
Maximizing Aggregate Recommendation Diversity:
A Graph-Theoretic Approach

Gediminas Adomavicius
Department of Information and Decision Sciences

University of Minnesota

gedas@umn.edu

YoungOk Kwon
Department of Information and Decision Sciences

University of Minnesota

kwonx052@umn.edu

ABSTRACT
Recommender systems are being used to help users find relevant items
from a large set of alternatives in many online applications. Most existing
recommendation techniques have focused on improving recommendation
accuracy; however, diversity of recommendations has also been
increasingly recognized in research literature as an important aspect of
recommendation quality. This paper proposes a graph-theoretic approach
for maximizing aggregate recommendation diversity based on maximum
flow or maximum bipartite matching computations. The proposed
approach is evaluated using real-world movie rating datasets and
demonstrates substantial improvements in both diversity and accuracy, as
compared to the recommendation re-ranking approaches, which have been
introduced in prior literature for the purpose of diversity improvement.

Keywords
Recommendation diversity, aggregate diversity, collaborative
filtering, graph-based algorithms.

1. INTRODUCTION AND MOTIVATION
Many recommendation techniques have been developed over the
past decade, and major efforts in both academia and industry have
been made to improve recommendation accuracy, as exemplified
by the recent Netflix Prize competition. However, it has been
increasingly noted that it is not sufficient to have accuracy as the
sole criteria in measuring recommendation quality, and we should
consider other important dimensions, such as diversity, novelty,
serendipity, confidence, trust, to generate recommendations that
are not only accurate but also useful to users [19,29,34].
In this paper, we focus on the aggregate diversity of
recommendations, which has recently attracted attention in
research literature due to its impact on the shifts in product
variety and sales concentration patterns [11,12,15,31]. As
observed by Brynjolfsson et al. [12], recommender systems can
play a key role in increasing both “long tail” and “superstar”
effects in real-world e-commerce applications. In particular, the
“long tail” literature argues that recommendations on the Internet
help to increase users’ awareness of niche products and create a
long tail in the distribution of product sales [6,11,15,31]. For
example, one study, using data from online clothing retailer,
demonstrates that recommendations would increase sales of the
items in the long tail, resulting in the improvement in aggregate
diversity [11]. In contrast, the “superstar” literature indicates that
recommender systems may promote the so-called “rich get richer”
phenomenon, where users are recommended more
popular/bestselling items than idiosyncratic/personalized ones.
One explanation for this is that the niche products often have
limited historical data and, thus, are more difficult to recommend
to users, whereas popular products typically have more ratings
and, thus, can be recommended to more users [15,26,36].

More diverse recommendations, presumably leading to more sales
of long-tail items, could be beneficial for both individual users
and some business models [10,11,18]. Exposing individual
consumers to more long-tail recommendations can intensify this
effect. Thus, more consumers would be attracted to the
companies that carry a large selection of long tail items and have
long tail strategies, such as providing more diverse
recommendations [12]. Also, some business models (e.g.,
Netflix), can benefit from recommendation diversity, because
more diverse recommendations would encourage users to rent
more long-tail movies, which are less costly to license and acquire
from distributors than new releases or extremely popular movies
of big studios [18].
Taking into consideration the potential benefits of aggregate
diversity (hereinafter simply diversity) to individual users and
businesses, several studies have explored new methods that can
increase the diversity of recommendations [2,3,23,27,32]. In
particular, considering that recommender systems typically
compute recommendations to users in two phases – (Phase 1)
estimating ratings of items that the users have not consumed yet
and (Phase 2) generating top-N items for each user – the prior
work can be divided into two lines of research. One line of
research [23,27,32] aims to enhance the estimation phase (mainly
for long tail items), and the other focuses on finding the best set
of recommendations in the recommendation generation phase
[2,3]. The approach proposed in this paper fits within the latter
line of research and, therefore, has the flexibility of being used in
conjunction with any available rating estimation algorithms, as
illustrated by our empirical evaluation. In contrast to simple
recommendation re-ranking heuristics for diversity improvement
proposed in [2,3], we develop a more sophisticated and systematic
graph-based approach for direct diversity maximization, while
maintaining acceptable levels of accuracy.
Our empirical results, using real-world rating datasets, show that
the proposed graph-based approach consistently outperforms the
recommendation re-ranking approach from prior literature in
terms of both accuracy and diversity. The paper also discusses
the scalability of the proposed approach in terms of its theoretical
computational complexity as well as its empirical runtime based
on real-world rating datasets.

2. RELATED WORK
In this section, we briefly discuss two widely used
recommendation techniques that are used in conjunction with our
proposed approach in our empirical experiments as well as two
important dimensions in the evaluation of recommendation
quality: accuracy and diversity. We also discuss a simple
recommendation re-ranking approach from prior literature, which
has been shown to improve the aggregate diversity of
recommendations with only a small loss of accuracy, and which Copyright is held by the author/owner(s).

Workshop on Novelty and Diversity in Recommender Systems
(DiveRS 2011), held in conjunction with ACM RecSys 2011. October
23, 2011, Chicago, Illinois, USA.

3

we will use as one of the baseline comparison techniques.

