the dynamic nature of link traversal based query execu-
tion it is likely that an implementation of this query approach makes
use of multiple processes (or threads). For instance, our proto-
typical query system implements URI look-ups by asynchronous
function calls and, thus, enables the processing of multiple look-up
tasks in parallel [12]. Due to this parallelism multiple processes
may access the query-local dataset concurrently. Therefore, the
3For the union of descriptor objects we assume that no two de-
scriptor objects share the same blank nodes. This requirement can
be guaranteed by using a unique set of blank nodes identifiers for
each descriptor object retrieved from the Web.

data structure for storing the query-local dataset has to enable the
implementation of the aforementioned operations in a way that it
supports concurrent access. In particular, we require the transac-
tional property isolation, given that an execution of any of the four
operations, find, add, remove and replace, can be understood as a
transaction over the stored query-local dataset. Isolation requires
that “events within a transaction must be hidden from other trans-
actions running concurrently” [8]. In our case, this requirement
means that the addition, replacement and removal of descriptor ob-
jects must not have side effects that cause an interference with any
other add, remove and replace operation. Furthermore, each find
operation must operate on a single, immutable state of the query-
local dataset, where:

• only those RDF triples that are part of a descriptor object
contained in the query-local dataset can be used for triple
pattern matching (i.e. by the find operation), and

• all RDF triples that are part of a descriptor object contained
in the query-local dataset can be used for triple pattern match-
ing.

The isolation requirement also implies that:

• a descriptor object can only be used for triple pattern match-
ing after it has been added completely,

• different descriptor objects which were retrieved from the
same URL must not be used at the same time for triple pat-
tern matching, and

• a descriptor object cannot be used for triple pattern matching
when it has already been removed partially.

3.2 Non-Functional Requirements
The data structure that stores a query-local dataset has to support

an efficient execution of queries. The query execution time of link
traversal based query execution depends on multiple factors such
as delays caused by looking up URIs, retrieving descriptor objects
and adding them to local data structures, as well as the time to
actually evaluate the query patterns over the query-local dataset.
In order to reduce the latter two factors we require a data structure
that supports an efficient implementation of the operations find, add
and replace. In particular, the performance of the find operation
should scale with the number of descriptor objects in the query-
local dataset. Furthermore, the overall amount of main memory
consumed by the data structure storing a query-local dataset should
be as small as possible to allow for query-local datasets that contain
a large number of descriptor objects.

3.3 Non-Relevant Properties
In addition to the aforementioned requirements a data structure

that can hold Linked Data from the Web may have further proper-
ties and other approaches to consume Linked Data may have dif-
ferent requirements. In the remainder of this section we point out
potentially relevant properties that are not required in our scenario.

In our case it is not necessary to query specific descriptor objects
individually: Intermediate solutions in link traversal based query
execution are generated from matching RDF triples that may occur
in any of the descriptor objects. For this reason, we understand the
find operation to operate on the whole query-local dataset instead of
individual descriptor objects. Therefore, it is also not necessary that
an implementation of find distinguishes and reports the descriptor
objects from which matching triples originate. However, the latter
may become a requirement for systems that have to provide the
provenance of each query result.

Since the execution of queries is a read-only process there is no
need to write data back to the Web. It is not even necessary to
modify retrieved descriptor objects within the query system.

Finally, our understanding of a transaction in this paper does not
correspond to the traditional understanding according to which a
whole query execution is a single transaction. In the case of link
traversal based query execution we do not require transactional
properties on that level. In fact, multiple queries executed in paral-
lel may even mutually benefit from a shared and collectively aug-
mented query-local dataset because descriptor objects discovered
and retrieved for one query could also be useful to others.

4. RELATED WORK
Several data structures to store RDF data have been proposed in

the literature. In this section we review them w.r.t. the requirements
introduced in the previous section.

The majority of existing work focuses on RDF stores, which are
DBMSs that are designed to persistently store large amounts of
RDF data in secondary memory. Theoharis et al. provide a clas-
sification and comparison of earlier approaches that make use of
relational databases [21]. More recent work proposes to partition
the data vertically by grouping RDF triples with the same property
into dedicated tables and to store these tables in a column-oriented
DBMS [1], an approach that is suitable for data with a moder-
ate number of properties [19]. An alternative to relational storage
schemes is the development of native, disk-based data structures for
RDF data (e.g. [20, 15, 23]). From the work in this area the most
relevant in our context is the index structure presented by Harth and
Decker [9]. The authors associate RDF triples (s, p, o) with a con-
text c and represent such a “triple in context” by a quad, that is, a
4-tuple (s, p, o, c). The proposed index structure comprises a lexi-
con and 6 quad indexes. The lexicon provides a mapping from RDF
terms to identifiers in order to save space and improve processing
time. The quad indexes are implemented using B+ trees and con-
tain quads encoded by the identifiers of their elements. While all
6 quad indexes contain all indexed quads, each index uses different
elements of the quads as index keys such that these 6 quad indexes
cover all kinds of quad based queries, leveraging the fact that B+
trees support prefix queries. While this data structure is disk-based,
its design influenced the main memory data structures that we in-
vestigate in this paper.

