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ABSTRACT 
Recommender systems are being used to help users find relevant items 
from a large set of alternatives in many online applications.  Most existing 
recommendation techniques have focused on improving recommendation 
accuracy; however, diversity of recommendations has also been 
increasingly recognized in research literature as an important aspect of 
recommendation quality.  This paper proposes a graph-theoretic approach 
for maximizing aggregate recommendation diversity based on maximum 
flow or maximum bipartite matching computations.  The proposed 
approach is evaluated using real-world movie rating datasets and 
demonstrates substantial improvements in both diversity and accuracy, as 
compared to the recommendation re-ranking approaches, which have been 
introduced in prior literature for the purpose of diversity improvement.   

Keywords 
Recommendation diversity, aggregate diversity, collaborative 
filtering, graph-based algorithms. 

1. INTRODUCTION AND MOTIVATION 
Many recommendation techniques have been developed over the 
past decade, and major efforts in both academia and industry have 
been made to improve recommendation accuracy, as exemplified 
by the recent Netflix Prize competition.  However, it has been 
increasingly noted that it is not sufficient to have accuracy as the 
sole criteria in measuring recommendation quality, and we should 
consider other important dimensions, such as diversity, novelty, 
serendipity, confidence, trust, to generate recommendations that 
are not only accurate but also useful to users [19,29,34].   
In this paper, we focus on the aggregate diversity of 
recommendations, which has recently attracted attention in 
research literature due to its impact on the shifts in product 
variety and sales concentration patterns [11,12,15,31].  As 
observed by Brynjolfsson et al. [12], recommender systems can 
play a key role in increasing both “long tail” and “superstar” 
effects in real-world e-commerce applications.  In particular, the 
“long tail” literature argues that recommendations on the Internet 
help to increase users’ awareness of niche products and create a 
long tail in the distribution of product sales [6,11,15,31].  For 
example, one study, using data from online clothing retailer, 
demonstrates that recommendations would increase sales of the 
items in the long tail, resulting in the improvement in aggregate 
diversity [11].  In contrast, the “superstar” literature indicates that 
recommender systems may promote the so-called “rich get richer” 
phenomenon, where users are recommended more 
popular/bestselling items than idiosyncratic/personalized ones.  
One explanation for this is that the niche products often have 
limited historical data and, thus, are more difficult to recommend 
to users, whereas popular products typically have more ratings 
and, thus, can be recommended to more users [15,26,36].   

More diverse recommendations, presumably leading to more sales 
of long-tail items, could be beneficial for both individual users 
and some business models [10,11,18].  Exposing individual 
consumers to more long-tail recommendations can intensify this 
effect.  Thus, more consumers would be attracted to the 
companies that carry a large selection of long tail items and have 
long tail strategies, such as providing more diverse 
recommendations [12].  Also, some business models (e.g., 
Netflix), can benefit from recommendation diversity, because 
more diverse recommendations would encourage users to rent 
more long-tail movies, which are less costly to license and acquire 
from distributors than new releases or extremely popular movies 
of big studios [18]. 
Taking into consideration the potential benefits of aggregate 
diversity (hereinafter simply diversity) to individual users and 
businesses, several studies have explored new methods that can 
increase the diversity of recommendations [2,3,23,27,32].  In 
particular, considering that recommender systems typically 
compute recommendations to users in two phases – (Phase 1) 
estimating ratings of items that the users have not consumed yet 
and (Phase 2) generating top-N items for each user – the prior 
work can be divided into two lines of research.  One line of 
research [23,27,32] aims to enhance the estimation phase (mainly 
for long tail items), and the other focuses on finding the best set 
of recommendations in the recommendation generation phase 
[2,3].  The approach proposed in this paper fits within the latter 
line of research and, therefore, has the flexibility of being used in 
conjunction with any available rating estimation algorithms, as 
illustrated by our empirical evaluation.  In contrast to simple 
recommendation re-ranking heuristics for diversity improvement 
proposed in [2,3], we develop a more sophisticated and systematic 
graph-based approach for direct diversity maximization, while 
maintaining acceptable levels of accuracy.   
Our empirical results, using real-world rating datasets, show that 
the proposed graph-based approach consistently outperforms the 
recommendation re-ranking approach from prior literature in 
terms of both accuracy and diversity.  The paper also discusses 
the scalability of the proposed approach in terms of its theoretical 
computational complexity as well as its empirical runtime based 
on real-world rating datasets.   

2. RELATED WORK 
In this section, we briefly discuss two widely used 
recommendation techniques that are used in conjunction with our 
proposed approach in our empirical experiments as well as two 
important dimensions in the evaluation of recommendation 
quality: accuracy and diversity.  We also discuss a simple 
recommendation re-ranking approach from prior literature, which 
has been shown to improve the aggregate diversity of 
recommendations with only a small loss of accuracy, and which Copyright is held by the author/owner(s). 
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we will use as one of the baseline comparison techniques. 

