
Talash : Friend Finding In Federated Social Networks ∗

Ruturaj Dhekane
†

Indian Institute Of Technology, kanpur
ruturaj@cse.iitk.ac.in

Brion Vibber
‡

StatusNet
brion@status.net

ABSTRACT
In large online social networks, Friend Recommendation has
evolved into an interesting problem. We try to find known
acquaintances and new interesting friends on a Federated
Social Network (FSN) , using StatusNet as our platform.
FSNs are decentralized networks on the internet which can
interoperate using the OStatus Suite of protocols. Friend
finding on these networks is hard because we do not know
the existence of other social networks or Users. We show
how Linked Data representation like FOAF can solve this
problem.

We devise a model for the Federated Network centered
around a User and use it to define the problem of Friend
Finding. The solution uses two phases, first known as Quick
Connect which tries to find old acquaintances. The second
phase, Delayed Connect uses the Social Graph of Users to
find prospective friends. We show how the FSN information
centered around a User can be extracted from FOAF entries
and generate new recommendations. We shall illustrate the
working of Talash as a part of StatusNet. We experimented
on the existing FSN and collected feedback from its Users.
The results are encouraging and open new avenues for Friend
Finding on the Internet.

To the best of our knowledge, this is the first study of Fed-
erated Social Networks and the problem of Friend Finding
in them.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; H.3.5 [Online
Information Services]: Web-based services

General Terms
Algorithms, Design, Performance

∗Part of this work was done as Google Summer Of Code
2010 project for StatusNet Inc. Part of this was also done at
Indian Institue of Technology, Kanpur, as a part of authors
masters program.
†Student of Computer Science And Engineering at Indian
Institute Of Technology, Kanpur, India.
‡Senior Software Architect at StatusNet.

Copyright is held by the author/owner(s).
LDOW2011, March 29, 2011, Hyderabad, India.

Keywords
Friend Recommendation, Federation, Social Networks

1. INTRODUCTION
Online social networks have evolved over the past few

years and have been interest of research for the commu-
nity. Social graph analysis has opened new avenues for bet-
ter user experience and expansion of these networks. The
term social networking is now synonymous with the various
activities such as commenting, replying, direct messaging,
like/faving, updating status etc.. Typically an Online So-
cial Network(OSN) for a particular User has three parts to
it [4] . Every User owns a Public or semi public profile within
a bounded system. Secondly, it displays a list of Users with
whom they share a connection, either one way or two way.
Thirdly, the dynamism in the OSN is due to the actions
of the User to view, traverse and interact with this list of
connections.

Popularity of OSN sites like Orkut, Facebook, Twitter has
generated huge amount of data about the various interaction
of Users on the Internet. Social network analysis deals with
study of these networks and their properties[13]. Social net-
works fit a scale free model, have small world properties and
show a community structure [14] [15].

Many forms of social networking have existed before OSN’s.
Interaction on email within an organization has been an
area of interest[3]. A drawback with all these OSN’s is the
bounded environment in which people need to interact. A
public profile on one OSN means that he can only inter-
act with other User’s on that OSN and cannot interact with
Users from external OSN without explicitly registering a new
profile on it. The Linked data initiative however envisage a
more open and interconnected social networking experience.

1.1 Federated Social Networks
A Federated Social Network (FSN) tries to break the bound-

aries of the specified system in which the User interacts. A
User owns an online profile page (website) on which he de-
scribes himself and his connections. The connections, or
friends list is described in a machine readable format [25],
hence any change in his connections can be made easily[28]
[20][29]. The advantage of Federated Social Network is that
each User controls his presence on the internet and can in-
teract with other Users using a set of protocols such as the
OStatus Suite [21][27]. It allows interoperability between
different OSN’s and give a distributed control to their own-
ers. This does not bind any User to fixed rules like those
in Online Social Networking Services (OSNS). StatusNet[10]

is an open source microblogging [18] software that provides
such a facility to the Users. StatusNet was chosen for ex-
perimentation over other nascent projects like Thimbl, Ap-
pleseed, Diaspora, OneSocialWeb and Elgg.

1.2 Contributions
In such a federated scenario we study the problem of friend

recommendation. Since each individual exists on different
websites, it is very difficult to find a specific individual on
the Internet that you already know, unless you know the
exact website on which he exists. Once we know the website
that profile can be accessed.