2.1 Recommendation Algorithms
Let U be the set of users and I be the set of items available in the
recommender system. Then, the usefulness or utility of any item i
to any user u can be denoted as R(u,i), which usually is
represented by a rating (on a numeric, ordinal, or binary scale)
that indicates how much a particular user likes a particular item
[1]. Thus, the job of a recommender system in the rating
estimation phase (Phase 1) is to use known ratings as well as other
information that might be available (e.g., content attributes of
items or demographic attributes of users) to estimate ratings for
items that the users have not yet consumed. For clarity, we use
R(u,i) to denote the actual rating that user u gave to item i, and
R*(u,i) for the system-estimated rating for item i that user u has
not rated before. Given all of the unknown item predictions for
each user, in generating top-N recommendations (Phase 2) the
system selects the most relevant items, i.e., items that maximize a
user’s utility, according to a certain ranking criterion. More
formally, item ix is ranked ahead of item iy, if rank(ix) < rank(iy),
where rank: I → R is a function representing some ranking
criterion. Most recommender systems rank the candidate items
by their predicted rating value and recommend to each user the N
most highly predicted items (where N is a relatively small positive
integer) because users are typically interested in (or have time for)
only a limited number of recommendations. We refer to this as
the standard ranking approach and can formally define the
corresponding ranking function as rankStandard(i)=R*(u,i)–1. While
the standard ranking approach exhibits good recommendation
accuracy, its performance in terms of recommendation diversity is
poor [2,3], which further emphasizes the need for different
recommendation approaches for diversity improvement.
Among a large number of recommendation techniques that have
been developed over the past decade, collaborative filtering (CF)
techniques represent most widely used and well-performing
algorithms; we use two representative CF techniques for Phase 1
(i.e., rating estimation) in this paper: neighborhood-based CF and
matrix factorization CF techniques.
Neighborhood-based CF techniques. The basic idea of
neighborhood-based CF techniques is, given a target user, to find
the user’s neighbors who share similar rating patterns, and then to
use their ratings to predict the unknown ratings of the target user
[1,9]. There are many variations of computational methods to
identify a user’s neighbors (i.e., by computing the similarity
between users) and aggregate the neighbors’ ratings for the user.
In our experiments, we use a popular cosine similarity measure
for calculating similarity between users, and the final rating
prediction for a specific item to a user is made as an adjusted
weighted sum of the ratings of the user’s closest 50 neighbors on
this item. The neighborhood CF techniques can be user- or item-
based, depending on whether the similarity is computed between
users or items [33]; we use both variations in this paper.
Matrix factorization CF techniques. Matrix factorization CF
techniques have recently gained popularity because of their
effectiveness in the Netflix Prize competition in terms of
predictive accuracy. In contrast to heuristic-based techniques
(such as the neighborhood-based CF techniques mentioned
above), the matrix factorization CF techniques use the existing
ratings to learn a model with k latent variables for users and items.
In other words, this technique models and estimates each user’s
preferences for k latent features as the user-factors vector and

each item’s importance weights for the k latent features as the
item-factors vector [16,24]. Then, the predicted rating of item i
for user u can be computed as an inner product of the user-factors
vector for user u and the item-factors vector for item i. Typically,
the model-based techniques have been shown to generate more
accurate recommendations than heuristic-based techniques.
While a number of variations for the matrix factorization
technique have been developed, in this paper we use its basic
version, as proposed by Funk [16].

2.2 Recommendation Accuracy and Diversity
Recommendation Accuracy. The goal of this work is to
generate good top-N recommendation lists in terms of accuracy
and diversity and, accordingly, we chose to evaluate the accuracy
of top-N recommendation lists using one of the most popular
decision-support metrics, precision [19]. Simply put, precision is
measured as a proportion of “relevant” items among the
recommended items across all users. Note that the decision-
support metrics, such as precision, typically work with binary
outcomes; therefore, here the notion of “relevance” is used to
convert a numeric rating scale (e.g., 1-5) into binary scale (i.e.,
relevant vs. irrelevant).
More specifically, in our empirical data ratings are provided on a
5-point (or 5-star) scale, and the natural assumption is that users
provide higher ratings to the items that are more relevant to them.
As a consequence, in our experiments, we treat items with ratings
4 and 5 as relevant, and items with ratings 1, 2, 3 as irrelevant, or,
more precisely, we choose the threshold between relevant or and
irrelevant items as 3.5 (denoted by TH). The list of N items
recommended for user u should include only items predicted to be
relevant and can be formally defined as LN(u) ={i1, i2, …, iN},
where R*(u, ik) ≥ TH for all k ∈{1, 2,…, N}. The precision of
such top-N recommendation lists, often referred to as precision-
in-top-N, is calculated as the percentage of truly “relevant” items,
denoted by correct(LN(u)) = {i ∈LN(u) | R(u, i) ≥ TH} among the
items recommended across all users, and can be formalized as:

| (()) | | () |N N
u U u U

precision - in - top - N correct L u L u
∈ ∈

= ∑ ∑
.

In real-world settings, obviously a recommender system has to be
able to recommend items that users have not yet rated (the ratings
for those items typically become available to the system only
after item consumption), i.e., the true precision of the generated
recommendation lists is not known at the time of
recommendation. However, using two popular real-world
datasets (details on datasets are provided in Section 4), different
popular CF recommendation algorithms discussed above, and
standard cross-validation techniques from machine learning and
data mining, we show that, not surprisingly, precision is highly
correlated with average predicted rating value of recommended
items using for all recommendation algorithms, as indicated in
Fig. 1. In other words, recommending items with higher
predicted rating values results in higher precision (i.e., higher
likelihood that the user would actually like the item), which
provides further empirical support for using the standard ranking
approach if the goal is just to maximize recommendation
accuracy. An important consequence of this relationship is that
we can use the average predicted rating value of top-N
recommendation lists, which can always be computed at the time
of recommendation, as a simple proxy for the precision metric. In
addition, this metric is extremely simple to compute and easily
scales to large-scale real-world applications. We refer to this

4

metric as prediction-in-top-N and formally define it as follows:
*

()
(,) | () |

N

N
u U i L u u U

prediction - in - top - N R u i L u
∈ ∈ ∈

=∑ ∑ ∑
.

Figure 1. Precision versus Average Predicted Rating Value

Recommendation Diversity. As discussed earlier, accurate
recommendations are not always useful to users. For example,
recommending only popular items (e.g., blockbuster movies that
many users tend to like) could obtain high accuracy, but also can
lead to a decline of other aspects of recommendations, including
recommendation diversity. The inherent tradeoff between
accuracy and diversity has been observed in previous studies
[2,3,30,38,39], therefore, indicating that maintaining accuracy
while improving diversity constitutes a difficult task.
The diversity of recommendations has been assessed at either
individual or aggregate level. The majority of previous studies
have focused on individual diversity [8,21,30,35,37,38,39]. For
example, the individual diversity of recommendations for a user
can be measured by calculating an average dissimilarity between
all pairs of items recommended to a user (e.g., based on item
attributes). In contrast, the aggregate diversity of
recommendations across all users has been relatively less studied,
and the recent interest in the impact of recommender systems on
product variety and sales concentration patterns [11,12,15,31] has
sparked a renewed interest in this topic.
Several metrics can be used to evaluate various aspects of
aggregate diversity, including absolute long-tail metrics that
measure the change in the absolute number of items
recommended (e.g., recommendation frequency of items above a
certain popularity rank), relative long-tail metrics to measure the
relative share of recommendations above or below a certain
popularity rank percentile, and the slope of the log-linear
relationship between item popularity rank and recommendations
(or sales) that can indicate the relative importance of the head
versus the tail of the distribution [12]. In the recommender
systems literature, both absolute and relative long-tail metrics
have been used to measure the aggregate diversity of
recommendations [2,3,19,23,27,37]. In this paper, we use a
simple absolute long-tail metric which measures aggregate
diversity using the total number of distinct items among the top-N
items recommended across all users, referred to as the diversity-
in-top-N [2,3]. More formally:

()N
u U

diversity - in - top - N L u
∈

= ∪
,

and prior research has shown that this simple and easy-to-
compute metric exhibits high correlation with more sophisticated,
distributional diversity metrics [3], i.e., is able to properly capture
the same diversity dynamics as some of the relative long-tail
metrics on several real-world rating datasets. This diversity
metric could also potentially be viewed as a crude indicator of the
system’s level of personalization, because high diversity implies
that each user gets very different and unique set of

recommendations (potentially indicating a high level of
personalization), whereas low diversity indicates that mostly the
same items (possibly bestsellers) are recommended to all users
(i.e., low level of personalization).
Although the approach proposed in this paper aims to improve
aggregate recommendation diversity, their accuracy is also given
the proper attention in the paper, because diverse but inaccurate
recommendations may not provide significant value to the users.

2.3 Re-Ranking Approaches for Diversity
Several prior studies have explored improving aggregate diversity
of recommendations [2,3,23,27,32]. As discussed earlier, one line
of research proposes new methods for predicting unknown ratings,
mainly for long-tail items. For example, Park and Tuzhilin [32]
propose new clustering methods to improve predictive accuracy
of long-tail items that have only few ratings, which can also
increase the recommendation of long-tail items. In addition, Levy
and Bosteels [27] design long-tail music recommender systems,
simply by removing popular artists (i.e., with more than 10,000
listeners) in the rating prediction phase. Also, a local scoring
model, proposed by Kim et al. [23], was developed to alleviate
the scalability and sparsity problems by suggesting a more
efficient way to select the best neighbors for neighborhood-based
recommendation techniques; however, as a by-product, it is
shown to improve aggregate recommendation diversity.
In contrast to these studies, another line of research proposes new
approaches for improving top-N item selection after the rating
estimation is performed. In particular, Adomavicius and Kwon
[2,3] propose a heuristic approach for recommendation re-ranking,
which has been shown to improve aggregate diversity with a
negligible accuracy loss and represents an important baseline for
comparison with our proposed diversity maximization approaches.
Typical recommender systems recommend to users those items
that have the highest predicted ratings, i.e., using the standard
recommendation ranking criterion rankStandard, as discussed earlier.
While the standard ranking approach is used to maximize the
accuracy of recommendations, as was illustrated by Fig. 1,
Adomavicius and Kwon [2,3] showed that changing the ranking
of items (i.e., not following the standard ranking approach) can
help with other aspects of recommendation quality, in particular,
with recommendation diversity. As a result, they proposed
several alternative re-ranking approaches, and showed that all of
them can provide substantial improvements in recommendation
diversity with only negligible accuracy loss. In our experiments,
as a baseline for comparison, we specifically use the ranking
approach based on the reverse predicted rating value. This is a
personalized yet simple and highly-scalable ranking approach that
can be formally defined as rankRevPred(i) = R*(u,i).
While this re-ranking approach can significantly improve
recommendation diversity, as might be expected, this
improvement comes at the expense of recommendation accuracy,
since not the most highly predicted items are recommended.
Adomavicius and Kwon [2,3] demonstrate that the balance
between diversity and accuracy can be achieved by
parameterizing any ranking function with “ranking threshold”
TR∈[TH, Tmax] (where Tmax is the largest rating on the rating
scale). That is, the ranking threshold enables to specify the level
of acceptable accuracy loss while still extracting a significant
portion of diversity improvement. The parameterized version
rankRevPred(i, TR) of ranking function rankRevPred(i) can be
implemented as:

Pearson Correlation: 0.974 Pearson Correlation: 0.966

5

RevPred
RevPred

Standard

max
*() () []
*() () [)

(,)
u

T , TR
R

T , TH R

rank i , if R u,i

α rank i , if R u,i
rank i T ∈

=
+ ∈

⎧⎪
⎨
⎪⎩ ,

where
RevPred*()

(), and * *max () { | (,) }.
R

R R
Ti Iu

rank iu I i I R u iu T Tα
∈

= = ∈ ≥

In particular, items with predicted ratings from [TR, Tmax] would
be ranked ahead of items with predicted ratings [TH, TR), as
ensured by αu in the above definition. Increasing the ranking
threshold TR towards Tmax would enable choosing the most highly
predicted items (i.e., more accuracy and less diversity – similar to
the standard ranking approach), while decreasing the ranking
threshold TR towards TH makes rankRevPred(i, TR) increasingly
more similar to the pure ranking function rankRevPred(i), i.e., more
diversity with some accuracy loss. Thus, choosing TR∈[TH, Tmax]
values in-between the two extremes allows setting the desired
balance between accuracy and diversity. In our experiments, we
are able to explore the accuracy-diversity tradeoff of the re-
ranking approach, by varying this ranking threshold TR..
In terms of computational complexity, the re-ranking approach is
implemented as a simple sorting algorithm. Assuming there are m
users and n items, the worst case situation for this algorithm
occurs when all n items are available to every user for
recommendation. Then, the heuristic-based ranking does the job
of sorting n items, O(nlogn), for m users, and its complexity
would be O(mnlogn).