2.1 Recommendation Algorithms 
Let U be the set of users and I be the set of items available in the 
recommender system.  Then, the usefulness or utility of any item i 
to any user u can be denoted as R(u,i), which usually is 
represented by a rating (on a numeric, ordinal, or binary scale) 
that indicates how much a particular user likes a particular item 
[1].  Thus, the job of a recommender system in the rating 
estimation phase (Phase 1) is to use known ratings as well as other 
information that might be available (e.g., content attributes of 
items or demographic attributes of users) to estimate ratings for 
items that the users have not yet consumed.  For clarity, we use 
R(u,i) to denote the actual rating that user u gave to item i, and 
R*(u,i) for the system-estimated rating for item i that user u has 
not rated before.  Given all of the unknown item predictions for 
each user, in generating top-N recommendations (Phase 2) the 
system selects the most relevant items, i.e., items that maximize a 
user’s utility, according to a certain ranking criterion.  More 
formally, item ix is ranked ahead of item iy, if rank(ix) < rank(iy), 
where rank: I → R is a function representing some ranking 
criterion.  Most recommender systems rank the candidate items 
by their predicted rating value and recommend to each user the N 
most highly predicted items (where N is a relatively small positive 
integer) because users are typically interested in (or have time for) 
only a limited number of recommendations.  We refer to this as 
the standard ranking approach and can formally define the 
corresponding ranking function as rankStandard(i)=R*(u,i)–1.  While 
the standard ranking approach exhibits good recommendation 
accuracy, its performance in terms of recommendation diversity is 
poor [2,3], which further emphasizes the need for different 
recommendation approaches for diversity improvement.   
Among a large number of recommendation techniques that have 
been developed over the past decade, collaborative filtering (CF) 
techniques represent most widely used and well-performing 
algorithms; we use two representative CF techniques for Phase 1 
(i.e., rating estimation) in this paper: neighborhood-based CF and 
matrix factorization CF techniques. 
Neighborhood-based CF techniques.  The basic idea of 
neighborhood-based CF techniques is, given a target user, to find 
the user’s neighbors who share similar rating patterns, and then to 
use their ratings to predict the unknown ratings of the target user 
[1,9].  There are many variations of computational methods to 
identify a user’s neighbors (i.e., by computing the similarity 
between users) and aggregate the neighbors’ ratings for the user.  
In our experiments, we use a popular cosine similarity measure 
for calculating similarity between users, and the final rating 
prediction for a specific item to a user is made as an adjusted 
weighted sum of the ratings of the user’s closest 50 neighbors on 
this item.  The neighborhood CF techniques can be user- or item-
based, depending on whether the similarity is computed between 
users or items [33]; we use both variations in this paper. 
Matrix factorization CF techniques.  Matrix factorization CF 
techniques have recently gained popularity because of their 
effectiveness in the Netflix Prize competition in terms of 
predictive accuracy.  In contrast to heuristic-based techniques 
(such as the neighborhood-based CF techniques mentioned 
above), the matrix factorization CF techniques use the existing 
ratings to learn a model with k latent variables for users and items.  
In other words, this technique models and estimates each user’s 
preferences for k latent features as the user-factors vector and 

each item’s importance weights for the k latent features as the 
item-factors vector [16,24].  Then, the predicted rating of item i 
for user u can be computed as an inner product of the user-factors 
vector for user u and the item-factors vector for item i.  Typically, 
the model-based techniques have been shown to generate more 
accurate recommendations than heuristic-based techniques.  
While a number of variations for the matrix factorization 
technique have been developed, in this paper we use its basic 
version, as proposed by Funk [16].  

2.2 Recommendation Accuracy and Diversity 
Recommendation Accuracy.  The goal of this work is to 
generate good top-N recommendation lists in terms of accuracy 
and diversity and, accordingly, we chose to evaluate the accuracy 
of top-N recommendation lists using one of the most popular 
decision-support metrics, precision [19].  Simply put, precision is 
measured as a proportion of “relevant” items among the 
recommended items across all users.  Note that the decision-
support metrics, such as precision, typically work with binary 
outcomes; therefore, here the notion of “relevance” is used to 
convert a numeric rating scale (e.g., 1-5) into binary scale (i.e., 
relevant vs. irrelevant).   
More specifically, in our empirical data ratings are provided on a 
5-point (or 5-star) scale, and the natural assumption is that users 
provide higher ratings to the items that are more relevant to them.  
As a consequence, in our experiments, we treat items with ratings 
4 and 5 as relevant, and items with ratings 1, 2, 3 as irrelevant, or, 
more precisely, we choose the threshold between relevant or and 
irrelevant items as 3.5 (denoted by TH).  The list of N items 
recommended for user u should include only items predicted to be 
relevant and can be formally defined as LN(u) ={i1, i2, …, iN}, 
where R*(u, ik) ≥ TH for all k ∈{1, 2,…, N}.  The precision of 
such top-N recommendation lists, often referred to as precision-
in-top-N, is calculated as the percentage of truly “relevant” items, 
denoted by correct(LN(u)) = {i ∈LN(u) | R(u, i) ≥ TH} among the 
items recommended across all users, and can be formalized as: 

| ( ( )) | | ( ) |N N
u U u U

precision - in - top - N correct L u L u
∈ ∈

= ∑ ∑
. 

