

Web APIs selection for Mashup Interoperability

Devis Bianchini, Valeria De Antonellis, Michele Melchiori

Università degli Studi di Brescia – Dip. di Ing. dell’Informazione

Via Branze 38

25123 Brescia, Italy

{bianchin|deantone|melchior}@ing.unibs.it

Abstract. Mashup is new development style adopted in enterprises for imple-

menting non-mission-critical Web applications, which are created to satisfy a

business need and that often are used only for short periods of time, while the

need exists. However, the development of mashup requires retrieving, under-

standing and composing heterogeneous software components often made avail-

able as Web APIs. Mashup interoperability[1] is defined as the set of condi-

tions, including technological and organizational ones, to permit des-

ingners/developers to create mashups. In this paper, we propose Web API selec-

tion patterns as a contribution to enable mashup interoperability.

1 Introduction

Nowadays, enterprises are beginning to realize the benefits provided by enterprise

mashup, a new development style for non-mission-critical Web applications which

are created to satisfy a business need with a limited development effort. Often, the

application is short-lived, being intended to satisfy a specific short-term business

situation. Examples of such Web applications are enterprise dashboards, that are used

in an enterprise context to improve decision making and locating contents allowing

users for getting and consolidating information and manage tasks to support their

activities [2].

Generally speaking, mashup applications are built exploiting existing data, UI

widgets and functionalities to create new applications and software artifacts that could

be also reused as components in other mashups. Often mashup components are made

available as Web APIs that are linked (through programmatic coupling) to enable the

application logics. In the enterprise context, mashups can be implemented by using

either components developed internally to the enterprise, for instance to access cus-

tomer data, either third party components as geo-coding services. A general problem

is therefore allowing a developer to explore and understand the space of available

APIs and their relationships. This is usually a difficult task because of: (i) the dy-

namicity of this space and the large number of available APIs (more than 3000 in

programmableweb), (ii) the limited time usually allocated for the development of a

mashup application; (iii) the limited skills/expertise of the typical mashup developer,

33

who should develop a new application by looking for suitable Web APIs according to

an exploratory perspective, without a wide knowledge about the available Web APIs

and how their linkage can be performed.

With reference to these problems, we present and discuss in this paper the concept

of APIs selection patterns to proactively assist a mashup application designer in the

mashup developing process, we discuss them in the enterprise application develop-

ment context emphasizing their contribution with respect to the software reuse lifecy-

cle and, finally, we formalize this concept.

Related work. Several efforts have been devoted to the design of tools which sup-

port improved development of mashups [3]. In [4], a faceted classification of unstruc-

tured Web APIs and a ranking algorithm have been applied to the programmableweb

APIs repository to improve the search mechanism. The classification and searching

solution is still based on IR techniques. The MatchUp system described in [5] ad-

dresses the problem of suggestion of patterns to link mashups components: when the

designer selects a set of components, the system suggests code patterns to connect

these components on the basis of recurrent patterns in the repository.

A Web-based interface which supports mashup of semantic-enriched Web APIs is

proposed in sMash [6]. Possible mashups are shown as a graph, where each vertex

represents an API and an edge between two APIs means that they are mashupable,

that is, they can be used together in a mashup.

2 Enterprise Mashup Development Scenario

In the enterprise context, mashup has been adopted as development approach both

from business functions and IT departments. Enterprise applications can be divided

into: long term-strategic applications that are developed by the IT department and

short term-tactical applications that are required for covering situational business

needs, as we stated before. The development of the second type cannot be fully sup-

ported by IT departments that generally have limited resources for satisfying applica-

tion development and support. Moreover, it is usually too expensive to adopt tradi-

tional skills/processes for creating short term-tactical applications that have a limed

audience and lifetime. As a consequence, mashup paradigm can provide a solution if

implemented as a process according to the following phases: (i) IT department creates

catalog of components and provides code-free assembly tools; (ii) business users can

create and share their own mashup applications for personal or team use – without IT

intervention.