In this work, we model the Federated Social Network of
a User in the form of a graph. We give the problems faced
by a system for Friend Finding in this setting. Initially we
only consider finding those friends that a User already knows
beforehand. Further we design an automated friend recom-
mendation system for the Users. We show how the scale
free nature of a social network affects this recommendation
system. We then exploit the properties of the social graph
centered around a User to reduce the overheads in recom-
mending new and finding interesting friends for a User.

The remainder of paper is organized as follows. Section
2 contains a review of technologies used, a quick overview
of the OStatus Suite of protocols and Social Graph API.
Section 3 builds a model of social graph and we formally
define the problem of Friend Finding. Section 4 describes
our approach to finding friends in federated social networks.
We give a simple method to find new acquaintances on the
Internet, or those friends that, you did not know, already
existed. We give the problems faced by this system and how
the nature of graph centered around a User in Federated So-
cial networks can be used to leverage the drawbacks. Finally
we provide the experimental results to show the success of
our method.

This system named Talash was built for the StatusNet
software and the results presented here are feedbacks from
the users of Identi.ca [9]. To the best of our knowledge, this
is the first work that focuses on Federated Social Networks
and the problem of Friend Finding in them.

2. PRELIMINARIES

2.1 Federated Social Network
To define a Federated Social Network we break the phrase

into two parts and try to infer its collective meaning. The
term Social Network here is synonymous to the interactions
among individuals with each other. Since we are studying
OSN’s we call the participants of this network as Users. Ev-
ery User has an online presence in the form of a web-page,
also known as the Profile Page. That presence may be ei-
ther public or access controlled. Many different systems have
been developed for securing privacy issues on OSN’s[34][5].
If it is public, any one can access and view the information
available on it.

Typically, Users sign up on Online Social Networking Ser-
vice (OSNS) e.g. Facebook, Orkut for networking with friends
and family. All the mechanism of social network interactions
are governed by and limited to the regulations of that online
service. There are other Users signed up on the same OSNS
with whom hhe can interact. Usually Users on one social
networking service cannot interact with a User on another
social networking service.

StatusNet is a microblogging platform that enables a User
to set up his own public profile. The activities of this User
are now governed by his own regulations. He is not under
any central authority or social networking service. The Sta-
tusNet software provides a set of protocols to interact with
other independent profiles on the Internet. Since each of
these profiles is federated (individually controlled and not
under a central authority) in its activities and regulated by
the User’s themselves, we call this system a Federated So-
cial Network.

In this paper we study the task of Friend Finding on this
federated social network. In the following sections we give
a brief overview of the OStatus Protocol suite and a cen-
tralized index of the Social Network on the internet - Social
Graph API.

2.1.1 OStatus Protocol Suite
Previously known as the OpenMicroBlogging [17] Proto-

col, OStatus is an open source specification for interoper-
ability between various sites. This allows various Users on
these sites to interact with each other. The interaction is in
the form of subscriber-subscription, updating status, repeat
updates of your connections and mark them as favorite. OS-
tatus is a suite of protocols which give the specification for
such interoperability. There are mainly four protocols in the
suite as described below.

WebFinger : an open protocol to identify Users with their
email addresses [32]. This allows OStatus Users to refer to
other Users as someuser@example.com.

PubSubHubBub: an open protocol based upon Publish
Subscribe architecture [23]. It allows a publisher to dis-
tribute content to its subscribers by using an intermediate
hub. When a hub server receive updates, it multicasts the
new or changed content to all registered subscribers.

Salmon : [22] an open protocol to let information like
comments on a post to flow from subscribers to the publish-
ers. When the information reaches the source of the post
it is re-published by the original content creator so that it
reaches back to all its subscribers.

Activity Streams: interactions of a User with his social
network are published to his subscribers and appear as a
stream of activities [30].

Any OSNS can independently develop a website which
uses OStatus Protocols and can become a part of the FSN.
Any User who has OStatus enabled on his profile page can
subscribe to or be subscribed by other Users on the FSN
and we call such profiles OStatus Subscribable.

2.1.2 FOAF and Social Graph
FOAF [28] [20] stands for Friend Of A Friend is specifi-

cation to describe a User and a list of his connections. The
FOAF is described using the Resource Description Frame-
work [25] and stored in a machine readable format. The
machine readability feature powers the automation of friend
finding exercisee in this work. Users can define their own
connections by describing their links with other Users and
define a relationship between them.

