
Modeling Matching Systems using Matching Process

Design Patterns

Eric Peukert

SAP Research, 01187 Dresden, Germany

eric.peukert@sap.com

1 Introduction

Many schema- and ontology matching systems were developed to compute

mapping suggestions for a user. Most of these systems are black boxes that often re-

implement basic matching components which are extended by a few domain specific

matchers. We observe that most systems mainly differ in their internal execution

order and combination of matchers.

In this paper, we advertise using a matching process model to unify a broad set of

different matching systems. That allows making the order of execution within a

matching system explicit. Moreover, we identify a set of so called matching process

design patterns that are often used and combined to build strong matching systems.

2 Process Model and Design Patterns

A matching process is represented by a directed matching process graph as was

also proposed by [2]. The vertices represent operations and edges determine the

execution order and data flow. The result of a matching process is a mapping MA

between a source schema S and a target schema T that consists of correspondence

links between schema elements. With a schema we refer to any meta data structure

such as trees, ontologies, or meta models. Mappings are computed with the help of

similarity matrices that contain similarity values between schema source and target

elements. Additionally, we introduce a so called comparison matrix. A comparison

matrix consists of |S| * |T| cells. Each cell contains a boolean value representing

whether a comparison within subsequent matching operations should be performed.

The comparison matrix is crucial for controlling the flow of element comparisons

within a matching process. Our set of operators is based on the operators we

introduced in [1] that are Match, Combine, Select, Filter, Input and Output. Match

computes a similarity matrix using some matching algorithm. Combine aggregates

multiple matrices and Select reduces the matrix to most likely mapping candidates.

Filter is used to reduce the number of comparisons for subsequent operations by

setting boolean values in the comparison matrix. Additionally we introduce a

Condition to allow conditional execution of process parts and Split/Loop to model

processes of systems like Falcon or RiMOM [3, 5]. Based on these operators we are

able to model a variety of matching systems internal matching processes using the

framework and tools described in [1]. Moreover, we were able to identify an initial set

of reusable matching process design patterns that are often used and combined to

build strong matching processes (see Figure 1).

Fig. 1. Matching Process Design Patterns

Parallel Composition (a) is often applied to combine a set of matching algorithms and

was introduced in [4]. Refinement Sequence (b) tries to increase precision by refining

the results of a matcher within subsequent matchers in a process. Adaptive Matcher

Selection (c) is often used to select the most appropriate matcher for a given matching

problem based on some pre-computed feature value. The Skimming pattern (d)

extracts the most probable correspondences from every matcher individually. These

correspondences are “skimmed”. This approach is useful if individual matchers have

a high precision for a domain of mapping problems. Divide and Conquer (e) divides

the set of comparisons based on some property and distributes these comparisons to

the most appropriate, possible different matchers. This pattern is extensively used in

decision tree based matching systems. Finally Blocking&Clustering is applied in

systems that repeatedly execute process parts. A typical application is the

fragmentation of the matching task into smaller blocks that are executed

independently. In addition to the visualized patterns we propose two further patterns

that are Iteration and Matcher Hierarchies. Iteration repeatedly executes process parts

until a given condition is met. Matcher Hierarchies are implicitly used by many

matching systems to build complex structure-based matchers. Within that pattern, the

output of a matcher is directly used as input for a second matcher.

In our evaluation we were able to show that the parallel composition pattern

behaves very robust to solve different matching problems with high quality. However,

by combining the pattern with skimming and refinement parts the quality can further

be improved as was implicitly done in the internal process of Falcon and RiMOM.

References

1. Peukert, E., Eberius, J., Rahm, E.: AMC - A Framework for Modeling and Comparing

Matching Systems as Matching Processes. ICDE (2011)

2. Lee, Y. et. al.; eTuner: Tuning Schema Matching Software Using Synthetic Scenarios. The

VLDB Journal, 16(1), (2007)

3. Li, J. et. al.: RiMOM: A Dynamic Multistrategy Ontology Alignment Framework. IEEE

Transactions on Knowledge and Data Engineering, 21(8), (2009)

4. Do, H. H. and Rahm, E.: COMA - A System for Flexible Combination of Matching

Approaches. VLDB (2002)

5. Hu, W. and Qu. Y.: Falcon-AO: A Practical Ontology Matching System. Web Semant.,

6(3), (2008)

(a) (b) (c) (d) (e) (f)