3. PROPOSED APPROACH
While the recommendation re-ranking approach can obtain a
certain level of diversity gains at the expense of a small loss in
accuracy, in this section we propose a graph-based approach that
can obtain maximum possible diversity.
Graph-based algorithms have been previously used in
recommender systems [4,22,28], mostly for the purpose of
improving predictive accuracy of CF techniques. We formulate
our problem of diversity maximization as a well-known max-flow
problem in graph theory [5,14]. One simple version of the
general maximum flow problem, which has been extensively
studied in operations research and combinatorial optimization,
can be defined as follows. Assuming that V is the set of vertices
(or nodes), and E is the set of directed edges, each of which
connects two vertices, let G = (V, E) be a directed graph with a
single source node s∈V and a single sink node t∈V. Each
directed edge e∈E has capacity c(e)∈R associated with it. Also,
the amount of actual flow between two vertices is denoted by
f(e)∈R. The flow of an edge cannot exceed its capacity, and the
sum of the flows entering a vertex must equal the sum of the
flows exiting a vertex, except for the source and the sink vertices.
The maximum flow problem is to find the largest possible amount
of flow passing from the source to the sink for a given graph G.
Translating the top-N recommendation setting into a graph-
theoretic framework, let users and items be represented as vertices,
and an edge from user u to item i exists if and only if item i is
predicted to be relevant for user u, i.e., R*(u, i) ≥ TH or, in other
words, when the item is available to the user for recommendation.
Each edge has capacity c(e) = 1 and can be assigned an integer
flow of 1 if item i is actually recommended to user u as part of
top-N recommendations, and the flow of 0 otherwise. As
described in the example in Fig. 2a, we augment this directed
graph by adding a source node and connecting it by directed
edges to each of the user vertices. Let the capacity of each of

these “source” edges be N and, again, only integer flows of 0, 1,
…, or N are permitted on each of these edges. Furthermore, we
also augment this graph by adding a sink node and connecting
each item vertex by a directed edge to this node. Let the capacity
of each of these “sink” edges be 1, and again only integer flows
(i.e., 0 or 1) are permitted for these edges.

 Users Items Users Items
 (a) Max Flow Problem (b) Max Bipartite Matching Problem
Figure 2. Top-N Recommendation Task as a Graph Theory Problem

As can be easily seen from this construction, because of the
specified capacity constraints, i.e., “source” edges not allowing
flows larger than N through each user node and “sink” edges not
allowing flows larger than 1 through each item node, the
maximum flow value in this graph will be equal to the maximum
possible number of edges from users to items that can have flow
of 1 assigned to them. In other words, the max-flow value will be
equal to the largest possible number of recommendations than can
be made from among the available (highly predicted) items,
where no user can be recommended more than N items, and no
item can be counted more than once, which is precisely the
definition of the diversity-in-top-N metric.
Note that, while finding the maximum flow will indeed find the
recommendations that yield maximum diversity, since the
recommendation of each item is counted only once (i.e., restricted
to only one user), as part of the max-flow solution some users
may have fewer than N recommendations. The remaining
recommendations for these users can be filled arbitrarily, as they
cannot further increase the maximum diversity. We employ the
standard ranking approach for the not-yet-recommended items for
each user (i.e., the remaining items with the highest predicted
ratings), for the purpose of achieving better accuracy.
The maximum flow problem represents a simple and intuitive
metaphor for computing top-N recommendations with maximum
possible aggregate diversity, and there are many efficient
(polynomial-time) algorithms for finding the maximum flow in a
given graph [5,14]. Note, however, that the flow graph
constructed for the diversity maximization problem is a highly
specialized graph, and it may be possible to find even more
effective graph-based algorithms for this problem, as compared to
general-purpose max-flow algorithms.
To illustrate this, let’s consider the simplest top-N
recommendation setting, i.e., where N = 1. Since each user can
be recommended only one item, all edges in our max-flow
problem would become single-unit capacity edges, implying that
the max flow in this graph will correspond to the largest possible
set of edges from users to items, where no user and no item can be
part of more than one such edge. Because there are no edges
between two different users or between two different items (i.e.,
we have a bipartite user-item graph), for top-1 recommendation

6

settings the maximum flow problem is, thus, equivalent to the
more specialized maximum bipartite matching problem which,
furthermore, has more efficient algorithmic solutions. Thus,
while the max-flow approach represents a general, intuitive
approach for achieving maximum diversity by implementing a
single-source and single-sink flow network, we follow the
equivalent yet more efficient maximum bipartite matching
approach (as illustrated in Fig. 2b) and also show how it can be
extended from top-1 to the more general top-N settings.
As summarized in Fig. 3, our max-flow/matching optimization
approach consists of two steps: (1) find maximum diversity by
solving the maximum bipartite matching problem and (2)
complete top-N recommendations by applying the standard
ranking approach. Since the maximum diversity in Step 1 can be
obtained at some expense of accuracy, one can control the
balance between accuracy and diversity with the simple
parameterization of a “flow-rating threshold” TF∈[TH, Tmax]. This
allows pre-processing of the data, specifically, to include only
higher predicted items (i.e., above TF) among the items that can be
recommended for the maximum diversity in Step 1. Similarly to
how the ranking threshold was used in re-ranking approaches
(Section 2.3), here the lowest TF value provides the best diversity
but a relatively lower accuracy, whereas higher values of TF lower
the diversity but provide a certain level of accuracy. Then, in
Step 2, the highest predicted remaining items are used to complete
top-N recommendation lists.
More formally, let G = (U, I; E) be a bipartite graph, where
vertices represent users U and items I, and edges E represent the
possible recommendations of items for users. A subset of edges
M (i.e., M ك E) is a matching, if all edges in M are pairwise non-
adjacent, i.e., any two edges in M share neither a user vertex nor
an item vertex. A vertex is matched if it is adjacent to an edge
that is in the matching (otherwise, the vertex is unmatched). The
maximum matching of a bipartite graph is a matching with the
largest possible number of edges. The maximum bipartite
matching algorithm (for top-1 recommendations) in Step 1 starts
with matching M = ∅ and iteratively adds edges to M, until all
users are matched or no new additional edge can be added. The
edges to be iteratively added to M can be found by finding an
augmenting path for M, which is a simple path (i.e., a sequence of
alternating user and item vertices with no loops) that starts at an
unmatched user and ends at an unmatched item, and its edges
belong alternately to E\M and M. In other words, P=(v1, v2, …,
v2n-1, v2n) is an augmenting path where voddאU, vevenאI, v1 is an
unmatched user, v2n is an unmatched item, (v2k-1, v2k)בM where k
={1, …, n}, and (v2k+1,v2k)אM where k = {1, 2, …, n–1}. Let
edges(P) comprise the set of all edges of the augmenting path P.
The key property of augmenting paths is that the symmetric set
difference of M and edges(P), denoted as M Δ edges(P), always
results in a matching with cardinality one more than the
cardinality of M [5,14], i.e., if M'=M Δ edges(P), then |M'|=|M|+1.
Thus, the notion of augmenting paths allows to find the maximum
bipartite matching, by starting with matching M = ∅ and
iteratively increasing its size one-by-one with each augmenting
path, which we use in our algorithm for diversity maximization
(Fig. 3). In particular, we adopt Hopcroft-Karp algorithm [20],
which finds a maximal set of augmenting paths during every
iteration, i.e., multiple augmenting paths in parallel for all
unmatched vertices, thereby achieving a significant reduction in
time complexity. This is a well-known technique and we

encapsulate it in our algorithm by calling Find_AugmentingPaths
subroutine (lines 6, 15 in Fig. 3); the implementation details for
this subroutine can be found in [13].

