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Abstract. In this paper, we describe our probabilistic-logical afiggnt system

CODI (Combinatorial Optimization for Data Integrationhd system provides a
declarative framework for the alignment of individualsncepts, and properties
of two heterogeneous ontologies. CODI leverages both égichema informa-

tion and lexical similarity measures with a well-defined seiics for A-Box and

T-Box matching. The alignments are computed by solvingesponding combi-

natorial optimization problems.

1 Presentation of the system

1.1 State, purpose, general statement

CODI (CombinatorialOptimization forDatal ntegration) leverages terminological struc-
ture for ontology matching. The current implementationduces mappings between
concepts, properties, and individuals. The system corsbiécal similarity measures
with schema information to completely avaicoherencendinconsistencyluring the
alignment process. CODI participates in 2011 for the setiomelin an OAEI campaign.
Thus, we put a special focus on differences compared to #néqurs 2010 version of
CODL.

1.2 Specific techniques used

CODI is based on the syntax and semantics of Markov logic 2] #ansforms the
alignment problem to a maximum-a-posteriori optimizatimoblem. This problem
needs a-priori confidence values for each matching hypeshes input. Therefore, we
implemented an aggregation method of different similarigasures. Another new fea-
ture of CODI is the recognition of ontology pairs belongingiifferent versions of the
same ontology. In instance matching CODI does not computedksimilarities for
all existing pairs of instances but utilizes object-prapessertions for reducing the
necessary comparisons.



Markov Logic Framework Markov logic combines first-order logic and undirected
probabilistic graphical models [11]. A Markov logic netwofMLN) is a set of first-
order formulae with weights. Intuitively, the more evidertbere is that a formula is
true the higher the weight of this formula. It has been prepass a possible approach

to several problems occurring in the context of the semamgic [2]. We have shown
that Markov logic provides a suitable framework for ontglogatching as it captures
bothhardlogical axioms andoftuncertain statements about potential correspondences
between entities. The probabilistic-logical framework pvepose for ontology match-

ing essentially adapts the syntax and semantics of Markgie.lélowever, we always
type predicates and we require a strict distinction betwieard and soft formulae as

well ashiddenandobservablepredicates. Given a set of constants (the classes and ob-
ject properties of the ontologies), a set of formulae (thermas holding between the
objects and classes), and confidence values for correspoesiea Markov logic net-
work defines a probability distribution over possible aliggnts. We refer the reader to

[8, 7] for an in-depth discussion of the approach and somepatational challenges.
For generating the Marcov logic networks we used the apprdascribed in [12]. Our
OAEI paper from last year contains a more technical desorif the framework [9].

Cardinality ConstraintsA method often applied in real-world scenarios is the saact

of a functional one-to-one alignment [1]. Within the ML fremork, we can include a

set of hard cardinality constraints, restricting the afigmt to be functional and one-to-
one.

Coherence Constraintdncoherence occurs when axioms in ontologies lead to logi-
cal contradictions. Clearly, it is desirable to avoid inednce during the alignment
process. All existing approaches that put a focus on aligrirm@herence remove cor-
respondences after computing the alignment. Within the Mimkework we can incor-
porate incoherence reducing constrathising the alignment process.

Stability Constraints Several approaches to ontology matching propagate alignme
evidence derived from structural relationships betweercepts and properties. These
methods leverage the fact that existing evidence for thévalgumce of concept§’ and

D also makes it more likely that, for example, child concept§'andD are equivalent.
One such approach to evidence propagatiasirislarity flooding[6]. As a reciprocal
idea, the general notion of stability was introduced, eggirgg that an alignment should
not introduce new structural knowledge [5].

Combination of Different Similarity Measures Compared to last year we improved
our lexical string similarity measures significantly. In esfistep we collect and stan-
dardize all string information like ids, labels and anniataé from the entities. Dur-
ing the standardization process we split tokens into sépavards if necessary (e.g.
hasAuthoris transformed tdias Authoy, replace special characters with spaces, and
remove few words like or theaccording to a stop-words list.

Furthermore, the functionality of computing string simiti@s has been improved.
CODI is able to combine several string similarity measurggdking the average,



the maximum or by weighting each measure with a specific fiireeteweight. These
weights could be learned with machine learning algorithimghe standard configu-
ration CODI combines the Cosine, Levenshtein, Jaro Winldenth Waterman Goto,
Overlap coefficient, and Jaccard similarity meastivggh specific weights.

Matching different Ontology Versions A specific task in ontology matching is the
alignment of different versions of the same ontology. Ti# tases of the benchmark
track can be seen as an example for this kind of task. In thewilg we argue that
(a) matching versions requires a different approach coewptir a standard matching
task, and (b) that, therefore, it is required to detect aatarally that two ontologies are
different versions of the same ontology.

(a) Suppose thab and®’ are versions of the same ontology. Further(latontain
less concepts and properties th@h Then it is highly probable that many or nearly all
entities inO have a counterpart i®’. A good one-to-one alignment will have, thus,
as many correspondences as there are entiti®s Based on this assumption it makes
sense to lower the threshold or to use a structural measadglition to the computation
of string-based similarities. In particular, we apply tbédwing measure.