The social interaction of individuals can be modeled as
a graph, with individuals being nodes and the interactions
being edges if one User interacts with the other. For our
problem we look at the social graph generated by the social
interactions of Users on the internet. There are millions of
Users on the internet that are part of various Online Social

Networks. We study the graph whose nodes are public pro-
files and those that declare their connections publicly. For-
mer work [26] has described how FOAF data can be used
to develop Social Graphs of OSN. FOAF can be used in a
decentralized manner to declare a Users social connections.
Publicly declared FOAF’s can be parsed to create a social
graph. Thus FOAF creates a base structure for the Feder-
ated Social Network.

Google has indexed the FOAF data on the internet and
made it available as the Social Graph API [2]. We can query
a User by his public profile page (URL) to discover all his
public existences on the Internet as well as his publicly de-
clared connections. We directly use this API for our Friend
Finding algorithm.

2.2 Notations And Definitions
We now define certain notations which we shall use often

in the paper.

• Users: an individual who uses and interacts on the
Federated Social Network.

• Connections: the set of other Users with whom one
User interacts. The interaction may be one way or two
way.Connection are neighbors of a User on the social
graph.

• Public Profile: an online webpage which describes the
User and lists his publicly described connections.

• Status Update: an update posted by the User on his
Profile Page that can be seen by everyone else.

• Subscriptions: list of connections whose activities User
follows and declares on his Profile.

• Subscribers: list of connections that follow a Users ac-
tivities.

• Friends: a common word to describe the connection.
It might be an acquaintance, known individual, a sub-
scriber or a subscription.

3. NETWORK MODEL
There already exist many systems on the web that behave

in a decentralized mechanism.TCP/IP, Email, DNS operate
in a distributed manner on the Internet [8]. Here we define
the Federated Social Network centered around a User. Each
User (U1) has a profile page which is publicly displayed.
This is a web page on the Internet and can be visited by
navigating to the URL of the webpage. He keeps a list of
his subscriptions and subscribers that follow his activities
on the social network. Every subscriber or subscription is
another User (U2) on the internet who is part of the fed-
erated social network. This User also own a profile page,
which is completely under his control. The User (U1) can
visit his connection by using the URL of the profile page of
other User(U2).

3.1 Mathematical Model
Consider the federated social network existing on the In-

ternet. Let there be N Users, each denoted by Ui ∈ U where
U is the set of all Users and i ∈ 1...N . Every User Ui has
a label which is a unique URL on the Internet. If any two

Figure 1: A Social Network Graph Of A User. The
User number 65 is centered.

URL’s are same, then they represent the same User, hence
we assume that all Users Ui are distinct and hence unique.

For every User Uj , he keeps a list of connections in two
separate lists. Sjin ⊆ U \ Uj is the set of all Users that
subscribe to User Uj . Sjout ⊆ U \Uj is the set of all User’s to
whom Uj subscribes to and hence known as subscriptions of
Uj . All the User’s Uk ∈ U \ (Sjin ∪ Sjout ∪ Uj) are unknown
to the User Uj and is denoted by the set H.

The interactions in this social networks are modeled as a
graph. The G = (V, E) where V is set of vertices’s and E
is a set of edges. The V here is a set of User’s in the social
network, also equal to U . Each User (node) is uniquely de-
fined by is URL of its public profile. The edges are directed
and Eij shows an edge from User Ui to User Uj .

We define a directed edge Eji if Ui belongs to the sub-
scriptions list of the User Uj , that is Uj ∈ Siin , and directed
edge Eij if Uj belongs to the subscription list of User Ui,
that is Uj ∈ Siout .

Since the model is federated, any User Ui can never view
the complete social network. He can only see or operate
upon the network with Ui as the center and intereact with
Siin ∪ Siout . This is the FSN centered around a User. If he
needs to query the social graph of any User Uk , he sends
a request to the profile of Uk and is returned with the so-
cial graph of User Uk as its center. Figure 1 shows a FSN
User labeled 65, and all his connections. All the friends are
connected to the User 65, and may have interconnections
between themselves.

Problem Statement: For every User Ui we choose a set
Ri ⊆ H such that for every Rij ∈ Ri

1. Ui knows Rij

2. Ui will find Rij interesting, if they know each other.
The notion of knows is defined by the fact that, one User

appears in the others address book or has communicated
with the other atleast once over email or on other public
forums or online social networks. The relationship strength
between two Users can be modeled by the interaction activ-

ity and the notion of knows can be made stronger [33].
The definition of interestingness of one User to another

is relative and we say that one User will be interesting to
another if they share some common attribute. Tags for peo-
ple and status updates can also determine intrestingness of
a User [11].