In contrast to RDF stores, the majority of existing software frame-
works for RDF, such as Jena4 and Sesame5, also provide an in-
memory data structure for RDF data. In our experiments we em-
pirically compare some of these in-memory models with the data
structures discussed in this paper (cf. Section 6). However, to the
best of our knowledge, only a few publications exist that explicitly
introduce data structures to manage RDF data in main memory:
Atre et al. introduce BitMat [2], a compressed bit-matrix struc-
ture that enables processing of BGP queries on very large sets of
RDF triples completely in main memory. Binna et al. pursue the
same goal with a main memory RDF store, called SpiderStore [5].
SpiderStore applies a graph-based storage layout that represents an
RDF graph (i.e. a graph presentation of a set of RDF triples) na-
tively. Based on this representation, Binna et al. propose a depth-
first graph traversal approach to evaluate BGP queries. Since the
applied graph-based storage layout is optimized for graph traversal
operations, query execution in SpiderStore is very efficient. How-
ever, due to the focus on storing a single RDF graph and executing
complete BGP queries, both approaches, BitMat and SpiderStore,

4http://openjena.org/
5http://openrdf.org/

are unsuitable in our context; we require a data structure that is
optimized for an efficient evaluation of single triple patterns over
multiple RDF graphs.

Oren et al. propose the application of evolutionary algorithms to
execute queries over RDF data [16]. The authors represent the data
in main memory using Bloom filters. While this approach allows
the query system to process large amounts of data, the proposed
query execution method also focuses on an evaluation of complete
BGPs instead of triple pattern queries. Furthermore, the approach
provides for approximate query answers only.

Janik and Kochut present BRAHMS, a main memory-based stor-
age system for RDF [14]. BRAHMS is based on a read-only data
structure which comprises multiple hash tables, similar to the index
structure that we use. However, BRAHMS requires these hash ta-
bles to enable an efficient retrieval of node neighborhoods in RDF
graphs in order to support path queries for semantic association dis-
covery algorithms. Another approach that focuses on path queries
over RDF graphs has been presented by Udrea et al. [22] who pro-
pose a graph based index called GRIN. While both approaches,
BRAHMS and GRIN, provide for an efficient query execution, they
are unsuitable in our context, due to their focus on path queries.

5. STORING QUERY-LOCAL DATASETS
In this paper we investigate three main memory data structures

that satisfy the requirements as introduced in Section 3. All three
data structures are based on the same index for RDF data. This
index enables an efficient execution of triple pattern queries (i.e.
find operations). In this section we introduce the index and describe
the three data structures.

5.1 Indexing RDF Data
The index that we introduce in the following, stores a set of RDF

triples; it comprises a dictionary, a triple list, and 6 hash tables.
The dictionary provides a two-way mapping between RDF terms

and numerical identifiers for these terms. Using term identifiers al-
lows for a more efficient query execution because it is faster to pro-
cess and compare numbers than strings or any other kind of object
representation. Formally, we represent the dictionary by two bijec-
tive functions: id : (U∪B∪L)→ I and term : I → (U∪B∪L)
where I denotes the set of numerical term identifiers; id and term
are inverse to each other. Based on the term identifiers we intro-
duce the notion of an ID-encoded triple, that is a 3-tuple contain-
ing three identifiers of RDF terms. To denote the ID-encoded triple
that corresponds to an RDF triple t = (s, p, o) we write enc(t);
i.e. enc(t) = (id(s), id(p), id(o)); similarly, dec(t̄) denotes the
RDF triple corresponding to an ID-encoded triple t̄= (s̄, p̄, ō); i.e.
dec(t̄)=(term(s̄), term(p̄), term(ō)).

In addition to the dictionary, the index contains a triple list and 6
hash tables, denoted as HS, HP, HO, HSP, HSO and HPO. Each
of these hash tables consists of n different hash buckets. To denote
the i-th bucket in hash table HX we write HX[i]. These buckets
store references to ID-encoded triples; all triples referenced in the
buckets are stored in the triple list of the index. The hash function
hX : I × I × I → [1, n] of each of the 6 hash tables associates any
ID-encoded triple t̄ with the bucket which may contain a reference
to t̄ in that hash table.

The index contains 6 hash tables to support the different access
patterns based on which the query execution system may try to find
RDF triples that match a triple pattern. These access patterns corre-
spond to the 8 different kinds of triple patterns (cf. Table 1 in which
’?’ denotes that the corresponding element of the triple pattern is a
query variable and ’!’ denotes the element is an RDF term). To sup-
port these access patterns each of the 6 hash tables has to contain

Table 1: Relevant hash buckets for triple patterns (s, p, o) of
different types.

Pattern Type Relevant Bucket(s)
(!, ?, ?) HS[hS(id(s), id(p), id(o))]
(?, !, ?) HP[hP(id(s), id(p), id(o))]
(?, ?, !) HO[hO(id(s), id(p), id(o))]
(!, !, ?) HSP[hSP(id(s), id(p), id(o))]
(!, ?, !) HSO[hSO(id(s), id(p), id(o))]
(?, !, !) HPO[hPO(id(s), id(p), id(o))]
(!, !, !) e.g. HSO[hSO(id(s), id(p), id(o))]

(?, ?, ?) e.g.
Sn

i=1 HS[i]

references to all ID-encoded triples of the RDF data to be indexed;
furthermore, the corresponding hash functions, hS, hP, hO, hSP,
hSO and hPO, have to satisfy the following requirement: For each
pair of ID-encoded triples (s̄1, p̄1, ō1) and (s̄2, p̄2, ō2) it holds:

s̄1 = s̄2 ⇒ hS(s̄1, p̄1, ō1) = hS(s̄2, p̄2, ō2)

p̄1 = p̄2 ⇒ hP(s̄1, p̄1, ō1) = hP(s̄2, p̄2, ō2)

ō1 = ō2 ⇒ hO(s̄1, p̄1, ō1) = hO(s̄2, p̄2, ō2)

s̄1 = s̄2 ∧ p̄1 = p̄2 ⇒ hSP(s̄1, p̄1, ō1) = hSP(s̄2, p̄2, ō2)

s̄1 = s̄2 ∧ ō1 = ō2 ⇒ hSO(s̄1, p̄1, ō1) = hSO(s̄2, p̄2, ō2)

p̄1 = p̄2 ∧ ō1 = ō2 ⇒ hPO(s̄1, p̄1, ō1) = hPO(s̄2, p̄2, ō2)