In real-world settings, obviously a recommender system has to be 
able to recommend items that users have not yet rated (the ratings 
for those items typically become available to the system only 
after item consumption), i.e., the true precision of the generated 
recommendation lists is not known at the time of 
recommendation.  However, using two popular real-world 
datasets (details on datasets are provided in Section 4), different 
popular CF recommendation algorithms discussed above, and 
standard cross-validation techniques from machine learning and 
data mining, we show that, not surprisingly, precision is highly 
correlated with average predicted rating value of recommended 
items using for all recommendation algorithms, as indicated in 
Fig. 1.  In other words, recommending items with higher 
predicted rating values results in higher precision (i.e., higher 
likelihood that the user would actually like the item), which 
provides further empirical support for using the standard ranking 
approach if the goal is just to maximize recommendation 
accuracy.  An important consequence of this relationship is that 
we can use the average predicted rating value of top-N 
recommendation lists, which can always be computed at the time 
of recommendation, as a simple proxy for the precision metric.  In 
addition, this metric is extremely simple to compute and easily 
scales to large-scale real-world applications. We refer to this 
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metric as prediction-in-top-N and formally define it as follows:  
*

( )
( , ) | ( ) |

N

N
u U i L u u U

prediction - in - top - N R u i L u
∈ ∈ ∈

=∑ ∑ ∑
. 

 
Figure 1. Precision versus Average Predicted Rating Value 

Recommendation Diversity. As discussed earlier, accurate 
recommendations are not always useful to users.  For example, 
recommending only popular items (e.g., blockbuster movies that 
many users tend to like) could obtain high accuracy, but also can 
lead to a decline of other aspects of recommendations, including 
recommendation diversity.  The inherent tradeoff between 
accuracy and diversity has been observed in previous studies 
[2,3,30,38,39], therefore, indicating that maintaining accuracy 
while improving diversity constitutes a difficult task. 
The diversity of recommendations has been assessed at either 
individual or aggregate level.  The majority of previous studies 
have focused on individual diversity [8,21,30,35,37,38,39].  For 
example, the individual diversity of recommendations for a user 
can be measured by calculating an average dissimilarity between 
all pairs of items recommended to a user (e.g., based on item 
attributes).  In contrast, the aggregate diversity of 
recommendations across all users has been relatively less studied, 
and the recent interest in the impact of recommender systems on 
product variety and sales concentration patterns [11,12,15,31] has 
sparked a renewed interest in this topic.   
Several metrics can be used to evaluate various aspects of 
aggregate diversity, including absolute long-tail metrics that 
measure the change in the absolute number of items 
recommended (e.g., recommendation frequency of items above a 
certain popularity rank), relative long-tail metrics to measure the 
relative share of recommendations above or below a certain 
popularity rank percentile, and the slope of the log-linear 
relationship between item popularity rank and recommendations 
(or sales) that can indicate the relative importance of the head 
versus the tail of the distribution [12].  In the recommender 
systems literature, both absolute and relative long-tail metrics 
have been used to measure the aggregate diversity of 
recommendations [2,3,19,23,27,37].  In this paper, we use a 
simple absolute long-tail metric which measures aggregate 
diversity using the total number of distinct items among the top-N 
items recommended across all users, referred to as the diversity-
in-top-N [2,3].  More formally:  

( )N
u U

diversity - in - top - N L u
∈

= ∪
, 

and prior research has shown that this simple and easy-to-
compute metric exhibits high correlation with more sophisticated, 
distributional diversity metrics [3], i.e., is able to properly capture 
the same diversity dynamics as some of the relative long-tail 
metrics on several real-world rating datasets.  This diversity 
metric could also potentially be viewed as a crude indicator of the 
system’s level of personalization, because high diversity implies 
that each user gets very different and unique set of 

recommendations (potentially indicating a high level of 
personalization), whereas low diversity indicates that mostly the 
same items (possibly bestsellers) are recommended to all users 
(i.e., low level of personalization). 
Although the approach proposed in this paper aims to improve 
aggregate recommendation diversity, their accuracy is also given 
the proper attention in the paper, because diverse but inaccurate 
recommendations may not provide significant value to the users. 

2.3 Re-Ranking Approaches for Diversity 
Several prior studies have explored improving aggregate diversity 
of recommendations [2,3,23,27,32].  As discussed earlier, one line 
of research proposes new methods for predicting unknown ratings, 
mainly for long-tail items.  For example, Park and Tuzhilin [32] 
propose new clustering methods to improve predictive accuracy 
of long-tail items that have only few ratings, which can also 
increase the recommendation of long-tail items.  In addition, Levy 
and Bosteels [27] design long-tail music recommender systems, 
simply by removing popular artists (i.e., with more than 10,000 
listeners) in the rating prediction phase.  Also, a local scoring 
model, proposed by Kim et al. [23], was developed to alleviate 
the scalability and sparsity problems by suggesting a more 
efficient way to select the best neighbors for neighborhood-based 
recommendation techniques; however, as a by-product, it is 
shown to improve aggregate recommendation diversity.   
In contrast to these studies, another line of research proposes new 
approaches for improving top-N item selection after the rating 
estimation is performed.  In particular, Adomavicius and Kwon 
[2,3] propose a heuristic approach for recommendation re-ranking, 
which has been shown to improve aggregate diversity with a 
negligible accuracy loss and represents an important baseline for 
comparison with our proposed diversity maximization approaches.  
Typical recommender systems recommend to users those items 
that have the highest predicted ratings, i.e., using the standard 
recommendation ranking criterion rankStandard, as discussed earlier.  
While the standard ranking approach is used to maximize the 
accuracy of recommendations, as was illustrated by Fig. 1, 
Adomavicius and Kwon [2,3] showed that changing the ranking 
of items (i.e., not following the standard ranking approach) can 
help with other aspects of recommendation quality, in particular, 
with recommendation diversity.  As a result, they proposed 
several alternative re-ranking approaches, and showed that all of 
them can provide substantial improvements in recommendation 
diversity with only negligible accuracy loss.  In our experiments, 
as a baseline for comparison, we specifically use the ranking 
approach based on the reverse predicted rating value.  This is a 
personalized yet simple and highly-scalable ranking approach that 
can be formally defined as rankRevPred(i) = R*(u,i).  
While this re-ranking approach can significantly improve 
recommendation diversity, as might be expected, this 
improvement comes at the expense of recommendation accuracy, 
since not the most highly predicted items are recommended.  
Adomavicius and Kwon [2,3] demonstrate that the balance 
between diversity and accuracy can be achieved by 
parameterizing any ranking function with “ranking threshold” 
TR∈[TH, Tmax] (where Tmax is the largest rating on the rating 
scale).  That is, the ranking threshold enables to specify the level 
of acceptable accuracy loss while still extracting a significant 
portion of diversity improvement.  The parameterized version 
rankRevPred(i, TR) of ranking function rankRevPred(i) can be 
implemented as: 