4. FRIEND FINDING
Consider a new User on the Internet, a new addition to

the FSN. Initially he does not have any subscriptions and
subscribers and his profile URL is unknown to the rest of
the nodes in FSN. We have no social graph associated with
this User at the center that can be analyzed to find the first
set of subscriptions for our User. Its a Cold Start - where
we don’t have apriori knowledge about the User’s friends
and interests. Thus we divide the problem of finding friends
in two parts. The first deals with the cold start to provide
the User first set of subscriptions to interact with. We call
this Quick Connect. The second approach known as De-
layed Connect deals with analysis of User’s social graph and
finding prospective friends.

4.1 Quick Connect
The idea of Quick Connect is to allow a User to gener-

ate his first set of connections as fast as possible. One of
the largest data stores of information about the different
contacts of a User is the Address Book. An address book
associated with online email services stores the frequently
contacted individuals. Email data can also be parsed to
find the most contacted friends of a User and to mine their
Social Network [7]. Email contact lists can be optionally be
stored in a flat file as comma separated values. A vCard
[31] format can also be used to store information about an
individual.

Address books generally have a particular format which
can be parsed to get the information about the contacts.
They have various fields which can be of interest to our
system. We extract the email address field from the User’s
address book for all his contacts and use the Social Graph
API to search for the contacts OStatus Subscribable public
profiles.

Since most of the address books are easily available from
email service providers, its easy to access such contact lists
and generate a list of email addresses. OAuth [16] is used to
authorize the StatusNet software to access the User’s address
books. We could have used other methods of authorization
to access this data but we chose OAuth so that the User’s
password is never stored in the software. Large number of
email service providers provide OAuth end points for access-
ing this data which makes our method more flexible to suit
to any service. These services also offer a wide variety of
data format in which they provide the contact lists. When
ever available we chose the PoCo [6] address book format.

4.1.1 Anatomy Of Quick Connect
The User is given a list of email service providers from

which the address book information will be retrieved. The
User is redirected to the OAuth Authorization page on the
service providers OAuth endpoint. After the User delegates
authorization, the service provider returns an OAuth Ac-
cess Token and and OAuth Secret Token. This pair can
be used in future to access the address book data without

Figure 2: OAuth Dance and Social Graph API Re-
quest.

Users intervention. The User can alternatively revoke an
Authorization to stop access.

When returned from delegating authorization, the User is
shown a list of his contacts page by page. Here he is given an
option to email the contact to invite him to create his own
presence on the Federated Social Network. Simultaneously,
the request is en-queued in the StatusNet software’s Queue
[24] to update the list of contacts in background. If the User
navigates away from the list of contacts, the Queue Daemon
ensures safe download of all email contacts.

The background process of download the address book
additionally queries each email address on the Social Graph
API. This returns a list of public profiles of the contact.
If these are OStatus Subscribable then the User is notified
about it. This way User’s can directly subscribe to FSN
User’s whom they already know. Figure 2 shows the OAuth
Authorization followed by handing over of OAuth tokens to
the StatusNet Queue Handler. The address book is down-
loaded and Social Graph is queried to check whether it is
OStatus Subscribable.

Quick Connect is used partially in many social network-
ing websites. This is the first instance in which we search
for User’s not on the same domain. In case a centralized
database of social graph as provided by the Social Graph
API does not exist, WebFinger protocol can be used to query
the contact email address. The Linked Data representation
of friends list in the form of FOAF can be parsed to obtain
this information.

The method has a disadvantage of many HTTP GET re-
quests to download the address book and to query the pro-
file page of each contact through the Social Graph API. It
is a long process for address books containing thousands of
contacts. The use of StatusNet background queues coupled
with OAuth access token to a User’s data allow download of
all the contacts without the User’s intervention.