We first calculate the number of subclassésub, superclassegtsup, disjoint
classes#dis, and domain- and range-restrictiongdom and #ran) for a specific
conceptC. These results are then used to calculate a similarity. kKamele, given
C € OandD e O we havesimy s, (C, D) = (1+min(#sub(C), #sub(D)))/(1+
maz(#sub(C), #sub(D))). The overall similaritysim(C, D) is then computed as
weighted average over all different similarity values fack of #sub, #sup, #dis,
#dom, #ran.

The resulting similarity measure is highly imprecise, bas la high recall if we ap-
ply it to two ontologies with high structural similarity. Véhever there is a high prob-
ability that the two input ontologies are versions of the samtology, we add for each
concepiC the top-k counterpart® with respect tasim(C, D) as matching hypotheses
with low confidence to the optimization problem (same forgandies). This approach
sounds quite drastic, but keep in mind that there are anofwoespondences generated
by our string-based measures and constraints that intanactesult in a meaningful
final alignment.

(b) In order to determine whether two ontologies are versionsazh other, we
apply the Hungarian method on the input generated by ouctsttal measure. The
Hungarian method finds an optimal one-to-one alignmégi. Now suppose that we
match an ontology on itself. The number of correspondence4,j. is then equal
to the number of entities in the ontology, i.ed,,; has a full coverage. Moreover,
the total of confidence . 4 , conf(c) will be [Aqy . In general, we assume that
Zcerpt con f(c) divided by the size of the smaller ontology is closd tiwr versions
of the same ontology. In particular, we treat each pair oblmgfies as versions if the
measured value is above.

! Implemented in http://sourceforge.net/projects/simiost
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Fig. 1. Process of Selecting Individuals for Computing their LekiSimilarities withthres =
0.7.

Instance Matching In real-world instance matching tasks we are often facel data
sources containing a large amount of instances. Henceglivious that computing the
lexical similarity for every pair of these instances is naitable. We implemented an
approach which utilizes object-properties to determimaristances for which the simi-
larity should be computed. Our approach assumes that wedmeveommon TBox and
two different ABoxes. Consequently, we assume that bothxEBdiave been integrated
beforehand.

In a first step we computanchoralignments. Therefore, we compare a small sub-
set of all individuals with each other (e.g. all individualkich are asserted to a specific
concept likeF'ilm), compute their lexical similaritiegexSim, and add those to the
anchor-alignments if their respective similarities arevaba thresholdhres. Then,
we take the first anchor-alignmednt For all individuals which are connected with an
object-property-assertion with one of the individualstie ailignment. we again com-
pute the lexical similarityexSim. We add them to thendof the anchor-alignments if
lexSim is higher than the threshotdres. Figure 1 visualizes this process. The anchor-
alignments is a unique set, which means that only new aligisreae added. We repeat
this procedure for the second, third, and all following asredlignments until we went
through the whole set.



The lexical similaritylexSim is computed as described in [9]. However, we inte-
grated coherence checks as proposed by [10] in order to aadsistent alignments.
Comparisons can be further reduced, by omitting those iddal pairs which have no
asserted inferred concept in common.

This basic idea is extended by some post-processing stepsatehing correspon-
dences which are not connected with an object-propertyraiss, we compare all re-
maining individuals which do not yet occur in the anchogathent and add them if
their lexical similaritylexz Sim is abovethres. At the end, a greedy algorithm for com-
puting a one-to-one alignment is applied.

These techniques reduce the runtime significantly on lagtaince-matching bench-
marks.

1.3 Adaptations made for the evaluation

Prior to each matching task, CODI automatically analyzesitiput ontologies and
adapts itself to the matching task. The first distinction asdd on the use of OBO
constructs. If this is the case CODI automatically switcttea setting optimized for
matching biomedical terms. The main difference in thisisgtis the use of a different
similarity measure which exploits the fact that in mediaatins the order of words is
often transposed. The measure basically splits the twagstin two sets of words and
computes the largest common subset of these sets relative smaller one.

If this is not the case CODI checks if the ontologies might besions of the same
ontology. This test does not always correctly discrimireatel we sometimes do not
detect that two ontologies are different version of the samtelogy resulting in poor
performance for some of the benchmark test cases.

1.4 Link to the System

CODI can be downloaded from the SEALS portalkta p: / / ww. seal s- proj ect.
eu/ t ool - servi ces/ browse- t ool s.Furtherinformation, an executable jar file,
and the source code are availablatat p: / / code. googl e. coni p/ codi - mat cher /.