Pearson Correlation: 0.974  Pearson Correlation: 0.966 
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∈
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In particular, items with predicted ratings from [TR, Tmax] would 
be ranked ahead of items with predicted ratings [TH, TR), as 
ensured by αu in the above definition.  Increasing the ranking 
threshold TR towards Tmax would enable choosing the most highly 
predicted items (i.e., more accuracy and less diversity – similar to 
the standard ranking approach), while decreasing the ranking 
threshold TR towards TH makes rankRevPred(i, TR) increasingly 
more similar to the pure ranking function rankRevPred(i), i.e., more 
diversity with some accuracy loss.  Thus, choosing TR∈[TH, Tmax] 
values in-between the two extremes allows setting the desired 
balance between accuracy and diversity.  In our experiments, we 
are able to explore the accuracy-diversity tradeoff of the re-
ranking approach, by varying this ranking threshold TR..   
In terms of computational complexity, the re-ranking approach is 
implemented as a simple sorting algorithm.  Assuming there are m 
users and n items, the worst case situation for this algorithm 
occurs when all n items are available to every user for 
recommendation.  Then, the heuristic-based ranking does the job 
of sorting n items, O(nlogn), for m users, and its complexity 
would be O(mnlogn).   

3. PROPOSED APPROACH 
While the recommendation re-ranking approach can obtain a 
certain level of diversity gains at the expense of a small loss in 
accuracy, in this section we propose a graph-based approach that 
can obtain maximum possible diversity.   
Graph-based algorithms have been previously used in 
recommender systems [4,22,28], mostly for the purpose of 
improving predictive accuracy of CF techniques.  We formulate 
our problem of diversity maximization as a well-known max-flow 
problem in graph theory [5,14].  One simple version of the 
general maximum flow problem, which has been extensively 
studied in operations research and combinatorial optimization, 
can be defined as follows.  Assuming that V is the set of vertices 
(or nodes), and E is the set of directed edges, each of which 
connects two vertices, let G = (V, E) be a directed graph with a 
single source node s∈V and a single sink node t∈V.  Each 
directed edge e∈E has capacity c(e)∈R associated with it.  Also, 
the amount of actual flow between two vertices is denoted by 
f(e)∈R.  The flow of an edge cannot exceed its capacity, and the 
sum of the flows entering a vertex must equal the sum of the 
flows exiting a vertex, except for the source and the sink vertices.  
The maximum flow problem is to find the largest possible amount 
of flow passing from the source to the sink for a given graph G.   
Translating the top-N recommendation setting into a graph-
theoretic framework, let users and items be represented as vertices, 
and an edge from user u to item i exists if and only if item i is 
predicted to be relevant for user u, i.e., R*(u, i) ≥ TH or, in other 
words, when the item is available to the user for recommendation.  
Each edge has capacity c(e) = 1 and can be assigned an integer 
flow of 1 if item i is actually recommended to user u as part of 
top-N recommendations, and the flow of 0 otherwise.  As 
described in the example in Fig. 2a, we augment this directed 
graph by adding a source node and connecting it by directed 
edges to each of the user vertices.  Let the capacity of each of 

these “source” edges be N and, again, only integer flows of 0, 1, 
…, or N are permitted on each of these edges.  Furthermore, we 
also augment this graph by adding a sink node and connecting 
each item vertex by a directed edge to this node.  Let the capacity 
of each of these “sink” edges be 1, and again only integer flows 
(i.e., 0 or 1) are permitted for these edges.   

    
                   Users                  Items                         Users                Items 
              (a) Max Flow Problem         (b) Max Bipartite Matching Problem 
Figure 2. Top-N Recommendation Task as a Graph Theory Problem 