4.2 Delayed Connect
In an online social network, a User tries to expand his so-

cial boundaries by connecting to more friends. These maybe
his long lost classmates, new friends based on similar inter-
ests or connecting to new communities. The graph expands
slowly and the Quick Connect provides enough fuel to give
him the initial set of connections to interact with. Once all
the contacts in the address book are analyzed for their pres-

Figure 3: Plot showing number of Friends and num-
ber of Friends of Friends on logarithmic scale, of
Users of an OSNS. It can be noticed that Users with
higher ID, are newer, hence have lesser Friends, but
high value of Friends of Friends

ence on the Internet, the responsibility of further expansion
of the User’s social graph solely lies with him. This is the
section where we illustrate the friend finding algorithm of
Talash.

The existing social graph of the User is now analyzed and
uses the social graph API to recommend prospective friends.
We also define the problem of finding connections that might
be interesting to the User. The algorithm will try to uncover
the prospective social network as seen by a User.

This method is named Delayed Connect because the exe-
cution of this mechanism is not instantaneous and is heavy
on resources e.g. Bandwidth. We can run this mechanism
for any User whenever we have available resources and sus-
pend the completion in its absence. Delayed Connect be-
lieves in expanding the social graph of the User very slowly,
so as to give him enough time to share his thoughts and
interact with his existing network.

4.2.1 Interesting Connections
A User might be interested in interacting with friends from

same community, geographical location or similar interests.
Interestingness of a profile is defined with respect to our
Users profile information. Interestingness can also be de-
fined in terms of Similarity between two profiles. If the two
profiles display content on similar topics, if the biographies
of both the User’s declare a geographic location close by, or
they are both connected to same set of friends, then we say
that the profiles are similar and they might be connected for
interaction on the social network. Many different similarity
functions can be defined given the various attributes of each
User [12].

We augment the model given in Section 3.1 to include
Profile attributes. Profile attributes is a set of attributes
declared by the profile owner as being his own. Formally
we augment every node of the FSN by a feature vector
F = a1, a2, ..., an where ai is a profile attribute denoted
by a key value pair of {Attribute Name : Attribute Value}.
Since each User on FSN controls his profile, the number of
attributes he declares is his wish. Hence different User’s may
have different set of attributes and different in number. We
assume that Attribute Names are are unique and uniformly
used. Hence an attribute of name ’Location’ on two different

profiles will denote the same attribute.
A Similarity function is defined which takes two profiles

P1 and P2 and returns a similarity score between them. The
function returns a score between the two attribute vectors
provided by each profile. Various metrics such as common
friends, graph distance, Adamic-Adar [1] can be used to find
the similarity score[12]. The score is normalized to the range
[0,1] with higher value signifying higher similarity between
Users. We claim that a User finds those profiles interesting
with whom it has higher similarity.

Since each profile is not centrally controlled and Attributes
can be newly added by installing plugins [19] on the Status-
Net software, the problem of defining a Similarity function
gets complicated. We solve it by defining an endpoint in
the StatusNet software, where these plugins can register a
handler function. This handler function is designed by the
creator of the plugin, whose responsibility is to find the sim-
ilarity score between attribute values of two different profile.

4.2.2 Searching Friends
We now turn our attention to identifying new connections

whom we can recommend our User to subscribe to. We
return to the mathematical model described in Section 3.1
and remind that a User does not have holistic view of the
FSN. The User can only see and access his connections, all
his subscriptions and subscribers, and the publicly displayed
connections of his friends. This idea is captured in the FSN
centered around a User. User does not know anything be-
yond two hops from the him.

The Social Graph API is used to identify new connections
for the User (say Ui). For every Subscription Sij ∈ Siout

for User Ui we query the Social Graph API for his publicly
declared connections. We parse the response from the API
to generate a list of Users which are at two hop distance
from Ui, let this denote a set Foafi.

For every profile Foafik in Foafi we use two criterion on
which we recommend the profile to the User.

Friends You Already Know : For every profile Foafik in
Foaf we re-query the Social Graph API to find all his public
profiles and the publicly declared connections on that profile.
If Foafik is connected to Ui on some other social networking
service, it is possible that they know each other beforehand
and its safe to recommend the profile to the User. Instances
of such a recommendation is when two friends are connected
on sites like Twitter or Flickr! and do know about each
others OStatus Subscribable accounts. The social graph of
prospective connection is queried and its checked whether
the User Ui is connected to him on other OSNS. If yes, we
can recommend the new connection’s OStatus account to Ui

for subscription.
Interesting Profiles: For every profile Foafik the Simi-

larity function is provided with two profiles, Foafik and
Ui. The function returns a similarity score based on the at-
tributes of two profiles. A profile is called Interesting if the
score is greater than 0. The score can be also used to rank
each connection in Foafik in decreasing order of their simi-
larity scores. The connection with higher similarity score is
more interesting than the others.