Due to this requirement we can expect to find all triples that
may match a triple pattern (s, p, o) of type (!, ?, ?) from search-
ing through the references in the hS(id(s), id(p), id(o))-th bucket
of hash table HS; i.e. in bucket HS[hS(id(s), id(p), id(o))]. Simi-
larly for triple patterns of type (?, !, ?), (?, ?, !), (!, !, ?), (!, ?, !) and
(?, !, !). However, since we do not assume collision-free hash func-
tions, the relevant bucket may also contain references to triples that
do not match the corresponding triple pattern. Hence, each triple
referenced in a relevant bucket must still be checked. For triple
patterns of type (!, !, !) we may access any one of the hash tables;
for instance, bucket HSO[hSO(id(s), id(p), id(o))]; and for triple
patterns of type (?, ?, ?) we have to inspect all n buckets in one of
the hash tables. Table 1 summarizes what buckets are relevant for
which kind of triple patterns.

Based on the presented index we propose three strategies for
storing a query-local dataset: individual indexing, combined in-
dexing, and quad indexing.

5.2 Individual Indexing
The main idea of the individually indexed representation (IndIR)

of the query-local dataset is to keep the triples of each descrip-
tor object in a separate index. Due to this separation we need an
additional mapping idx that associates each URL from which a de-
scriptor object was retrieved with the index that contains the triples
of that descriptor object. To reduce the amount of required memory
all indexes share a common dictionary6.

IndIR allows for a straightforward implementation of the four
main operations add, remove, replace and find: Adding a newly
retrieved descriptor object D to the query-local dataset is a mat-
ter of creating a new index ID , indexing all triples t ∈ D in ID ,
and adding the association idx(url(D)) = ID . After this add op-
eration finished successfully, it is not necessary to keep the added
descriptor object anymore because it is completely represented by
the index. To remove the descriptor object that was retrieved from

6We assume that the dictionary always assigns different identifiers
to the blank nodes in different descriptor objects.

URL u from the query-local dataset, the association idx(u) = ID

has to be removed and ID has to be deleted. Replacing an old de-
scriptor object that was retrieved from URL u with a new descriptor
object Dnew, retrieved from the same URL (i.e. url(Dnew) = u),
requires creating an index Inew, adding all t ∈ Dnew to Inew,
atomically changing the association idx(u) = Iold to idx(u) =
Inew, and deleting Iold. To find matching triples in the query-local
datasetD, we have to inspect the relevant hash bucket in each index
ID ∈ {idx(url(D′)) | D′ ∈ D}. However, since each matching
triple that occurs in multiple descriptor objects must be reported
only once, we have to record all reported triples in a temporary set;
if we find a recorded triple again in the index of another descriptor
object, we omit reporting it again.

These implementations of the modification operations add, re-
move and replace guarantee our isolation requirement naturally, as
long as the modifications of idx are performed atomically. To guar-
antee the isolation requirement for the implementation of the find
operation it is necessary to use a temporary, immutable copy of idx
instead of iterating over the shared idx that might be modified by
concurrent operations.

While the separation of the descriptor objects into individual in-
dexes allows for a straightforward implementation, it introduces the
potential for performance issues during the execution of the find op-
eration. The need to access |D| different indexes and to iterate over
multiple hash buckets may have a significant impact on the execu-
tion time, in particular for query-local datasets that contain a large
number of descriptor objects. The combined indexing strategy ad-
dresses this issue.

5.3 Combined Indexing
The combined index representation (CombIR) of query-local data-

sets uses only a single index that contains the triples of all descrip-
tor objects in its 6 hash tables. For CombIR the find operation can
be implemented very efficiently: We only have to search through
the references in the relevant hash bucket(s) of our single index.

Implementing the other three operations for CombIR is not as
straightforward as it is for IndIR: Just adding the RDF triples from
each descriptor object to the combined index would make it im-
possible to remove or replace a specific descriptor object because
it would be unclear which of the indexed triples are part of it and
have to be removed from the index. To enable the implementation
of add, remove and replace in a way that guarantees our isolation
requirement and that satisfies the efficiency requirements we adopt
the idea of a multiversion database system [4]. In particular, we
propose to use three additional mappings: src, status and cur.

The mapping src associates each ID-encoded triple in the index
with a set of unique identifiers that refer to the descriptor objects
from which the triple originates. The mapping status associates
each of these identifiers with the current indexing status of the cor-
responding descriptor object. We distinguish the following index-
ing statuses:

• BeingIndexed – This status indicates that the descriptor ob-
ject is currently being added to the index.

• Indexed – This status indicates that the descriptor object is
completely contained in the index and can be used by the
find operation.

• ToBeRemoved – This status indicates that the descriptor ob-
ject is completely contained in the index but it cannot be
used by the find operation because the descriptor object has
been removed from the query-local dataset or the query-local
dataset already contains a more recent version of the descrip-
tor object.

• BeingRemoved – This status indicates that the descriptor ob-
ject is currently being removed from the index.

The mapping cur associates the URL of each descriptor object
which is currently part of the query-local dataset with the identi-
fier that refers to that descriptor object. For each URL u that is
mapped by cur it must hold: status(cur(u)) = Indexed.

Using the combined index and the mappings src, status and
cur we can implement the required operations as follows: To find
matching triples in the query-local dataset D, we have to search
through the references in the relevant hash bucket of our combined
index, but we ignore all ID-encoded triples t̄ for which it does not
hold: ∃i ∈ src(t̄) : status(i) = Indexed.