As can be easily seen from this construction, because of the 
specified capacity constraints, i.e., “source” edges not allowing 
flows larger than N through each user node and “sink” edges not 
allowing flows larger than 1 through each item node, the 
maximum flow value in this graph will be equal to the maximum 
possible number of edges from users to items that can have flow 
of 1 assigned to them.  In other words, the max-flow value will be 
equal to the largest possible number of recommendations than can 
be made from among the available (highly predicted) items, 
where no user can be recommended more than N items, and no 
item can be counted more than once, which is precisely the 
definition of the diversity-in-top-N metric.   
Note that, while finding the maximum flow will indeed find the 
recommendations that yield maximum diversity, since the 
recommendation of each item is counted only once (i.e., restricted 
to only one user), as part of the max-flow solution some users 
may have fewer than N recommendations.  The remaining 
recommendations for these users can be filled arbitrarily, as they 
cannot further increase the maximum diversity.  We employ the 
standard ranking approach for the not-yet-recommended items for 
each user (i.e., the remaining items with the highest predicted 
ratings), for the purpose of achieving better accuracy.  
The maximum flow problem represents a simple and intuitive 
metaphor for computing top-N recommendations with maximum 
possible aggregate diversity, and there are many efficient 
(polynomial-time) algorithms for finding the maximum flow in a 
given graph [5,14].  Note, however, that the flow graph 
constructed for the diversity maximization problem is a highly 
specialized graph, and it may be possible to find even more 
effective graph-based algorithms for this problem, as compared to 
general-purpose max-flow algorithms.   
To illustrate this, let’s consider the simplest top-N 
recommendation setting, i.e., where N = 1.  Since each user can 
be recommended only one item, all edges in our max-flow 
problem would become single-unit capacity edges, implying that 
the max flow in this graph will correspond to the largest possible 
set of edges from users to items, where no user and no item can be 
part of more than one such edge.  Because there are no edges 
between two different users or between two different items (i.e., 
we have a bipartite user-item graph), for top-1 recommendation 
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settings the maximum flow problem is, thus, equivalent to the 
more specialized maximum bipartite matching problem which, 
furthermore, has more efficient algorithmic solutions.  Thus, 
while the max-flow approach represents a general, intuitive 
approach for achieving maximum diversity by implementing a 
single-source and single-sink flow network, we follow the 
equivalent yet more efficient maximum bipartite matching 
approach (as illustrated in Fig. 2b) and also show how it can be 
extended from top-1 to the more general top-N settings.   
As summarized in Fig. 3, our max-flow/matching optimization 
approach consists of two steps: (1) find maximum diversity by 
solving the maximum bipartite matching problem and (2) 
complete top-N recommendations by applying the standard 
ranking approach.  Since the maximum diversity in Step 1 can be 
obtained at some expense of accuracy, one can control the 
balance between accuracy and diversity with the simple 
parameterization of a “flow-rating threshold” TF∈[TH, Tmax].  This 
allows pre-processing of the data, specifically, to include only 
higher predicted items (i.e., above TF) among the items that can be 
recommended for the maximum diversity in Step 1.  Similarly to 
how the ranking threshold was used in re-ranking approaches 
(Section 2.3), here the lowest TF value provides the best diversity 
but a relatively lower accuracy, whereas higher values of TF lower 
the diversity but provide a certain level of accuracy.  Then, in 
Step 2, the highest predicted remaining items are used to complete 
top-N recommendation lists. 
More formally, let G = (U, I; E) be a bipartite graph, where 
vertices represent users U and items I, and edges E represent the 
possible recommendations of items for users.  A subset of edges 
M (i.e., M ك E) is a matching, if all edges in M are pairwise non-
adjacent, i.e., any two edges in M share neither a user vertex nor 
an item vertex.  A vertex is matched if it is adjacent to an edge 
that is in the matching (otherwise, the vertex is unmatched).  The 
maximum matching of a bipartite graph is a matching with the 
largest possible number of edges.  The maximum bipartite 
matching algorithm (for top-1 recommendations) in Step 1 starts 
with matching M = ∅ and iteratively adds edges to M, until all 
users are matched or no new additional edge can be added.  The 
edges to be iteratively added to M can be found by finding an 
augmenting path for M, which is a simple path (i.e., a sequence of 
alternating user and item vertices with no loops) that starts at an 
unmatched user and ends at an unmatched item, and its edges 
belong alternately to E\M and M.  In other words, P=(v1, v2, …, 
v2n-1, v2n) is an augmenting path where voddאU,  vevenאI,  v1  is an 
unmatched user, v2n  is an unmatched item, (v2k-1, v2k)בM where k 
={1, …, n}, and (v2k+1,v2k)אM where k = {1, 2, …, n–1}.  Let 
edges(P) comprise the set of all edges of the augmenting path P.  
The key property of augmenting paths is that the symmetric set 
difference of M and edges(P), denoted as M Δ edges(P), always 
results in a matching with cardinality one more than the 
cardinality of M [5,14], i.e., if M'=M Δ edges(P), then |M'|=|M|+1.   
Thus, the notion of augmenting paths allows to find the maximum 
bipartite matching, by starting with matching M = ∅ and 
iteratively increasing its size one-by-one with each augmenting 
path, which we use in our algorithm for diversity maximization 
(Fig. 3).  In particular, we adopt Hopcroft-Karp algorithm [20], 
which finds a maximal set of augmenting paths during every 
iteration, i.e., multiple augmenting paths in parallel for all 
unmatched vertices, thereby achieving a significant reduction in 
time complexity.  This is a well-known technique and we 

encapsulate it in our algorithm by calling Find_AugmentingPaths 
subroutine (lines 6, 15 in Fig. 3); the implementation details for 
this subroutine can be found in [13]. 