1.5 Link to the Set of Provided Alignments

The alignments for the trackBenchmark Conference and Anatomyhas been cre-
ated on top of the SEALS platform. FEMB the alignments can be foundlatt p:
/I code. googl e. com p/ codi - mat cher/ downl oads/ | i st

2 Results

Benchmark Track The benchmark track is constructed by applying controliadd-
formations on one source ontology. Thus, all test-casesistoof different versions of
the same ontology. However, oadaptivemethod for detecting these ontologies only
categorize about 50 % beeing different versions of eachr.ofspecially if their se-
mantic structure is heavily changed (e.g. deleting classahthy, etc.) our algorithm



fails. Nevertheless, with our adaptive method we were ablienprove ourF; score
from 0.51 to 0.75 compared to last year. If all test-casesldvbave beercorrectly
categorized as different versions CODF$ score would have been 0.83 which is 32
% higher than last year. For the newly introduced datasetr2daptive setting even
produces a slightly highdr; score of 0.70 compared to the correct assignments. Thus,
the structure of some test cases differs so much that it isfloéad to consider themot

as ontologies of the same version (even if they are). Thdtseste shown in Table 1.

Table 1.Benchmark results

Dataset 1 Dataset 2
2011 2010 2011
adaptive correct adaptive correct
Precision 0.88 0.90 0.72 0.86 0.80
Recall 0.65 0.77 0.44 0.59 0.61
F score 0.75 0.83 0.51 0.70 0.69

Conference Track Since the conference dataset contains many trivial cooretgnces
matchers can easily reach a high precision. The challenglei®flataset consists in
finding the non-trivial correspondences. Concentratingh@se non-trivial correspon-
dences we were able to increase our recall from 0.51 to 0.8aced to the results of
last year and gained 2 % addition@| score. In the conference track CODI was able
to detect that all ontology pairs are not versions of the santelogy. Consequently,
the adaptive and the correctly assigned results are si(si& Table 2). We also made
some experiments where we matched the Conference ontslogiethe fixed version-
setting. We observed a significant loss in precision. Thistitates the importance of
an adaptive approach.

Table 2. Conference results

2011 2010

adaptive correct
Precision 0.75 0.75 0.87
Recall 0.61 0.61 0.51
Fy score 0.66 0.66 0.64

Anatomy Track Due to our special lexical similarity measure for medicabdogies,
we were able to improve our; score of last year from 0.794 to 0.879. Currently, our
results are better than the best participating system o®thiel 2010. CODI requires
approximately 35min to finish this matching task on a 2.3GHiald¢ore machine with
8G RAM.

Table 3. Anatomy results

2011 2010
Precision 0.955 0.954
Recall 0.815 0.680
Fy score 0.879 0.794




IIMB Track The IIMB benchmark is created by applying lexical, semaaitiand
structural transformation techniques on real data exdtsitom freebase [3]. The trans-
formations are divided into four transformation categementaining 20 transforma-
tions each. The size of the IIMB track heavily increased carag to last year. Each of
the 80 existing transformations consist of ontology filethvgizes larger than 20 MB.
For computing a very basic string similarity for every pairirdividuals the runtime
explodes to over one hour per test case. With our new instaatehing method which
only compares related individuals we were able to reduceuhéme to 34 minutes
per test-case in average. This runtime includes the timedaosistency checking, for
computing a functional one-to-one alignment, and for daking a more sophisticated
lexical similarity.

Beside the increase in size, the transformations have bade much harder. Thus,
comparisons to last year results are not expedient. Tablevnarizes the different
results of the CODI system for each of the 4 transformatidegaries.

Table 4.1IMB results

Transformations |0-20 21-40 41-60 61-80 overall
Precision 0.93 0.83 0.73 0.66 0.79
Recall 0.78 0.59 0.67 0.28 0.63
F score 0.84 0.68 0.64 0.36 0.66

3 General comments

3.1 Discussions on the way to improve the proposed system

Improvements in usability by designing a suitable userrfate are future steps that
have to be taken. Although we focussed this year on the imgiéation and evalua-
tion of a combination of more sophisticated lexical siniflameasures, we think that
we still have not exploit CODIs full potential regardingghissue. Last but not least
improvements in matching different ontology versions vl subject of next years
participation.

3.2 Comments on the OAEI 2011 procedure

The SEALS evaluation campaign is very beneficial since it first time that the
matchers are publically available for download implemagma common interface.
3.3 Comments on the OAEI 2011 measures

We encourage the organizers to use semantic precision eatimeeasures as described
in [4].

2 |n several test cases every supplementary informatiomfiividuals has been deleted. These
test cases will not be considered in the official OAEI evatragnd, thus, are omitted here.



4 Conclusion

This year we improved the lexical similarity measures aneetigped a methodology
for automatically choosing between different settingsmBming these improvements
with our Markov logic system from last year, we were able tpiiave our results for the
anatomy, conference, and benchmark track significantisthEtmore, we developed a
new instance matching algorithm, which only computes thelarity of promising in-
stances. With this technique we were able to reduce thementif the large instance
matching benchmark.

The strength of the CODI system is the combination of lexaral structural infor-
mation and the declarative nature that allows easy expatatien. We will continue the
development of the CODI system and hope that our approaphé@ssother researchers
to leverage terminological structure and logical reasgifiam ontology matching.
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