4.2.3 Caching Techniques
The number of friends of friends found at two hop dis-

tance from a User in FSN grow exponentially. For exam-
ple, consider a User Ui with 400 subscriptions. Each of the

Figure 4: Showing a User and the communities to
which he belongs. For each community we generate
the FOAF entries and consider them as prospective
recomendations.

subscription has at least 400 connections. The number of
HTTP requests generated to find interesting friends for Ui

is about 160000. Figure 3 shows how the number of Friends
and number of Friends of Friends varies for every User. The
X axis shows the Users of the FSN and places them in the
order they joined the FSN. The Users with higher User ID
have lesser number of Friends since they have joined recently.
However they have a very high value for Friends of Friends.

We implemented a Cache to store the Social Graph API.
For each connection Sij for User Ui, we store its connections
in a database with a time-stamp. The tuple stored is of the
form {Sij , Sjk, TIMESTAMP}, where Sij ∈ Siout is set
of subscriptions User Ui and Sjk is the set of subscriptions
of Uj . The cache served the twin purpose of skipping the
HTTP request to Social Graph API in immediate future
(Till the entry was invalidated) and allowing interruptions
in the Delayed Connect due to network disruption.

4.3 Algorithm
We now outline the algorithm used to identify new con-

nections which can be recommended to the User.

1. Consider the FSN centered at the User. Find the com-
munities to which he belongs by removing the User
and finding connected components in this graph. 4.2.3
shows 3 such communities formed.

2. For every friend in the community we can find his
FOAF to find prospective connections. Top log(n)
friends (ranked by number of subscribers) are chosen
and their FOAFs are requested.

3. For every FOAF, the similarity function evaluates the
score of interestingness between the User and FOAF.

4. Top log(|FOAF |) connections of the FOAF are re-
turned as recommendations.

5. EXPERIMENTAL RESULTS
Experimenting on the system designed and discussed in

this paper is a challenging task since the StatusNet software
can be configured by any User of the FSN. User’s can select

Table 1: Summary of dataset FSN Graph.
Parameter Value

Number of nodes 285,198
Number of edges 1663690
Mean out-degree 11.7045

Strongly Connected Components 6724

Figure 5: A plot showing number of people that ac-
cepted at least 50% of the recommendations given
the size of recommendation set. It can be seen that
the number of positives lies close to 4-5 connections
being accepted. The plot also shows the percent-
age of Users that accepted 100% of the connections
recommended to them.

what plugins to run and control the features displayed on
their profile page such as their location, tags and biogra-
phies. The results of this system can be only seen when the
algorithm runs on the Users StatusNet instance and the net-
work evolves with the help of these algorithms. User’s may
independently add new friends and connect to newly joined
friends and family members.

We experiment on a snapshot of the Federated Social Net-
work using the network formed on Identi.ca [9] as our ba-
sis. Identi.ca is a OSNS from StatusNet that gives each
User the complete control on their activities and allow in-
teroperability to other OStatus Subscribable accounts such
as Blogger.com and Youtube.com. We use the Subscriber-
Subscription data from Identi.ca as our dataset for experi-
mentation. The remarkable property of this dataset is that
Identi.ca Users subscribe to or are subscribed by other Users
on the FSN, and these links are also included in the dataset.
Hence we get a partial but relevant chunk of the FSN for our
experimentation. The different parameters of this dataset
are shown in Table 1. With more than 280,000 nodes we see
that there are 6724 strongly connected components. This
shows that the network is diverse and has various communi-
ties which do not overlap. We now give our experimentation
strategies and the method to evaluate our results.

5.1 Manual Feedback
A manual feedback is the best test of the system and can

gauge the usefulness of our algorithm. The choice of friends
a User would like to have is dependent on the User’s inter-
ests. We used the Similarity function to find the similarity
between the User and the prospective connections and hoped
that the User will accept them. We were not able to test
Quick Connect for these Users because each one owned their
instance and did not have our system installed.