To add a descriptor object D to the query-local dataset we, first,
have to create a unique identifier i for it and add the association
status(i) = BeingIndexed. For each RDF triple t ∈ D we have to
find enc(t) in the index. If enc(t) is not in the index, we add
the association src(enc(t)) = {i} and insert enc(t) in the in-
dex; otherwise, we just add i to src(enc(t)). Finally, we change
status(i) = BeingIndexed to status(i) = Indexed and add the
mapping cur(url(D)) = i.

To remove the descriptor object that was retrieved from URL
u from the query-local dataset, we change status(cur(u)) = In-
dexed to status(cur(u)) = ToBeRemoved and remove the asso-
ciation cur(u) = i. After these simple changes we can under-
stand the descriptor object to be removed because it is ignored
by find operations, even if this data is still present in our index.
To delete this data completely we propose an additional operation
clear that an asynchronous process executes regularly. This oper-
ation, first, changes all associations status(i) = ToBeRemoved to
status(i) = BeingRemoved. Next, it searches all buckets from
hash table HS in our combined index for ID-encoded triples t̄ with
∀i ∈ src(t̄) : status(i) = BeingRemoved. It removes the refer-
ences to these triples from all 6 hash tables and deletes the corre-
sponding associations from mapping src. Finally, it removes all
associations status(i) = BeingRemoved.

Replacing an old descriptor object that was retrieved from URL
u with a new descriptor object Dnew corresponds to such an ex-
ecution of add for Dnew that does not modify the mapping cur
in the end. Instead, we complete the replacement by changing
status(cur(u)) = Indexed to status(cur(u)) = ToBeRemoved
and cur(u) = iold to cur(u) = inew where identifier inew refers
to Dnew.

Due to the association of descriptor objects with indexing sta-
tuses we ensure the isolation requirement for the modification op-
erations add, remove and replace. To guarantee isolation for the
find operation it is necessary to atomically create a temporary copy
of relevant buckets and inspect these immutable snapshots instead
of iterating over the original buckets that might be modified by con-
current operations.

5.4 Quad Indexing
For CombIR we propose to use the mapping src to keep track

of the origins of the triples in the combined index. An alternative
strategy is the application of the concept of quads, or “triples in
context” as Harth and Decker call them [9]. The combined quad
index representation (CombQuadIR) implements this idea by using
a slightly modified version of the index structure that we present in
Section 5.1. Instead of the triple list, this modified version com-
prises a list of quads which we formally represent as pairs (t̄, i)
where t̄ is an ID-encoded triple and i is an identifier for a descrip-
tor object. Consequently, the 6 hash tables in the modified version
of the index structure do not keep references to ID-encoded triples
but to the quads in the quad list. However, the hash functions of

the index operate on the triple part of the quads only, exactly as
described for the original version of the index structure. Hence, the
relevancy of hash buckets for triple patterns as specified in Table 1
still holds.

While the use of quads obsoletes the mapping src, CombQuadIR
still requires the mappings status and cur that we introduced for
CombIR. The implementation of the four required operations for
the quad index is also similar to their implementation for CombIR:
To add a descriptor object D to the query-local dataset we create
a unique identifier i and add the association status(i) = BeingIn-
dexed. For each RDF triple t ∈ D we insert a new quad (enc(t), i)
into the index. Finally, we change status(i) = BeingIndexed to
status(i) = Indexed and add the mapping cur(url(D)) = i.

To remove or replace descriptor objects we can use the same
implementations as introduced for CombIR. However, the asyn-
chronously executed clear operation has to be adjusted: After chang-
ing all associations status(i) = ToBeRemoved to status(i) = Be-
ingRemoved it goes through all quads in the quad list of the index.
For each quad q = (t̄, i) with status(i) = BeingRemoved it re-
moves the references to q from all 6 hash tables and deletes q in
the quad list. Finally, it removes all associations status(i) = Be-
ingRemoved.

For the find operation we have to search through the references in
the relevant hash bucket of the combined quad index, but we ignore
all quads (t̄, i) for which status(i) 6= Indexed. To ensure that we
report each matching triple only once, even if it occurs in multiple
descriptor objects and, thus, is part of multiple quads, we apply the
same strategy as we use for the find operation of IndIR: We record
reported triples temporary and do not report them again if they are
part of another quad referenced by the relevant hash bucket.

For the same reasons as discussed for CombIR, it is possible to
guarantee that an implementation of add, remove, replace and find
for CombQuadIR satisfies our isolation requirement.

6. EVALUATION
In this section we analyze and compare IndIR, CombIR, and

CombQuadIR empirically. We describe the experimental setup, de-
termine suitable parameters for the indexes that we use in these data
structures, and compare the data structures with each other as well
as with similar data structures available in existing systems.

6.1 Experimental Environment
We implemented the data structures and the corresponding op-

erations as introduced in this paper. For the indexes we use hash
tables with a number of n buckets where n = 2m for some expo-
nent m and hash functions that return the m least significant bits of
the term identifiers at specific positions in ID-encoded triples7:

hS(s̄, p̄, ō) ≡ s̄⊕ bitmask[m]

hP(s̄, p̄, ō) ≡ p̄⊕ bitmask[m]

hO(s̄, p̄, ō) ≡ ō⊕ bitmask[m]

hSP(s̄, p̄, ō) ≡ (s̄ · p̄)⊕ bitmask[m]

hSO(s̄, p̄, ō) ≡ (s̄ · ō)⊕ bitmask[m]

hPO(s̄, p̄, ō) ≡ (p̄ · ō)⊕ bitmask[m]

We use these hash functions because they can be calculated very
efficiently. Furthermore, the calculated hash values are distributed
sufficiently because our dictionary implementation does not cal-
culate term identifiers based on some representation of the RDF
7With⊕ we denote the bitwise AND operator and bitmask[m] is a
bitmask in which the m least significant bits are set.