On one hand, business functions/users get advantage from this process because

they experience more control in addressing their needs. In fact, they can implement

situational applications in a shorter time and with a relative independence from enter-

prise IT departments. On the other hand, IT departments implement non-mission criti-

cal applications as mashups because their development requires lower effort, pro-

gramming skills and shorter time. Beside these considerations, mashups techniques

34

and tools allow enterprise functions to deal with the typical interoperability problem

of integrating heterogeneous data and functionalities.

According to [7] the main reasons to adopt mashups in organizations include: (i)

reduce uncertainly and compress timeline in projects; (ii) creating a virtuous cycle of

reuse; (iii) enabling quick assembling of applications for new situations. In particular,

the presence of an effective cycle of reuse (Fig.1, adapted from [7]) creates the condi-

tions for compressing the lngth of the development phases.

However, building a mashup requires the ability for solving problems and making

design choices at different abstraction levels: technology, authentication and privacy

on the content, choice of the most suitable components and functionalities, choice of

component integration at server or client side.

Fig. 1. Cycle of reuse in the mashup development process

.

Specifically, our proposal focuses, as we told, on the problem of selecting and in-

tegrating APIs and functionalities. Therefore in the following section, we formalize

selection patterns to support interactive and proactive mashup development by help-

ing designer to choose the more suitable APIs. The selection patterns are based on: (i)

semantic annotation of Web API descriptions with respect to domain ontologies; (ii)

organization of Web APIs based on automated matching techniques apt to establish

35

semantic links between them according to properly defined similarity and coupling

criteria (not presented in this paper).

3 Selection patterns

With reference to the development process of a mashup M (Fig. 1) we identify three

relevant useful selection patterns:

– Search, to suggest a set of Web APIs that match a given Web API specification

Wτ;

– Completion, to suggest a list of Web APIs that can be coupled to a given Web

API Wτ belonging to M;

– Substitution, to suggest a list of Web APIs that can be substituted to the Web API

Wτ belonging to M;

Formally, a selection pattern is defined as a 4-uple < Wτ, mτ, δτ , ≤τ > where τ is the

purpose of the selection pattern, i.e., Search, Completion, Substitution.

The metric mτ is used to evaluate, respectively, the degree of matching if the pat-

tern is Search, the degree of coupling if the pattern is Completion, the similarity be-

tween each suggested Web API and Wτ if the pattern is Substitution. The threshold δτ

is used to filter out not relevant Web APIs. A Web API Wj is suggested to the design-

er if mτ (Wτ,Wj)≥δτ. Finally, ≤τ is a function to rank the suggested Web APIs.

With regard to their application to the development process, the selection patterns

support both the designer (see Fig.2) in the different phases of the mashup develop-

ment and in the implementation of the practice of the reuse. With respect to the de-

velopment phases, Search and Completion patterns allow the designer, respectively,

to search for APIs matching a given specification and to search for APIs that can be

coupled with a given one in the application, providing complementary functionalities.

36

The Substitution pattern allows for substituting APIs in the mashup with other func-

tionally similar APIs under the constraints of minimizing the effort to implement the

substitution. In this case, the general purpose of the substitution is that of improving

the overall quality of the application by means of replacing those APIs no more avail-

able or maintained or with low quality features. The proposed patterns contribute to

stimulate the virtuous cycle of reuse highlighted in Fig.1.In particular, given that the

Substitution pattern is used to improve the quality of the mashup and to make it more

stable, it favors the practice of sharing quality mashup within the users/developers

community.

3.1 Semantic descriptions of APIs

Selection patterns are based on semantic annotation of Web API descriptions with

respect to domain ontologies. In this section, we briefly discuss how this can be ob-

tained. In fact, the design of Web applications from APIs independently provided by

third parties is hampered by the semantic heterogeneity of API descriptions (in terms

of input/output variables, operations) and by their number, that makes impractical and

cumbersome their manual selection. We distinguish two cases in API semantic de-

scription: (i) the semantic characterization of available APIs; (ii) the semantic charac-

terization of a requested API, as formulated by the designer.