Table 2: ASPL for prospective recommendations
Community Details Initial ASPL Final ASPL

Developers of Identi.ca 1.807 1.602
Group of entrepreneurs 1.974 1.965

FOSS contributors 2.453 2.702
Family 1.333 1.000

Each User was provided with a set of prospective connec-
tions called the recommendation set. The User was asked to
mark the connection as accepted on rejected. We call the
accepted connections as positives. Figure 5. shows the per-
centage of positives against the size of the recommendation
set. It was seen that the User’s accepted not more than 4-5
prospective connections. For a recommendation set of size
larger than 10, very few Users accepted all the connections.
A User is recommended a set of size larger than 10 when
the User is part of many communities (so that each com-
munity recommends at least one connection) or belongs to
one large community (size of log n). A trend was seen that
Users marked at least one positive from each community
and tended to discard a majority when most connections
came from a single community. This means that the algo-
rithm is able to find the best recommendable connection in
each community to which the User belongs with the quality
decreasing with increase in size of community.

5.2 How Good is a Recommendation?
For every community of the User which recommends a

new connection we find out how much the cluster improved
in its bonding. The average shortest path length of the clus-
ter are good indications of how the individual communities
to which the new User belongs has improved the bonding
in the system. The average shortest path length in a clus-
ter quantifies this value with a value of one meaning tighter
interaction where everyone in the community knows each
other (Clique) and a higher value meaning that the com-
munity is loosely interacting (everyone does not know each
other). A value lesser than 1 means that some Users are not
reachable from some other User in the network.

For a graph G = (V, N), let d(u, v) be the shortest path
length between nodes u an v. The average shortest path is

calculated as
P

u,v∈N d(u,v)

|N||N−1| . For every community to which

the User belongs we formed a graph containing the members
of that community, the central User and the new recommen-
dation. We find the average shortest path length (ASPL) for
this graph.

We noticed that for communities which were already cliques
(ASPL = 1), the new recommendation increased the value of
ASPL. For many clusters the value of ASPL before adding
the recommended User was 0.66 and after adding the new
connection increased to 1.0 converting the community into a
clique. This showed that a new connection was completing
the networks hidden links.

Table 2. shows the initial and final ASPL for a User on the
FSN. The communities shown is a rough guess of the kind of
interaction the User has with them. For small communities
like Developers and entrepreneurs on the internet, the ASPL
value decreased, possibly filling up gaps in the networks. For
a group such as FOSS contributors, the community seed
recommended a User completely outside the network. Since
very few Users in the community were connected to the new

Figure 6: A log-log scale plot showing the different
sizes of communities and number of Users belonging
to communities of that size.

Figure 7: A log-linear scale plot showing the number
of FOAF and number of actually HTTP requests
made to find new friends.

connection, the ASPL value increased.
The measure of ASPL can be used to rank the new con-

nections in the network. A User which tries to converge
the ASPL of the community towards 1 will be given higher
ranking. The recommendations can be shown to the User in
decreasing order of their rank.

5.3 Clustering Advantage
The motivation for clustering a User’s FSN into communi-

ties was to find recommended seeds and to reduce the num-
ber of HTTP requests made to the Social Graph API or
to WebFinger(if it existed). Figure 6. shows the size of
communities to which a particular User belongs. We see
that more than 50% of User’s belong to a single community.
Such User’s are either new and have very less subscriptions
or tend to interact with a closed group of User’s. This re-
enforces our idea of using recommender seeds from a com-
munity to find newer connections for our User. User’s from
same community will interact closely and will not overlap
significantly with other communities. For example, Users
from a family may choose to interact only with their family
members. A User from that community may be part of an-
other community , say Presley Fan Club. The community
finding exercise can also give the User an indication of why
the new connection is being recommended.

Figure 7 shows the number of HTTP requests sent to find
new friends for each User on the FSN. The number of such
requests is reduced drastically. If all the recommendations
are accepted by a User, the size of each community of the

FSN centered around the User increases. Hence, the recom-
mendations count will keep increasing and will expose the
User to newer prospective friends in every iteration. The
log n upper bound for choosing the size of recommendation
set gives rise to slow growth of FSN of a User. The feedback
collected from the User’s of FSN showed a trend of having
lesser positives when the recommendation set was very large.

6. CONCLUSIONS
The federated nature of the social network enpowers Friend

Finding algorithm to be executed on individual Nodes of the
FSN. The network can evolve independently and expand at
each node as required by the User. We showed a simple
mechanism to find new friends on this network and show
how we can depend on the Friends Of a Friend information
alone to extract this information. Clustering of a FSN cen-
tered around a User into communities allows expansion of a
Users FSN in all the domains he is interested. Community
based categorization of recommendations is a valuable addi-
tion to our algorithm and can be used in various applications
where the community feature can be exploited.