[Step 1] Find Maximum Diversity
// set of edges- items available for recommendation
1 E := {(u,i) | u∈U, i∈I, R*(u, i) ∈ [TF, Tmax]}
2 G := (U, I ; E) // bipartite graph with users, items, and edges
// initialize a set of unmatched users /items
3 CU := U ; CI :={i∈I| u∈U, (u,i)∈E}
4 M := ∅ // set of matched edges M ⊆ E
Maximum Bipartite Matching (Top-1 Task)
5 // find augmenting paths starting from unmatched user v1 and ending with
 // unmatched item v2n
6 P := Find_AugmentingPaths(G, CU, CI, M)
 // until all users are matched or no augmenting path exists
7 while (CU ≠∅ and P ≠ ∅)
8 for each (v1, v2, …, v2n-1, v2n) ∈ P do
9 edges:={(v2k-1,v2k) | k:=1..n} ∪ {(v2k+1,v2k) | k:=1..n-1}
 // flip the matched and unmatched edges
10 M := M ∆ edges // symmetric difference
11
12 Remove v1 from CU // one matching per user
13 Remove v2n from CI // one matching per item
14 end for
15 P := Find_AugmentingPaths (G, CU, CI, M)
16 end while
Extended Version for Top-N Recommendation Task
5 ∀u∈U, uCnt[u]:=0 // num. of matches for each user
6 P := Find_AugmentingPaths(G, CU, CI, M)
7 while (CU ≠∅ and P ≠ ∅)
8 for each (v1, v2, …, v2n-1, v2n) ∈ P do
9 edges:={(v2k-1,v2k) | k:=1..n} ∪ {(v2k+1,v2k) | k:=1..n-1 }
10 M := M ∆ edges
11 uCnt[v1] := uCnt[v1]+1 // N matchings per user
12 Remove v1 from CU if uCnt[v1] == N
13 Remove v2n from CI // one matching per item
14 end for
15 P := Find_AugmentingPaths (G, CU, CI, M)
16 end while

[Step 2] Complete Top-N Recommendations
17 for each (u, i) ∈ M do
18 Add i to LN(u) // assign matchings as recommendations
19 end for
20 for each u ∈ CU do // fill the remaining items according to rankStandard
21 Sort items {i∈I |R*(u, i)∈[TH, Tmax] and i ב LN(u)}
22 Add top (N – | LN(u)|) most highly predicted items to LN(u)
23 end for

Figure 3. Bipartite Matching Approach to Diversity Maximization.

The original bipartite matching algorithm for top-1
recommendations matches a user to only one item and excludes
the matched user for the subsequent iterations, i.e., the user is
removed from candidate user list CU (line 12 of Fig. 3). An
extended version for top-N recommendations relaxes this rule by
waiting to remove the user from CU until the same user is
matched to N items. We also make the extended algorithm more
efficient by allowing a single user to find up to N item matches in
the first iteration (and not just a single match per iteration), which
significantly reduces the number of subsequent iterations.
However, similarly as with the max-flow approach, since an item
can be recommended to only one user, some users may get fewer
than N recommendations. Thus, in Step 2, for accuracy
considerations, the most highly predicted items among remaining
candidate items are chosen to fill the remaining top-N
recommendations for all users. Note that this does not affect
diversity (which is already guaranteed to be maximum).
Using the same example in Fig. 2, we illustrate the first step for

7

top-1 recommendations, how the maximum bipartite matching
algorithm can obtain the maximum diversity (Fig. 4a). This
algorithm performs two iterations: (Iteration 1) finds all possible
1-edge augmenting paths between unmatched users and
unmatched items, i.e., direct paths without any intermediate
vertices; and (Iteration 2) finds multi-edge augmenting paths,
each of which increases the cardinality of matching by one unit
via alternating non-matched and matched edges in the paths.
After the first iteration of Fig. 4a, the first five users are matched
to one of their candidate items, but user u6 is still unmatched
because all her candidate items (i2, i3, i4, i5) are already matched
to other users. The second iteration finds an augmenting path
from unmatched user u6 to unmatched item i6, i.e., P= (u6,i2,u1,i6)
and (u6,i2)בM, (u1,i2)אM, (u1,i6)בM. As a result, user u6 is then
matched to item i2, and user u1, previously matched to item i2, is
now matched to new item i6, which leads to the maximum
cardinality for this example (i.e., max aggregate diversity of 6
items), and the iterations for searching augmenting paths stop.

 [Step1] Iteration 1 Iteration 2 [Step1] [Step2]
 (a) Top-1 task (b) Top-3 task

Figure 4. Illustration of Graph-Based Approach.

On the other hand, in case of top-3 recommendations for the same
example (Fig. 4b), while maximum diversity (i.e., 10) is reached
in Step 1, three users (u4, u5, u6) are matched to fewer than 3
items. Thus, as shown in Step 2 of Fig. 4b, the remaining top-3
recommendations are filled with the most highly predicted items
among the items available for users.
Note that the sequence in which users and/or items are chosen to
be evaluated in Fig. 3 may have implications on the runtime of the
algorithm. E.g., finding more augmenting paths (and, therefore, a
larger matching) in the first iteration may reduce the total number
of iterations needed to reach the maximum matching. We found
that applying a simple heuristic of first choosing users for
matching who have the smallest number of remaining candidate
items leads to substantial runtime improvements, because of the
smaller likelihood that the items matched to those users can be
replaced by other items, thus, reducing the number of iterations.
As mentioned earlier, for Step 1, we adopt the Hopcroft-Karp
algorithm [20], which is known to be among the most efficient
algorithms for maximum bipartite matching, having complexity of