Table 2: Statistics of query-local datasets for our experiments.

q.-local
dataset

BSBM sca-
ling factor

Number of des-
criptor objects

Overall number
of RDF triples

D50 50 2,599 22,616
D100 100 4,178 40,133
D150 150 5,756 57,524
D200 200 7,329 75,062
D250 250 9,873 97,613
D300 300 11,455 115,217
D350 350 13,954 137,567
D500 500 18,687 190,502

terms; instead, we use a counter that provides a new identifier
whenever the id function is called for an unknown RDF term.

Our implementation is written in Java and available as Free Soft-
ware as part of SQUIN8, our link traversal based query execution
system. To evaluate the query performance provided by the three
data structures we used the query engine in SQUIN. However, for
most experiments we disabled the traversal of data links during the
query execution and used pre-populated query-local datasets in-
stead. This strategy allowed us to avoid measuring the effects of
URI look-ups and data retrieval.

For our experiments we adopt the Berlin SPARQL Benchmark
(BSBM) [6]. The BSBM executes different mixes of 25 SPARQL
queries over synthetic RDF data. This data describes entities in a
distributed e-commerce scenario, including different producers and
vendors, the offered products, and reviews from multiple reviewing
systems. The data is generated automatically and it is possible to
use datasets that vary in the number of described entities and, thus,
the amount of RDF triples. We use these BSBM datasets to prepare
multiple query-local datasets of different sizes for our experiments:
We understand each dataset generated for BSBM as the union of
multiple datasets that could be exposed as Linked Data on the Web.
Thus, looking up the URI of any of the described entities would
result in a descriptor object which contains only these RDF triples
from the BSBM dataset that describe the corresponding entity. To
generate a query-local dataset that contains all these descriptor ob-
jects we query a given BSBM dataset with SPARQL DESCRIBE
queries for all relevant entities in that dataset; the result of each
DESCRIBE query becomes a descriptor object in the query-local
dataset that we generate9. Table 2 describes the query-local datasets
that we prepared for the experiments. These datasets are typical for
the query-local datasets that SQUIN usually processes.

In addition to merely comparing our implementations of IndIR,
CombIR, and CombQuadIR among each other, we also compare
these implementations with existing data structures that can be used
to store a query-local dataset: the main memory implementation of
the NamedGraphSet interface in NG4J10 and the main memory
implementation of the DatasetGraph interface in ARQ11, the
query engine for the Jena framework. Both implementations store
each descriptor object in a separate data structure, similar to our
individually indexed representation IndIR. However, while we use
indexes with ID-encoded triples, NG4J and ARQ use an imple-
mentation of the Jena Graph interface that represents RDF terms

8http://squin.org
9For a more detailed description and the code of the correspond-
ing extension for the BSBM data generator we refer to a blog
post at http://sourceforge.net/apps/wordpress/squin/2009/04/15/a-
data-generator-for-bsbm-that-provides-linked-data-characteristics/

10http://www4.wiwiss.fu-berlin.de/bizer/ng4j/
11http://openjena.org/ARQ/

(a) (b) (c) (d)

Figure 1: Measurements for combined index representations of different query-local datasets with varying m (from 1 to 20): (a) aver-
age creation times for representations ofD50,D250 andD500, (b) average number of triples per hash bucket in HS after loadingD200,
(c) estimated memory consumed by the representations, and (d) average time to execute BSBM query mixes over the representations.

as Java objects. For the experiments we used the latest releases
of Jena (v.2.6.4) and ARQ (v.2.8.7) and a recent version of NG4J
(CVS check-out from Jan. 20, 2011).

We conducted all experiments on an Intel Core 2 Duo T7200
processor with 2 GHz, 4 MB L2 cache, and 2 GB main memory.
This machine was connected through the university LAN and it
runs a recent 32 bit version of Gentoo Linux with Sun Java 1.6.0.
All software used for this evaluation, including the scripts to run
the experiments, as well as all our measurements can be found on
the Website for this paper12.

6.2 Tuning the Combined Index
Before we compared IndIR, CombIR, and CombQuadIR we had

to determine suitable parameters for the indexes that we use in these
data structures. In the following we discuss the reasons for this
need and describe the analysis based on which we tuned the in-
dexes.

The number of buckets per hash table has an impact on the per-
formance of find operations and, thus, query execution times, be-
cause a higher number corresponds to less elements per buckets and
it is faster to search through a smaller number of potentially match-
ing triples. Furthermore, the number of buckets may also affect the
amount of main memory required for the indexes if the implemen-
tation of the buckets always allocates some spare memory so that
buckets are never filled to their full capacity. For these reasons it
is necessary to decide on a number of buckets that is suitable for
the typical amount of RDF data which has to be stored in the hash
tables. Since this amount is different for the individual indexes and
the combined index we require a different number of buckets for
these indexes. As we describe in Section 5.1, the hash tables in our
index structure contain n = 2m buckets. Thus, to provide for a
fair comparison of IndIR, CombIR, and CombQuadIR we have to
find suitable exponents m for the indexes that we use in these data
structures. In this paper we focus on tuning CombIR. However, we
conducted similar analyses for the other two data structures.

As outlined before, selecting a suitable number of buckets (or
m) is a trade-off between query performance and required mem-
ory. To find a suitable m for the combined index we used different
m, varying from 1 to 20, to create different combined index repre-
sentations of the aforementioned query-local datasets (cf. Table 2).

12http://squin.org/experiments/IndexStructuresLDOW2011/

For each of these representations we measure the creation time, the
required memory, and the query performance.