The algorithm makes many heuristic assumptions and ex-
act evaluation of them can be only made by analyzing the
behavioral pattern of the User for whom the recommenda-
tion is made. This is a first attempt to experiment a friend
finding algorithm on federated networks. The actual impact
of this algorithm can be felt only when the network evolves
considerably using this system.

7. ACKNOWLEDGMENTS
We would like to thank Evan Promodrou and his team of

StatusNet developers for constant support and interaction
during the Google Summer of Code 2010. We would also
like to thank Dr. Sanjeev Saxena for his guidance. A part
of this work was a result of discussions with him during
the work carried out under his supervision for the Masters
Program at IIT Kanpur. The authors thank the anonymous
referees for their valuable comments that helped improving
this paper.

8. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on

the web. SOCIAL NETWORKS, 25:211–230, 2001.

[2] S. G. API. http://code.google.com/apis/socialgraph/.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages
137–143, New York, NY, USA, 2006. ACM.

[4] D. Boyd and N. Ellison. Social network sites:
definition, history, and scholarship. Engineering
Management Review, IEEE, 38(3):16 –31, 2010.

[5] B. Carminati, E. Ferrari, and A. Perego. Enforcing
access control in web-based social networks. ACM
Trans. Inf. Syst. Secur., 13(1):1–38, 2009.

[6] P. Contacts.
http://portablecontacts.net/draft-spec.html.

[7] A. Culotta, R. Bekkerman, and A. Mccallum.
Extracting social networks and contact information
from email and the web. In In Proceedings of CEAS-1,
2004.

[8] A. Galloway. Protocol, or, how control exists after
decentralization. Rethinking Marxism: A Journal of
Economics, Culture & Society, 13(3):81–88, 2001.

[9] Identi.ca. http://identi.ca.

[10] S. Inc. http://www.status.net/.

[11] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW
’10: Proceedings of the 19th international conference
on World wide web, pages 591–600, New York, NY,
USA, 2010. ACM.

[12] K. J. Liben-Nowell, D. The link-prediction problem
for social networks. Journal of the American Society
for Information Science and Technology,
58(7):1019–1031, 2007.

[13] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In In Proceedings of the 5th
ACM/USENIX Internet Measurement Conference

(IMCâĂŹ07), 2007.

[14] M. Newman. Detecting community structure in
networks. The European Physical Journal B -
Condensed Matter and Complex Systems, 38:321–330,
2004.

[15] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Phys.
Rev. E, 69(2):026113, Feb 2004.

[16] OAuth. http://oauth.net/.

[17] OMB.
http://en.wikipedia.org/wiki/openmicroblogging.

[18] A. Passant, T. Hastrup, U. Bojars, and J. Breslin.
Microblogging: A semantic web and distributed
approach. In 4th Workshop on Scripting for the
Semantic Web (SFSW2008).

[19] S. Plugins.
http://status.net/open-source/add-ons/plugins.

[20] F. Project. http://www.foaf-project.org/.

[21] O. Project. http://www.ostatus.org/.

[22] S. Protocol. http://www.salmon-protocol.org/.

[23] PubSubHubBub. code.google.com/p/pubsubhubbub/.

[24] S. Queues. http://status.net/wiki/queues.

[25] RDF. http://www.w3.org/rdf/.

[26] M. Rowe. Interlinking distributed social graphs. In
Proceedings of Linked Data on the Web Workshop,
World Wide Web Conference 2009, April, Spring 2009.

[27] O. Spec. http://www.ostatus.org/specification.

[28] F. Specification. http://xmlns.com/foaf/spec/.

[29] X. Specification. http://gmpg.org/xfn/1.1.

[30] A. Streams. http://activitystrea.ms/.

[31] vCard. http://www.imc.org/pdi/vcard-21.doc.

[32] WebFinger. http://code.google.com/p/webfinger/.

[33] R. Xiang, J. Neville, and M. Rogati. Modeling
relationship strength in online social networks. In
WWW ’10: Proceedings of the 19th international
conference on World wide web, pages 981–990, New
York, NY, USA, 2010. ACM.

[34] B. Zhou and J. Pei. Preserving privacy in social
networks against neighborhood attacks. pages 506
–515, apr. 2008.