()O E V , where E is the number of edges in the graph and V is
the number of vertices on the left side of the graph (i.e., the
number of users in our case) [13]. In a bipartite graph with m user
vertices, n item vertices, and a maximum of mn edges, the
complexity of the Hopcroft-Karp algorithm would be)(mmnO ,
and by adding the standard ranking approach for Step 2, the total
complexity of the max flow based approach for top-1
recommendation tasks would be)log(mmnnmnO + . For top-N
recommendation tasks, we allow multiple edges from a single

user vertex. We propose an efficient extension of bipartite
matching algorithm for top-N recommendations, as discussed
earlier; however, in the worst case, the top-N recommendation
task can be treated as top-1 task with Nm users and,
correspondingly, Nmn edges. Even this worst-case extension for
top-N recommendations does not change the complexity, i.e.,

)()(mmnONmNmnO = , assuming N (i.e., the number of
recommendations provided to each user) is a relatively small,
bounded constant. Therefore, this graph-based approach is more
complex than the re-ranking heuristic, which had worst case
complexity of O(mnlogn), as mentioned earlier.

4. EMPIRICAL RESULTS
In our experimental evaluation, we used two movie rating
datasets: MovieLens (data file available at grouplens.org) and
Netflix (used for Netflix Prize competition). Each dataset is pre-
processed to include users and movies with significant rating
histories, which makes it possible to have a large number of
highly predicted items available for recommendations to each
user, thus, potentially making the diversity maximization task
more challenging. The basic statistical information of the
resulting datasets is as follows. MovieLens dataset has 775,176
ratings with 2,830 users and 1,919 items (i.e., 14.27% sparsity),
and Netflix dataset has 1,067,999 ratings with 3,333 users and
2,091 items (i.e., 15.32% sparsity). For each dataset, we learn
from all of the known ratings and predict the unknown ratings
(85.73% of the whole user-item matrix in the MovieLens dataset
and 84.68% in the Netflix dataset). As discussed earlier, we use
three popular collaborative filtering techniques (user-based, item-
based, and matrix factorization CF techniques), and top-N (N=1, 5,
10) items are recommended for each user.
We predict unknown ratings based on all known ratings, where a
relatively large number of highly-predicted (i.e., with the
predicted rating value above 3.5) candidate items are available for
all users (typically around 500-800 items for each user). Fig. 5
presents a number of representative results obtained from the
empirical evaluation, which shows not only the accuracy and
diversity capabilities of the proposed approach in terms of top-N
recommendation, but also compares it with two baseline
techniques that re-rank the candidate items by their reverse
predicted rating values [3] and at random, as well as with the
standard recommendation technique. As expected, the standard
recommendation technique (i.e., recommending items with
highest predicted ratings) represents the most accurate, but very
non-diverse set of recommendations. In Fig. 5, the representative
accuracy-diversity curves for the baseline random and re-ranking
techniques and for graph-based approach were obtained by using
different ranking and flow-rating thresholds (3.5, 3.6, …, 5).
One notable finding is that, while the simple re-ranking technique
shows the same or slightly better results than the random
approach, the proposed graph-based approach is able to obtain
substantial diversity improvements at the given level of accuracy,
compared to the two baseline techniques, across all experiments
including different datasets, different recommendation techniques,
and different number of recommendations (N = 1, 5, 10).
Another notable result is that, as N increases, significant diversity
improvements can be obtained with increasingly smaller
sacrifices to recommendation accuracy. For example, in top-1
recommendation tasks, the graph-based approach was able to
obtain the maximum possible diversity with a decrease of about
0.5 (on scale 1-5) in an average prediction. However, for top-5

8

tasks the accuracy decrease needed for maximum diversity was
about 0.1, and for top-10 tasks only about 0.05. Table 1 further
illustrates this point by showing the diversity gains of random, re-
ranking, and graph-based approaches at three different accuracy
loss levels (0.1 for top-1 tasks, 0.05 for top-5 tasks, 0.01 for top-
10 tasks). In summary, the proposed graph-based approach was
able to consistently provide substantial diversity improvements
for all traditional recommendation algorithms (user-based, item-
based, and matrix factorization CF) on different real-world
recommendation datasets.
 MovieLens Netflix

To
p-

1
ta

sk

Item-based CF Matrix Factorization

To
p-

5
ta

sk

Matrix Factorization User-based CF

To
p-

10
 ta

sk

User-based CF Item-based CF

Figure 5. Performance of Ranking and Optimization Approaches

As discussed earlier, the performance improvements for the
proposed technique come at the cost of computational complexity,
which can become an issue as the data size increases. To
complement the earlier discussion on the theoretical
computational complexity, here we report how the data size
affects the actual runtime. We vary the size of data by changing
the number of candidate items that are available for
recommendation to each user. For example, for the datasets used
in our experiments we treated all items that were predicted above
rating threshold TH = 3.5 as potential candidates for
recommendation. By increasing this threshold we can eliminate
some candidate items across all users, thus, obtaining smaller
datasets. Following this approach, we generated six datasets
D1, ..., D6 of increasing size from MovieLens dataset by using
different rating thresholds (D1 for TH = 4.5, D2 for 4.3, D3 for 4.1,
…, D6 for 3.5), as indicated in Fig. 6a.
We measured the runtime of the two algorithms (i.e., the proposed
approach and the re-ranking approach) on the same computer.
The obtained results are consistent across different
recommendation algorithms, different datasets, and top-N tasks
(for different N values). Fig. 6b illustrates the general trends by
presenting the example runtimes of the simple recommendation
re-ranking and the graph-based approach on the MovieLens
dataset, for generating diverse top-1 recommendations using item-

based CF technique. As expected, as the data size increases, the
simple re-ranking heuristic demonstrates good scalability, while
the more complex graph-based approach requires increasingly
more time (while also generating better recommendation
outcomes, as discussed earlier). We do observe that, for our
medium-size recommendation setting (with approx. 3,000 users
and 2,000 items), the proposed approach demonstrated good
computational performance; even running it on the largest dataset
(D6) took less than 1.5 minutes.