Semantic annotation of APIs in our framework is obtained according to the steps

suggested in the SWEET tool [8]: (a) identification of elements (that is, operations,

inputs, outputs) in the unstructured HTML document which represents the API, to

produce an hRESTS description; (b) search for ontologies suitable for elements anno-

tation and of taxonomies of categories for API classification; (c) annotation and clas-

sification of the API according to the MicroWSMO notation. This last step allows to

provide a formal description of an API that is preliminary to the formal definition of

Fig. 2. Selection patterns support to development phases

37

the similarity and coupling metrics[9] used to implement the recommendation pat-

terns.

We define a semantic descriptor Wi for a semantically annotated API as:

Wi = <CATi,OPi,EVi> (1)

where CATi is a set of categories associated with the API, OPi is a set of operations,

EVi is a set of events that the API can generate. Each operation opk ∈ OPi is described

by the operation name opk, the operation inputs IN(opk) and the operation outputs

OUT(opk). Each event evh ∈ EVi is described by a set of event arguments, used to

represent the API state changes triggered by event occurrence. Operation I/Os and

event arguments are references to the concepts of the domain ontologies selected

during the API annotation process.

The semantic characterization of a request for an API is similar and defined as fol-

lows:

Wr = <CATr, optr> (2)

where CATr is the set of categories featuring the request and optr= <OP(Wr),IN(Wr),

OUT(Wr)> are the sets of required operation names (resp., input names, output

names). With respect to the definition (1), the descriptor Wr has a flattened structure,

since the sets IN(Wr) and OUT(Wr) are specified independently from the operation in

OP(Wr) they belong to. In fact, according to the exploratory search perspective, the

designer could not have a precise idea about the structure of the descriptor to search.

4 Conclusions

In this paper, we have proposed and formalized semantics-enabled recommendation

patterns for component selection to support the enterprise mashup development and

component reuse process and giving a contribution to implement mashup interopera-

bility. In our proposal, mashups are built from semantically described APIs that are

classified and abstracted as semantic descriptors. Suitable metrics have been defined

to establishing semantic relationship among APIs and implement the patterns.

Future work includes testing the patterns on real case scenarios. For this the pur-

pose, we have a developed a software tool and we are studying their effectiveness by

applying them to publicly available APIs, as the ones from the public registry

www.programmableweb.org.

38

5 References

1. J. Palfrey and U. Gasser “Mashups Interoperability and eInnovation” Berkman Publication

Series, November 2007, Available at

http://cyber.law.harvard.edu/interop/pdfs/interop-mashups.pdf

2. H. Adams (2009). "Executive IT Architect, Mashup business scenarios and patterns". IBM

DeveloperWorks.

Available at http://www.ibm.com/developerworks/lotus/library/mashups-patterns-pt1/.

3. Ngu, A.H.H., Carlson, M.P., Sheng, Q.Z. and Paik, H.Y. (2010) Semantic-Based Mashup

of Composite Applications, IEEE Trans. On Services Computing, vol.3, no.1.

4. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A. P. and Verma, K. (2008) A Facet-

ed Classification Based Approach to Search and Rank Web APIs, 6th IEEE Int. Confer-

ence on Web Services (ICWS08).

5. Greenshpan, O., Milo, T. and Polyzotis, N. (2009) Autocompletion for Mashups, 35th Int.

Conference on Very Large DataBases (VLDB09), pages 538–549.

6. Bin Lu, Zhaohui Wu, Yuan Ni, Guo Tong Xie, Chunying Zhou, and Huajun Chen. (2009)

sMash: semantic-based mashup navigation for data api network. In 18th International

World Wide Web Conference (WWW2009), pages 1133–1134.

7. Carrier N. (2009) Amplify Your ROI – Getting things done quickly and Economically

with Enterprise Mashups, IBM mashup center, Web 2.0 Expo Conference, New York.

8. M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantic annotation of Web APIs with

SWEET. In Proc. of 6th Workshop on Scripting and Development for the Semantic Web,

2010.

9. D. Bianchini, V. De Antonellis, M. Melchiori (2011) Semantics-enabled Web APIs selec-

tion patterns, In Proc. of 15th International Database Engineering and Applications Sympo-

sium (IDEAS 2011) Lisboa, Portugal, pages 204-208.