To determine the creation times we loaded our query-local data-
sets into an ARQ DatasetGraph and measured the time to create
combined index representations from it. For each m we followed
this procedure 5 times and took the mean of the results. The chart
in Figure 1(a) illustrates these measurements for the different com-
bined index representations of the query-local datasets D50, D250

and D500. As can be seen from this chart, the creation times are
small for representations with a high m (e.g. about 6.3 s and 8.8 s
for the m = 20 representations ofD50 andD500, respectively) and
they increase significantly with a decreasing m. The reason for this
behavior is the number of elements that have to be added per hash
bucket: For a high m we have a large number of buckets in the hash
tables so that each bucket is only relevant for a few triples as Fig-
ure 1(b) illustrates. In this case, the time to encode all RDF triples,
find the relevant hash buckets for each, and add the corresponding
references into these buckets is roughly constant, independent of
m. However, for a small number of buckets per hash table (i.e. for
a small m), adding the references to the buckets is more expensive
and impossible in constant time because each bucket is relevant
for a much greater number of triples (cf. Figure 1(b)). Thus, for a
decreasing m we reach a point where the time to fill the buckets
dominates the overall creation time.

To measure the required memory we applied a method for Java
object profiling as proposed in [18]. Using this method we esti-
mated the amount of main memory consumed by the different com-
bined index representations of the query-local datasets. Figure 1(c)
illustrates the results for D50, D100, D150, D200, D350 and D500;
while the x-axis denotes the exponents m, the y-axis denotes the
estimated amount of memory (in MB) consumed by the different
representations. For each dataset we note that representations with
a smaller number of buckets per hash table (i.e. a smaller m) re-
quire roughly the same amount of memory (e.g. about 12.5 MB
for D50 and about 95.3 MB for D500). For representations with
an m greater than 10 the required memory starts to increase ex-
ponentially. We explain this behavior as follows: For smaller m
the required memory is dominated by a constant amount of mem-
ory required for the dictionary and the ID-encoded triples, which
is independent of m for each dataset. At some point, m > 10 in
our experiments, this constant amount is largely exceeded by the
memory required for the hash buckets that are not filled to their ca-

(a) (b) (c)

Figure 2: Measurements for different data structures storing the query-local datasets Dpc from Table 2: (a) estimated memory
consumed by the data structures, (b) average time to execute BSBM query mixes over the data structures, and (c) average creation
times for the data structures.

pacity. The exponential growth can be attributed to the exponential
correlation between the number of buckets per hash table and m.

To measure the query performance provided by CombIR initial-
ized with different m we used the different combined index repre-
sentations of each of our query-local datasets and executed iden-
tical BSBM (V2.0) query mixes over them. Hence, for each rep-
resentation we run the BSBM query mix 13 times where the first
3 runs were for warm up and are not considered for the measure-
ments. For the actual execution of queries we used the query engine
in SQUIN. However, we disabled the look-up of URIs for this ex-
periment in order to actually measure the efficiency of the find op-
erations and to avoid distortions caused by the effects of network
access, data retrieval, etc. Figure 1(d) depicts the average times
to execute the query mixes for CombIR with different m. For all
query-local datasets, the execution times are small for a high m
(e.g. 0.28 s and 0.44 s for D50 and D500 with m = 15, respec-
tively) and they increase significantly with a decreasing m. Sim-
ilarly to the behavior of the creation time, this observation can be
attributed to the notable differences in the average number of triples
per hash bucket: While the time to find relevant buckets is constant,
searching through the entries in these buckets and checking them
w.r.t. a given triple pattern gets more expensive for a small number
of buckets that reference more triples each.

Based on the results of these experiments we identified a value
of 12 for m as the best trade-off between required memory and
query performance (incl. creation time) for CombIR. Note, for ap-
plications that operate on much smaller or much larger query-local
datasets than those that we used for the experiments, we suggest to
find a value for m that is more suitable in these scenarios. However,
in the remainder of this paper we use m = 12 for the combined in-
dex. To tune CombQuadIR accordingly we conducted the same
experiments and found that m = 12 is also the best choice for the
quad index. Similarly, we analyzed IndIR. According to this analy-
sis13 m = 4 is most suitable for the individual indexes that contain
a single descriptor object each.

6.3 Comparing the Data Structures
We use our implementations of IndIR, CombIR, and CombQuad-

IR to empirically compare the three approaches for storing a query-
local dataset. Furthermore, we also compare our implementations

13http://sourceforge.net/apps/wordpress/squin/2009/04/25/identified-
a-proper-index-size-for-the-new-swcllib-storage-solution/

with the main memory implementation of similar data structures
in NG4J and ARQ as introduced before (cf. Section 6.1). For our
comparison we conducted the same kind of experiments as in the
previous section: We measured the required memory, the query
execution time, and the creation time. Figures 2(a) to 2(c) illustrate
the results of these experiments. In the following we discuss the
results of these experiments.

The chart in Figure 2(a) illustrates the estimated amount of mem-
ory that was required to store the query-local datasets D50 to D500

using the different data structures. As can be seen from this chart,
CombQuadIR required less memory than the other data structures
from which CombIR required slightly less than ARQ, NG4J and In-
dIR. We attribute the latter observation to the fact that ARQ, NG4J
and IndIR have to allocate memory for Java objects that represent
the containers of the separated descriptor objects. For instance,
our implementation of IndIR has to provide a separate Java object
for each of the individual indexes, whereas, CombIR and Com-
bQuadIR require only one of these objects. The other observation
is the advantage of CombQuadIR over CombIR w.r.t. memory con-
sumption. This observation shows that storing the src associations
for each indexed triple requires more space in our implementation
than storing multiple quads that contain the same triple.