Table 1. Diversity Gains at the Given Accuracy Level
 User-based CF Item-based CF MF

Top-1 recommendation task (Accuracy level: Standard – 0.1)
Standard 98, acc=4.40 87, acc=4.63 247, acc=4.73
Random 368.7 (276.2%) 272.6 (213.3%) 390.3 (58.0%)

Re-Ranking 409.1 (317.4%) 300.8 (245.7%) 412.3 (66.9%)
Graph-Based 826.0 (742.9%) 748.6 (760.4%) 927.5 (275.5%)

Top-5 recommendation task (Accuracy level: Standard – 0.05)
Standard 190, acc=4.36 200, acc=4.57 507, acc=4.64
Random 581.6 (206.1%) 385.1 (92.6%) 659.3 (30.0%)

Re-Ranking 648.1 (241.1%) 424.5 (112.3%) 698.1 (37.7%)
Graph-Based 1562.9 (722.6%) 1415.9 (607.9%) 1647.7 (225.0%)

Top-10 recommendation task (Accuracy level: Standard – 0.01)
Standard 263, acc=4.34 279, acc=4.53 667, acc=4.58
Random 448.6 (70.6%) 354.9 (27.2%) 745.0 (11.7%)

Re-Ranking 497.4 (89.1%) 385.7 (38.3%) 794.3 (19.1%)
Graph-Based 1107.0 (320.9%) 978.7 (250.8%) 1408.2 (111.1%)

(a) MovieLens data
 User-based CF Item-based CF MF

Top-1 recommendation task (Accuracy level: Standard – 0.1)
Standard 67, acc=4.31 142, acc=4.51 274, acc=4.51
Random 416.6 (521.8%) 379.1 (167.0%) 484.1 (76.7%)

Re-Ranking 417.5 (523.1%) 420.2 (195.9%) 505.4 (84.5%)
Graph-Based 764.5 (1041.1%) 842.6 (493.4%) 967.8 (253.2%)

Top-5 recommendation task (Accuracy level: Standard – 0.05)
Standard 227, acc=4.25 335, acc=4.42 561, acc=4.43
Random 822.5 (262.3%) 671.5 (100.4%) 904.8 (61.3%)

Re-Ranking 943.4 (315.6%) 754.4 (125.2%) 966.8 (72.3%)
Graph-Based 1829.1 (705.8%) 1795.8 (436.1%) 2000.9 (256.7%)

Top-10 recommendation task (Accuracy level: Standard – 0.01)
Standard 341, acc=4.21 459, acc=4.37 771, acc=4.39
Random 736.1 (115.9%) 655.7 (42.9%) 1046.8 (35.8%)

Re-Ranking 876.6 (157.1%) 750.0 (63.4%) 1193.2 (54.8%)
Graph-Based 1528.9 (348.3%) 1426.3 (210.7%) 2456.1 (218.6%)

(b) Netflix data

((a) Avg Number of Candidate Items Per User (b) Runtime
MovieLens dataset, Item-based CF, Top-1 recommendation task
Figure 6. Different Datasets and Algorithmic Runtime

5. CONCLUSIONS AND FUTURE WORK
Recommendation diversity recently has attracted attention as an
important aspect in evaluating the quality of recommendations.
Traditional recommender systems typically recommend the top-N
most highly predicted items for each user, thereby providing good
predictive accuracy, but performing poorly with respect to

9

recommendation diversity. This paper extends prior work by
developing a more sophisticated graph-theoretic approach that
models the diversity maximization problem as a network flow
maximization or bipartite matching maximization problems and
provides significant advantages over the recommendation re-
ranking approaches in terms of the accuracy/diversity tradeoff.
The proposed optimization approaches have been designed
specifically for the diversity-in-top-N metric, i.e., the number of
distinct items among top-N recommendations. The extension of
these approaches to more sophisticated diversity metrics,
including relative long-tail metrics such as Gini coefficient [17]
and the long-tail shape parameter such as the slope of the log-
linear relationship between popularity and recommendations,
represent a promising direction for future research. Another
interesting and important direction would be to investigate
whether the use of the diversity-maximizing recommendation
algorithms can truly lead to an increase in sales diversity and user
satisfaction. In particular, as discussed in recent research [12,25],
it would be valuable to examine the impact of recommendations
on long-tail phenomena in different categories of users and
products and possibly propose different algorithms based on the
appropriate categorization. We believe that this work provides
insights into developing new recommendation techniques that can
consider multiple aspects of recommendation quality, going
beyond using just the accuracy measures.

6. ACKNOWLEDGMENTS
The research reported in this paper was supported in part by the
US National Science Foundation CAREER Grant IIS-0546443.

7. REFERENCES
[1] Adomavicius, G., A. Tuzhilin. 2005. Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. IEEE TKDE 17:6 734-749.

[2] Adomavicius, G., Y. Kwon. 2009. Toward More Diverse
Recommendations: Item Re-Ranking Methods for Recommender
Systems. Proc. of the 19th Workshop on Information Technologies
and Systems.

[3] Adomavicius, G., Y. Kwon. 2011. Improving Aggregate
Recommendation Diversity Using Ranking-Based Techniques. IEEE
Transactions on Knowledge and Data Engineering. Forthcoming.

[4] Aggarwal, C.C., J.L. Wolf, K.L. Wu, P.S. Yu. 1999. Horting Hatches
An Egg: A New Graph-Theoretic Approach to Collaborative
Filtering. Proc. of the 5th ACM SIGKDD Conf. on Knowledge
Discovery and Data Mining (KDD’99). 201-212.

[5] Ahuja, R. K., T. L. Magnanti, J. B. Orlin, 1993. Network Flows:
Theory, Algorithms, and Applications. Englewood Cliffs, NJ:
Prentice-Hall.

[6] Anderson, C. 2006. The Long Tail. New York: Hyperion.
[7] Balabanovic, M., Y. Shoham. 1997. Fab: Content-Based,

Collaborative Recommendation. Comm. of the ACM 40:3 66-72.
[8] Bradley, K., B. Smyth. 2001. Improving Recommendation Diversity.

Proc. of the 12th Irish Conf. on Artif. Intelligence and Cognitive Sci.
[9] Breese, S., D. Heckerman, C. Kadie. 1998. Empirical Analysis of

Predictive Algorithms for Collaborative Filtering. Proc. of the 14th
Conf. on Uncertainty in Artificial Intelligence.

[10] Brynjolfsson, E., M.D. Smith, Y.J. Hu. 2003. Consumer Surplus in
the Digital Economy: Estimating the value of increased product
variety at online booksellers. Management Sci. 49:11 1580-1596.