[Step 1]  Find Maximum Diversity  
// set of edges- items available for recommendation 
1    E := {(u,i) | u∈U, i∈I, R*(u, i) ∈ [TF, Tmax]}            
2    G := (U, I ; E)                 // bipartite graph with users, items, and edges 
// initialize a set of unmatched users /items 
3    CU := U ; CI :={i∈I| u∈U, (u,i)∈E}  
4    M := ∅                               // set of matched edges M ⊆ E 
Maximum Bipartite Matching (Top-1 Task) 
5    // find augmenting paths starting from unmatched user v1 and ending with  
       // unmatched item v2n 
6    P := Find_AugmentingPaths(G, CU, CI, M)     
      // until all users are matched or no augmenting path exists  
7   while (CU ≠∅  and P ≠ ∅)           
8     for each (v1, v2, …, v2n-1, v2n ) ∈ P do 
9      edges:={(v2k-1,v2k) | k:=1..n} ∪ {(v2k+1,v2k) | k:=1..n-1} 
      // flip the matched and unmatched edges 
10      M := M ∆ edges            // symmetric difference   
11     
12      Remove v1 from CU     // one matching per user     
13      Remove v2n from CI     // one matching per item                               
14    end for  
15    P := Find_AugmentingPaths (G, CU, CI, M) 
16  end while 
Extended Version for Top-N Recommendation Task 
5  ∀u∈U, uCnt[u]:=0                             // num. of matches for each user 
6  P := Find_AugmentingPaths(G, CU, CI, M)    
7  while (CU ≠∅  and P ≠ ∅)                  
8    for each (v1, v2, …, v2n-1, v2n ) ∈ P do 
9      edges:={(v2k-1,v2k) | k:=1..n} ∪ {(v2k+1,v2k) | k:=1..n-1 } 
10     M := M ∆ edges                 
11     uCnt[v1] := uCnt[v1]+1                // N matchings per user 
12     Remove v1 from CU if uCnt[v1] == N     
13     Remove v2n from CI                      // one matching per item    
14   end for  
15   P := Find_AugmentingPaths (G, CU, CI, M) 
16  end while 

[Step 2] Complete Top-N Recommendations 
17  for each (u, i) ∈ M do         
18       Add i to LN(u)         // assign matchings as recommendations 
19   end for 
20   for each u ∈ CU do    // fill the remaining items according to rankStandard 
21       Sort items {i∈I |R*(u, i)∈[TH, Tmax] and i ב LN(u)}    
22       Add top (N – | LN(u)| ) most highly predicted items to LN(u)  
23   end for 

Figure 3. Bipartite Matching Approach to Diversity Maximization. 

The original bipartite matching algorithm for top-1 
recommendations matches a user to only one item and excludes 
the matched user for the subsequent iterations, i.e., the user is 
removed from candidate user list CU (line 12 of Fig. 3).  An 
extended version for top-N recommendations relaxes this rule by 
waiting to remove the user from CU until the same user is 
matched to N items.  We also make the extended algorithm more 
efficient by allowing a single user to find up to N item matches in 
the first iteration (and not just a single match per iteration), which 
significantly reduces the number of subsequent iterations.  
However, similarly as with the max-flow approach, since an item 
can be recommended to only one user, some users may get fewer 
than N recommendations.  Thus, in Step 2, for accuracy 
considerations, the most highly predicted items among remaining 
candidate items are chosen to fill the remaining top-N 
recommendations for all users.  Note that this does not affect 
diversity (which is already guaranteed to be maximum).  
Using the same example in Fig. 2, we illustrate the first step for 
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top-1 recommendations, how the maximum bipartite matching 
algorithm can obtain the maximum diversity (Fig. 4a).  This 
algorithm performs two iterations: (Iteration 1) finds all possible 
1-edge augmenting paths between unmatched users and 
unmatched items, i.e., direct paths without any intermediate 
vertices; and (Iteration 2) finds multi-edge augmenting paths, 
each of which increases the cardinality of matching by one unit 
via alternating non-matched and matched edges in the paths.  
After the first iteration of Fig. 4a, the first five users are matched 
to one of their candidate items, but user u6 is still unmatched 
because all her candidate items (i2, i3, i4, i5) are already matched 
to other users.  The second iteration finds an augmenting path 
from unmatched user u6 to unmatched item i6, i.e., P= (u6,i2,u1,i6) 
and (u6,i2)בM, (u1,i2)אM, (u1,i6)בM.  As a result, user u6 is then 
matched to item i2, and user u1, previously matched to item i2, is 
now matched to new item i6, which leads to the maximum 
cardinality for this example (i.e., max aggregate diversity of 6 
items), and the iterations for searching augmenting paths stop.   

     
 [Step1] Iteration 1       Iteration 2          [Step1]                 [Step2]  
               (a) Top-1 task                                      (b) Top-3 task 

Figure 4. Illustration of Graph-Based Approach. 

On the other hand, in case of top-3 recommendations for the same 
example (Fig. 4b), while maximum diversity (i.e., 10) is reached 
in Step 1, three users (u4, u5, u6) are matched to fewer than 3 
items.  Thus, as shown in Step 2 of Fig. 4b, the remaining top-3 
recommendations are filled with the most highly predicted items 
among the items available for users. 
Note that the sequence in which users and/or items are chosen to 
be evaluated in Fig. 3 may have implications on the runtime of the 
algorithm.  E.g., finding more augmenting paths (and, therefore, a 
larger matching) in the first iteration may reduce the total number 
of iterations needed to reach the maximum matching.  We found 
that applying a simple heuristic of first choosing users for 
matching who have the smallest number of remaining candidate 
items leads to substantial runtime improvements, because of the 
smaller likelihood that the items matched to those users can be 
replaced by other items, thus, reducing the number of iterations.  
As mentioned earlier, for Step 1, we adopt the Hopcroft-Karp 
algorithm [20], which is known to be among the most efficient 
algorithms for maximum bipartite matching, having complexity of 