While the amount of memory required for the different data struc-
tures was at least in the same order of magnitude, the provided
query performance differed significantly: In comparison to ARQ,
NG4J and IndIR, we measured almost constant query mix execu-
tion times for CombIR and CombQuadIR (cf. Figure 2(b)). Even if
these times increase slightly with the size of the query-local dataset
(e.g. from an average of 0.3 seconds to execute a BSBM query
mix for CombIR of D50 to an average of 1.3s for D500), we con-
sider this increase insignificant to the increase we measured for the
other data structures. The reason for these remarkable differences
is the number of indexes that have to be accessed during the execu-
tion of find operations: While it is only a single index for CombIR
and CombQuadIR, independent of the number of descriptor objects
in the query-local dataset, IndIR needs as many index accesses as
descriptor objects are contained in the query-local dataset; simi-
larly for NG4J and ARQ. Figure 2(b) also illustrates that ARQ per-
formed very badly (for the larger datasets query execution aborts
with a stack overflow error) and that IndIR was slightly better than
the NG4J data structure. We explain the latter by our use of numer-
ical identifiers to represent RDF terms; these identifiers are faster to
process and compare than the Java objects used by NG4J/Jena. We
also note that CombIR and CombQuadIR performed equally well.

(a) (b) (c) (d)

Figure 3: Measurements for a link traversal based execution of a sequence of 200 BSBM query mixes that re-use the local dataset.

Finally, we measured the creation times14 for our implementa-
tions of IndIR, CombIR, and CombQuadIR. Figure 2(c) denotes
the results of this experiment: The creation times for our imple-
mentation of CombQuadIR are much smaller than for IndIR and
CombIR. In particular, the difference between CombIR and Comb-
QuadIR might be surprising given the similarity of both data struc-
tures. However, the need to check whether the combined index al-
ready contains each triple that has to be inserted is the reason why
CombIR has higher creation times than CombQuadIR for which in-
serting a triple just means adding a new quad. Focusing solely on
IndIR and CombIR we note that the creation times for our imple-
mentations of these data structures are comparable, even if the indi-
vidually indexed representations were created slightly faster. How-
ever, this small advantage of IndIR over CombIR does not outweigh
the divergence that we measured for the query execution times.

6.4 Evaluating the Impact on Link Traversal
Based Query Execution

In all experiments discussed so far, we used query-local datasets
that we populated in advance. This strategy allowed us to avoid
measuring the effect of link traversal and network access, which af-
fect the overall execution time of link traversal based query execu-
tion. Hence, we were able to evaluate the actual query performance
provided by the different data structures. This evaluation revealed
a clear advantage of CombIR and CombQuadIR over the other data
structures, where CombQuadIR is superior to CombIR due to the
smaller creation times. A question that remains is whether these
differences have an impact on the overall execution time of link
traversal based query execution. To answer this question we en-
abled the traversal of data links in our query engine and conducted
an experiment that we describe in the remainder of this section.

Using the BSBM dataset generated with a scaling factor of 50
(cf. Table 2) we set up a Linked Data server15 which publishes
the generated data following the Linked Data principles. With this
server we simulate the Web of Data in order to conduct the exper-
iment in a controlled environment. To query over this simulated
Web we adjusted the BSBM queries in such a way that they access
our simulation server. For each data structure we ran the same se-

14As mentioned before, we understand creation time as the time to
create our data structures from an ARQ DatasetGraph object
into which we loaded the corresponding dataset before. Hence,
based on this understanding ARQ has a creation time of 0 seconds.

15Our server uses RAP Pubby which is available from http://www4.
wiwiss.fu-berlin.de/bizer/rdfapi/tutorial/RAP_Pubby.htm

quence of 200 BSBM query mixes, using a single, initially empty
query-local dataset. Hence, we did not clear the query-local dataset
between the queries so that each query execution could benefit from
the local availability of all descriptor objects that have been re-
trieved for previous queries. For each of the 200 query mixes we
measured the overall query execution time and the number of de-
scriptor objects that were contained in the query-local dataset after
executing the query mix.

Figure 3(a) denotes the number of descriptor objects that had
been requested during the execution of queries in each of the 200
query mixes. The trendline in this chart illustrates that this number
remained roughly constant for our sequence of query mixes. How-
ever, the number of newly discovered descriptor objects added to
the query-local dataset decreased for later query mixes in the se-
quence as can been seen from the overall number of descriptor ob-
jects contained in the query-local dataset after each query mix (cf.
Figure 3(b)). Hence, many descriptor objects that were requested
during the execution of queries in later query mixes had already
been retrieved during the execution of previous queries. This ob-
servation indicates that certain queries in the whole sequence of
query mixes are similar w.r.t. the data that is required to answer
them. Applications that generate a query workload with similar
characteristics are most likely to benefit from re-using the query-
local dataset for the execution of multiple queries.

Figure 3(c) illustrates the overall execution time of each of the
200 query mixes for the different data structures. We note that all
three data structures exhibit the same general behavior: The first
query mixes have a significantly higher execution time than later
query mixes. We explain this behavior as follows: For the first
query mixes the query execution times are dominated by the effects
of link traversal (e.g. the need to retrieve descriptor objects from
the Web and to add them to the data structure that stores the query-
local dataset). However, with a decreasing number of descriptor
objects that have to be retrieved and added, this domination de-
creases, until, at around the 13th query mix in our experiment, the
trend changes completely. An additional indicator for this domina-
tion is the 20th query mix, for which an untypical high number of
60 additional descriptor objects were discovered (in comparison,
for the query mixes #19 and #21 it was 15 and 19, respectively).
Due to the retrieval of this comparably high number of newly dis-
covered descriptor objects the query execution times measured for
all three data structures peak again.