[11] Brynjolfsson, E., Y.J. Hu, D. Simester. 2007. Goodbye Pareto
Principle, Hello Long Tail: The Effect of Search Costs on the
Concentration of Product Sales. NET Institute.

[12] Brynjolfsson, E., Y.J. Hu, M.D. Smith. 2010. Long Tails vs.
Superstars: The Effect of Information Technology on Product
Variety and Sales Concentration Patterns. Information Systems
Research 21:4 736-347.

[13] Burkard R., M. Dell’Amico, S. Martello. 2009. Assignment
Problems. Society for Industrial and Applied Mathematics (SIAM).

[14] Cormen, T.H., C.E. Leiserson, R.L. Rivest, C. Stein. 2001.
Introduction to Algorithms,MIT Press.

[15] Fleder, D., K. Hosanagar. 2009. Blockbuster Culture's Next Rise or
Fall: The Impact of Recommender Systems on Sales Diversity,
Management Science 55:5 697-712.

[16] Funk, S. 2006. Netflix Update: Try This At Home.
http://sifter.org/˜simon/journal/20061211.html.

[17] Gini, C. 1921. Measurement of Inequality and Incomes. Economic
Journal 31 124-126.

[18] Goldstein, D.G., D.C. Goldstein. 2006. Profiting from the Long Tail.
Harvard Business Review, Jun 2010.

[19] Herlocker, J.L., J.A. Konstan, L.G. Terveen, J. Riedl. 2004.
Evaluating Collaborative Filtering Recommender Systems. ACM
Transactions on Information Systems 22:1 5-53.

[20] Hopcroft, J.E., R.M. Karp. 1973. An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs, SIAM J. on Computing 2:4 225-231.

[21] Hu, R., P. Pu. 2011. Enhancing Recommendation Diversity with
Organization Interfaces. Proc. of the 16th Int’l Conf. on Intelligent
User Interfaces (IUI '11). 347-350.

[22] Huang, Z., D. Zeng, H. Chen. 2007. Analyzing Consumer-product
Graphs: Empirical Findings and Applications in Recommender
Systems. Management Science 53:7 1146-1164.

[23] Kim, H.K., J.K. Kim, Y. Ryu. 2010. A Local Scoring Model for
Recommendation. Proc. of the 20th Workshop on Information
Technologies and Systems (WITS’10).

[24] Koren, Y., R. Bell, C. Volinsky. 2009. Matrix Factorization
Techniques For Recommender Systems. IEEE Computer Society, 42
30-37.

[25] Lee, J., J.N. Lee, H. Shin. 2011. The Long Tail or the Short Tail: The
Category-Specific Impact of eWOM on Sales Distributions. Decision
Support Systems 51:3 466-479.

[26] Leonard, D. 2010. Tech Entrepreneur Peter Gabriel Knows What
You Want. Business Week, April.

[27] Levy, M., K. Bosteels. 2010. Music Recommendation and the Long
Tail. Workshop on Music Recommendation and Discovery, ACM
Intl. Conf. on Recommender Systems.

[28] Liu, J., M. Shang, D. Chen. 2009. Personal Recommendation Based
on Weighted Bipartite Networks. Proc. of the 6th Intl. Conf. on Fuzzy
Systems and Knowledge Discovery 134-137.

[29] McNee, S.M., J. Riedl, J.A. Konstan. 2006. Being Accurate is Not
Enough: How Accuracy Metrics have hurt Recommender Systems.
Conf. on Human Factors in Computing Systems 1097-1101.

[30] McSherry, D. 2002. Diversity-Conscious Retrieval. Proc. of the 6th
European Conf. on Advances in Case-Based Reasoning 219-233.

[31] Oestreicher-Singer, G., A. Sundararajan. 2011. Recommendation
Networks and the Long Tail of Electronic. MIS Quarterly.
Forthcoming.

[32] Park, Y.J., A. Tuzhilin. 2008. The Long Tail of Recommender
Systems and How to Leverage It. Proc. of the 2nd ACM Conf. on
Recommender Systems 11-18.

[33] Sarwar, B., G. Karypis, J.A. Konstan, J. Riedl. 2001. Item-Based
Collaborative Filtering Recommendation Algorithms. Proc. of the
10th Intl. World Wide Web Conf.

[34] Shani G., A. Gunawardana. 2011. Evaluating Recommendation
Systems, in P. B. Kantor, F. Ricci, L. Rokach, B. Shapira (Eds.),
Recommender Systems Handbook: A Complete Guide for Research
Scientists and Practitioners, Chapter 8, Springer.

[35] Smyth, B., P. McClave. 2001. Similarity vs. Diversity. Proc. of the
4th Intl. Conf. on Case-Based Reasoning.

[36] Thompson, C. 2008. If You Liked This, You’re Sure to Love That.
The New York Times. Nov 2008. http://www.nytimes.com/
2008/11/23/ magazine/23Netflix-t.html.

[37] Zhang, M. 2009. Enhancing Diversity in Top-N Recommendation.
Proc. of the 3rd ACM Conf. on Recommender Systems 397-400.

[38] Zhang, M., N. Hurley. 2008. Avoiding monotony: improving the
diversity of recommendation lists. Proc. of the 2nd ACM Conf. on
Recommender Systems 123-130.

[39] Ziegler, C.N., S.M. McNee, J.A. Konstan, G. Lausen. 2005.
Improving Recommendation Lists Through Topic Diversification,
Proc. of the 14th Intl. World Wide Web Conf. 22-32.

10

	papers.pdf
	p2.pdf
	1. INTRODUCTION
	2. RELATED WORK AND CONCEPTS
	3. DEFINITION OF UNEXPECTEDNESS
	3.1 Unexpectedness
	3.2 Utility of Recommendations
	3.3 Evaluation of Recommendations
	3.3.1 Measures of Unexpectedness
	3.3.2 Measures of Accuracy

	4. EXPERIMENTS
	4.1 Dataset
	4.2 Experimental Setup
	4.2.1 Utility of Recommendation
	4.2.2 Item Similarity
	4.2.3 Expected Movies
	4.2.4 Distance from the Set of Expected Movies
	4.2.5 Measures of Unexpectedness and Accuracy

	5. RESULTS
	5.1 Comparison of Coverage
	5.2 Comparison of Unexpectedness
	5.3 Comparison of Rating Prediction
	5.4 Comparison of Item Prediction

	6. CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