( )O E V , where E is the number of edges in the graph and V is 
the number of vertices on the left side of the graph (i.e., the 
number of users in our case) [13].  In a bipartite graph with m user 
vertices, n item vertices, and a maximum of mn edges, the 
complexity of the Hopcroft-Karp algorithm would be )( mmnO , 
and by adding the standard ranking approach for Step 2, the total 
complexity of the max flow based approach for top-1 
recommendation tasks would be )log( mmnnmnO + .  For top-N 
recommendation tasks, we allow multiple edges from a single 

user vertex.  We propose an efficient extension of bipartite 
matching algorithm for top-N recommendations, as discussed 
earlier; however, in the worst case, the top-N recommendation 
task can be treated as top-1 task with Nm users and, 
correspondingly, Nmn edges.  Even this worst-case extension for 
top-N recommendations does not change the complexity, i.e., 

)()( mmnONmNmnO = , assuming N (i.e., the number of 
recommendations provided to each user) is a relatively small, 
bounded constant.  Therefore, this graph-based approach is more 
complex than the re-ranking heuristic, which had worst case 
complexity of O(mnlogn), as mentioned earlier.   

4. EMPIRICAL RESULTS 
In our experimental evaluation, we used two movie rating 
datasets: MovieLens (data file available at grouplens.org) and 
Netflix (used for Netflix Prize competition).  Each dataset is pre-
processed to include users and movies with significant rating 
histories, which makes it possible to have a large number of 
highly predicted items available for recommendations to each 
user, thus, potentially making the diversity maximization task 
more challenging.  The basic statistical information of the 
resulting datasets is as follows.  MovieLens dataset has 775,176 
ratings with 2,830 users and 1,919 items (i.e., 14.27% sparsity), 
and Netflix dataset has 1,067,999 ratings with 3,333 users and 
2,091 items (i.e., 15.32% sparsity).  For each dataset, we learn 
from all of the known ratings and predict the unknown ratings 
(85.73% of the whole user-item matrix in the MovieLens dataset 
and 84.68% in the Netflix dataset).  As discussed earlier, we use 
three popular collaborative filtering techniques (user-based, item-
based, and matrix factorization CF techniques), and top-N (N=1, 5, 
10) items are recommended for each user.   
We predict unknown ratings based on all known ratings, where a 
relatively large number of highly-predicted (i.e., with the 
predicted rating value above 3.5) candidate items are available for 
all users (typically around 500-800 items for each user).  Fig. 5 
presents a number of representative results obtained from the 
empirical evaluation, which shows not only the accuracy and 
diversity capabilities of the proposed approach in terms of top-N 
recommendation, but also compares it with two baseline 
techniques that re-rank the candidate items by their reverse 
predicted rating values [3] and at random, as well as with the 
standard recommendation technique.  As expected, the standard 
recommendation technique (i.e., recommending items with 
highest predicted ratings) represents the most accurate, but very 
non-diverse set of recommendations.  In Fig. 5, the representative 
accuracy-diversity curves for the baseline random and re-ranking 
techniques and for graph-based approach were obtained by using 
different ranking and flow-rating thresholds (3.5, 3.6, …, 5).   
One notable finding is that, while the simple re-ranking technique 
shows the same or slightly better results than the random 
approach, the proposed graph-based approach is able to obtain 
substantial diversity improvements at the given level of accuracy, 
compared to the two baseline techniques, across all experiments 
including different datasets, different recommendation techniques, 
and different number of recommendations (N = 1, 5, 10).   
Another notable result is that, as N increases, significant diversity 
improvements can be obtained with increasingly smaller 
sacrifices to recommendation accuracy.  For example, in top-1 
recommendation tasks, the graph-based approach was able to 
obtain the maximum possible diversity with a decrease of about 
0.5 (on scale 1-5) in an average prediction.  However, for top-5 
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tasks the accuracy decrease needed for maximum diversity was 
about 0.1, and for top-10 tasks only about 0.05.  Table 1 further 
illustrates this point by showing the diversity gains of random, re-
ranking, and graph-based approaches at three different accuracy 
loss levels (0.1 for top-1 tasks, 0.05 for top-5 tasks, 0.01 for top-
10 tasks).  In summary, the proposed graph-based approach was 
able to consistently provide substantial diversity improvements 
for all traditional recommendation algorithms (user-based, item-
based, and matrix factorization CF) on different real-world 
recommendation datasets. 
 MovieLens  Netflix 
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Figure 5. Performance of Ranking and Optimization Approaches 

As discussed earlier, the performance improvements for the 
proposed technique come at the cost of computational complexity, 
which can become an issue as the data size increases.  To 
complement the earlier discussion on the theoretical 
computational complexity, here we report how the data size 
affects the actual runtime.  We vary the size of data by changing 
the number of candidate items that are available for 
recommendation to each user.  For example, for the datasets used 
in our experiments we treated all items that were predicted above 
rating threshold TH = 3.5 as potential candidates for 
recommendation.  By increasing this threshold we can eliminate 
some candidate items across all users, thus, obtaining smaller 
datasets.  Following this approach, we generated six datasets 
D1, ..., D6 of increasing size from MovieLens dataset by using 
different rating thresholds (D1 for TH = 4.5, D2 for 4.3, D3 for 4.1, 
…, D6 for 3.5), as indicated in Fig. 6a. 
We measured the runtime of the two algorithms (i.e., the proposed 
approach and the re-ranking approach) on the same computer.  
The obtained results are consistent across different 
recommendation algorithms, different datasets, and top-N tasks 
(for different N values).  Fig. 6b illustrates the general trends by 
presenting the example runtimes of the simple recommendation 
re-ranking and the graph-based approach on the MovieLens 
dataset, for generating diverse top-1 recommendations using item-

based CF technique.  As expected, as the data size increases, the 
simple re-ranking heuristic demonstrates good scalability, while 
the more complex graph-based approach requires increasingly 
more time (while also generating better recommendation 
outcomes, as discussed earlier).  We do observe that, for our 
medium-size recommendation setting (with approx. 3,000 users 
and 2,000 items), the proposed approach demonstrated good 
computational performance; even running it on the largest dataset 
(D6) took less than 1.5 minutes. 