After the domination of the effects of link traversal disappeared
(i.e. after query mix #20) the three data structures exhibit the same

behavior w.r.t. query execution times as they did in the previous ex-
periments without link traversal based query execution: For Com-
bIR and CombQuadIR the query engine required roughly the same
execution time for all query mixes, independent of the still in-
creasing size of the query-local dataset. For IndIR, in contrast,
the execution times are higher and they begin to increase slightly.
We expect that this increase could even rise, given that the query-
local dataset contained 2.397 descriptor objects after query mix
#200, which is comparable to D50 used in the previous experi-
ments (cf. Table 2). As a final observation we note that the smaller
creation times of CombQuadIR impact the overall execution times
only when a significant number of newly discovered descriptor ob-
jects are added during link traversal based query execution. Fig-
ure 3(d) provides a detailed view on the query execution times for
query mixes #1 to #25 to illustrate this effect: For the first query
mixes (during which more descriptor objects were retrieved) we
measured slighly smaller query execution times for CombQuadIR
than for CombIR. However, with a decreasing number of newly
discovered descriptor objects, the advantage of CombQuadIR over
CombIR vanishes.

7. CONCLUSION
In this paper we investigate main memory data structures to store

a temporary collection of Linked Data from the Web as is required
in a link traversal based query execution system. We discuss that
these data structures must support efficient, multi-threaded loading
and triple-based querying of many small sets of RDF data, which
is a requirement that is not sufficiently addressed by existing work.
Therefore, we introduce and analyze three alternative data struc-
tures that are suitable in our usage scenario. These data structures
make use of hash table based indexes and present i) an individu-
ally indexed organization of the data, ii) a combined index, and
iii) a combined quad index. In an empirical evaluation we demon-
strate a significant performance improvement that can be achieved
by using the combined index or the combined quad index. Com-
paring these two alternatives, our evaluation revealed that the quad
index features smaller creation times and, thus, is advantageous in
cases where new data is retrieved and added frequently. As future
work we aim to investigate whether we can improve the query per-
formance or memory requirements of the data structures by using
another hash function for the indexes.

8. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach.

SW-Store: A Vertically Partitioned DBMS for Semantic Web
Data Management. The VLDB Journal, 2009.

[2] M. Atre, J. Srinivasan, and J. A. Hendler. BitMat: A
Main-memory Bit Matrix of RDF Triples for Conjunctive
Triple Pattern Queries. In Proceedings of the Poster and
Demo Session at the 7th International Semantic Web
Conference (ISWC), 2008.

[3] T. Berners-Lee. Linked Data. Online at http://www.
w3.org/DesignIssues/LinkedData.html, 2006.

[4] P. A. Bernstein and N. Goodman. Multiversion Concurrency
Control – Theory and Algorithms. ACM Transactions on
Database Systems, 8, 1983.

[5] R. Binna, W. Gassler, E. Zangerle, D. Pacher, and G. Specht.
SpiderStore: Exploiting Main Memory for Efficient RDF
Graph Representation and Fast Querying. In Proceedings of
the Workshop on Semantic Data Management (SemData) at
VLDB, 2010.

[6] C. Bizer and A. Schultz. Benchmarking the Performance of
Storage Systems that expose SPARQL Endpoints. In
Proceedings of the Workshop on Scalable Semantic Web
Knowledge Base Systems at ISWC, 2008.

[7] P. Bouquet, C. Ghidini, and L. Serafini. Querying The Web
Of Data: A Formal Approach. In Proceedings of the 4th
Asian Semantic Web Conference (ASWC), 2009.

[8] T. Haerder and A. Reuter. Principles of Transaction-Oriented
Database Recovery. ACM Computing Surveys, 15, 1983.

[9] A. Harth and S. Decker. Optimized Index Structures for
Querying RDF from the Web. In Proceedings of the 3rd
Latin American Web Congress (LA-Web), 2005.

[10] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler,
and J. Umbrich. Data Summaries for On-Demand Queries
over Linked Data. In Proceedings of the 19th International
Conference on World Wide Web (WWW), 2010.

[11] O. Hartig. How caching improves efficiency and result
completeness for querying linked data. In Proceedings of the
4th International Linked Data on the Web workshop (LDOW)
at WWW, 2011.

[12] O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL
Queries over the Web of Linked Data. In Proceedings of the
8th International Semantic Web Conference (ISWC), 2009.

[13] O. Hartig and A. Langegger. A Database Perspective on
Consuming Linked Data on the Web. Datenbank-Spektrum,
10(2), 2010.

[14] M. Janik and K. Kochut. BRAHMS: A WorkBench RDF
Store And High Performance Memory System for Semantic
Association Discovery. In Proceedings of the 4th
International Semantic Web Conference (ISWC), 2005.

[15] T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine
for RDF. In Proceedings of the 34th International
Conference on Very Large Data Bases (VLDB), 2008.

[16] E. Oren, C. Gueret, and S. Schlobach. Anytime Query
Answering in RDF through Evolutionary Algorithms. In
Proceedings of the 7th International Semantic Web
Conference (ISWC), 2008.

[17] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, Online at
http://www.w3.org/TR/rdf-sparql-query/, 2008.

[18] V. Roubtsov. Sizeof for Java. http://www.javaworld.com/
javaworld/ javaqa/ 2003-12/ 02-qa-1226-sizeof.html, 2003.

[19] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-Store Support for RDF Data
Management: not all swans are white. Proceedings of the
VLDB Endowment, 1, 2008.

[20] H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and
J. Broekstra. Index Structures and Algorithms for Querying
Distributed RDF Repositories. In Proceedings of the 13th
International Conference on World Wide Web (WWW), 2004.

[21] Y. Theoharis, V. Christophides, and G. Karvounarakis.
Benchmarking Database Representations of RDF/S Stores.
In Proceedings of the 4th International Semantic Web
Conference (ISWC), 2005.

[22] O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN: A
Graph Based RDF Index. In Proceedings of the 21nd AAAI
Conference on Artificial Intelligence (AAAI), 2007.

[23] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple
Indexing for Semantic Web Data Management. In
Proceedings of the 34th International Conference on Very
Large Data Bases (VLDB), 2008.