Table 1. Diversity Gains at the Given Accuracy Level  
 User-based CF Item-based CF MF 

Top-1 recommendation task (Accuracy level: Standard – 0.1)
Standard 98, acc=4.40 87, acc=4.63 247, acc=4.73 
Random 368.7 (276.2%) 272.6 (213.3%) 390.3 (58.0%) 

Re-Ranking 409.1 (317.4%) 300.8 (245.7%) 412.3 (66.9%) 
Graph-Based 826.0 (742.9%) 748.6 (760.4%) 927.5 (275.5%)

Top-5 recommendation task (Accuracy level: Standard – 0.05)
Standard 190, acc=4.36 200, acc=4.57 507, acc=4.64 
Random 581.6 (206.1%) 385.1 (92.6%) 659.3 (30.0%) 

Re-Ranking 648.1 (241.1%) 424.5 (112.3%) 698.1 (37.7%) 
Graph-Based 1562.9 (722.6%) 1415.9 (607.9%) 1647.7 (225.0%)

Top-10 recommendation task (Accuracy level: Standard – 0.01)
Standard 263, acc=4.34 279, acc=4.53 667, acc=4.58 
Random 448.6 (70.6%) 354.9 (27.2%) 745.0 (11.7%) 

Re-Ranking 497.4 (89.1%) 385.7 (38.3%) 794.3 (19.1%) 
Graph-Based 1107.0 (320.9%) 978.7 (250.8%) 1408.2 (111.1%)

(a) MovieLens data 
 User-based CF Item-based CF MF 

Top-1 recommendation task (Accuracy level: Standard – 0.1)
Standard 67, acc=4.31 142, acc=4.51 274, acc=4.51 
Random 416.6 (521.8%) 379.1 (167.0%) 484.1 (76.7%) 

Re-Ranking 417.5 (523.1%) 420.2 (195.9%) 505.4 (84.5%) 
Graph-Based 764.5 (1041.1%) 842.6 (493.4%) 967.8 (253.2%)

Top-5 recommendation task (Accuracy level: Standard – 0.05)
Standard 227, acc=4.25 335, acc=4.42 561, acc=4.43 
Random 822.5 (262.3%) 671.5 (100.4%) 904.8 (61.3%) 

Re-Ranking 943.4 (315.6%) 754.4 (125.2%) 966.8 (72.3%) 
Graph-Based 1829.1 (705.8%) 1795.8 (436.1%) 2000.9 (256.7%)

Top-10 recommendation task (Accuracy level: Standard – 0.01)
Standard 341, acc=4.21 459, acc=4.37 771, acc=4.39 
Random 736.1 (115.9%) 655.7 (42.9%) 1046.8 (35.8%)

Re-Ranking 876.6 (157.1%) 750.0 (63.4%) 1193.2 (54.8%)
Graph-Based 1528.9 (348.3%) 1426.3 (210.7%) 2456.1 (218.6%)

(b) Netflix data 

((a) Avg Number of Candidate Items Per User                    (b) Runtime 
MovieLens dataset, Item-based CF, Top-1 recommendation task 
Figure 6. Different Datasets and Algorithmic Runtime 

5. CONCLUSIONS AND FUTURE WORK 
Recommendation diversity recently has attracted attention as an 
important aspect in evaluating the quality of recommendations.  
Traditional recommender systems typically recommend the top-N 
most highly predicted items for each user, thereby providing good 
predictive accuracy, but performing poorly with respect to 
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recommendation diversity.  This paper extends prior work by 
developing a more sophisticated graph-theoretic approach that 
models the diversity maximization problem as a network flow 
maximization or bipartite matching maximization problems and 
provides significant advantages over the recommendation re-
ranking approaches in terms of the accuracy/diversity tradeoff.   
The proposed optimization approaches have been designed 
specifically for the diversity-in-top-N metric, i.e., the number of 
distinct items among top-N recommendations.  The extension of 
these approaches to more sophisticated diversity metrics, 
including relative long-tail metrics such as Gini coefficient [17] 
and the long-tail shape parameter such as the slope of the log-
linear relationship between popularity and recommendations, 
represent a promising direction for future research.  Another 
interesting and important direction would be to investigate 
whether the use of the diversity-maximizing recommendation 
algorithms can truly lead to an increase in sales diversity and user 
satisfaction.  In particular, as discussed in recent research [12,25], 
it would be valuable to examine the impact of recommendations 
on long-tail phenomena in different categories of users and 
products and possibly propose different algorithms based on the 
appropriate categorization.  We believe that this work provides 
insights into developing new recommendation techniques that can 
consider multiple aspects of recommendation quality, going 
beyond using just the accuracy measures.  
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