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ABSTRACT
Recent work has focused on new measures that are beyond
the accuracy of recommender systems. Serendipity, which is
one of these measures, is defined as a measure that indicates
how the recommender system can find unexpected and use-
ful items for users. In this paper, we propose a Fusion-based
Recommender System that aims to improve the serendip-
ity of recommender systems. The system is based on the
novel notion that the system finds new items, which have the
mixed features of two user-input items, produced by mixing
the two items together. The system consists of item-fusion
methods and scoring methods. The item-fusion methods
generate a recommendation list based on mixed features of
two user-input items. Scoring methods are used to rank the
recommendation list. This paper describes these methods
and gives experimental results.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms
Algorithms, Experimentation

Keywords
Recommender system, Fusion-based recommender system,
Serendipity

1. INTRODUCTION
Various recommender systems have been proposed and

developed since collaborative filtering was first introduced
in the mid-1990s [8][6][1]. In the early years, most rec-
ommender systems focused on recommendation accuracy,
based on the notion that providing items suitable for users’
preferences contributes to an improvement in user satisfac-
tion [8][9]. In contrast, in recent years, several researchers
have indicated that recommender systems with high accu-
racy do not always satisfy users [4][7][5]. They say that
recommender systems should be evaluated not only by ac-
curacy, but also by various other metrics such as diversity,
novelty, and serendipity.

Copyright is held by the authors. Workshop on Novelty and Diversity in
Recommender Systems (DiveRS 2011), held in conjunction with ACM
RecSys 2011. October 23, 2011, Chicago, Illinois, USA.
.

Suppose that Alice likes “Harry Potter Part I.” To recom-
mend “Harry Potter Part II” or “Harry Potter Part III” to
her is obvious and not surprising. Although, from the view-
point of accuracy, this recommendation is good, it is hard
to say that the recommendation satisfies her. Recommender
systems should surprise users by providing them with unex-
pected and useful items.

We focus on serendipity, which is one of the measures
beyond accuracy. Although the definition of serendipity has
not yet been fixed, Herlocker et al. [4] define serendipity as
a measure of the degree to which recommendations are both
attractive and surprising to users.

Ge et al. [3] also mention two aspects related to serendip-
ity. The first one is that a serendipitous item should not yet
have been discovered by the user and should not be expected
by the user. The second one is that the item should also be
interesting, relevant, and useful to the user. Although sev-
eral researchers have tried to improve serendipity, fixing the
definition of serendipity and designing recommender systems
that improve serendipity are still open problems.

In order to improve serendipity, we believe that recom-
mender systems should have a mechanism that enables users
to accidentally discover novel values from unexpected results
caused by the user’s active actions. “The Three Princes of
Serendip” (by Horace Walpole),which is the origin of the
term serendipity, tells the story of three princes. They dis-
covered a series of novel things from various and unexpected
events on their journeys. Then, they connected these things
with their luck. Serendipity is also often involved in making
new discoveries. Researchers notice unexpected results in
their experiments by trial and error, and then, they connect
these results with new discoveries.

Based on this notion, we propose a Fusion-based Recom-
mender System that aims to improve the serendipity of rec-
ommender systems. The system recommends new items,
which have the mixed features of two user-input items, pro-
duced by mixing the two items together.

Such acts of “mixing together”, for example, “mixing col-
ors,”“mixing ingredients”, and “mixing sounds”, is intuitive,
familiar to people, and has the following characteristics.

(a) New substances are created from existing ones.

(b) We can intuitively imagine the mixed results from a
combination of input substances. However, some com-
binations yield unexpected results.

(c) Because our curiosity may be aroused by characteristic
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(b), we might feel like trying to mix various combina-
tions.

Consider the case of mixing colors. If there is no exist-
ing color that we want to use, we can create a new color
by mixing the existing colors. We can easily imagine that
we can create sky-blue from blue and white. On the other
hand, some combinations of colors yield unexpected colors.
Therefore, our curiosity may be aroused, and we may feel like
mixing various combinations by trial and error, for example,
“What kind of colors can we create by mixing a certain color
and another one?”

The Fusion-based Recommender System adopts an item-
fusion approach that produces serendipitous items. The sys-
tem consists of item-fusion methods and scoring methods.
The item-fusion methods generate a recommendation list
based on the mixed features of two user-input items. Scor-
ing methods are used to rank the recommendation list.

The contributions of this paper include:

• providing a novel Fusion-based Recommender System
that adopts a fusion-based approach to improving
serendipity;

• providing three item-fusion methods depending on item
representation, and several scoring methods for each
item-fusion method;

• a proposed system that can be applied to any dataset
that consists of at least an item table, a user table, and
a rating table, which are traditional structures in the
area of recommendation research;

• an evaluation of the recommender system from the
viewpoint of unexpectedness and serendipity.

This paper is organized as follows. In Section 2, we dis-
cuss related work that mentions serendipity. In Section 3,
we present our proposed system, i.e.,a Fusion-based Recom-
mender System. Specifically, we describe item-fusion meth-
ods and scoring methods. In Section 4, we evaluate the sys-
tem from the viewpoint of unexpectedness and serendipity.
Finally, we conclude the paper and show future directions
in Section 5.

2. RELATED WORK
Herlocker et al. [4] suggest that recommender systems

with high accuracy do not always satisfy users. They say
that recommender systems should be evaluated not only by
their accuracy, but also by various other metrics such as
diversity, novelty, and serendipity.

Several researchers mention serendipity in the context of
recommendation. Ziegler et al.[11][12] assume that diversi-
fying recommendation lists improves user satisfaction. They
proposed topic diversification, which diversifies recommen-
dation lists, based on an intra-list similarity metric. Sarwar
et al. [10] mention that serendipity might be improved by re-
moving obvious items from recommendation lists. Berkovsky
et al. [2] proposed group-based recipe recommendations.
They suggest that recipes loved by a group member are likely
to be recommended to others, which may increase serendip-
ity.

Hijikata et al. [5] and Murakami et al. [7] proposed recom-
mendation methods that predict novelty or unexpectedness.
Hijikata et al. [5] proposed collaborative filtering, which

aims to improve novelty. Collaborative filtering predicts un-
known items for a target user, based on known/unknown
profiles explicitly acquired from the user. They showed that
such filtering can improve novelty by providing unknown
items to the user. Murakami et al. [7] proposed a method
that implicitly predicts unexpectedness based on a user’s
action history. They introduced a preference model, which
predicts items the user likes, and a habit model, which pre-
dicts items habitually selected by the user. The method
estimates the unexpectedness of recommended items by con-
sidering differences between the models. They need to ac-
cumulate models or profiles for an individual user, but our
proposed system does not need these. Our system can in-
stantly recommend serendipitous items based on items the
user has just selected.

Murakami et al. [7] and Ge et al. [3] introduced mea-
sures for evaluating the unexpectedness and serendipity of
recommender systems.

Murakami et al. [7] assume that unexpectedness is the
distance between the results produced by the system to be
evaluated and those produced by primitive prediction meth-
ods. Here, primitive prediction methods mean naive meth-
ods such as recommendation methods based on user profiles
or action histories. Based on this notion, they proposed
unexpectedness for measuring the unexpectedness of recom-
mendation lists. They also proposed unexpectedness r , which
takes into account the rankings in the lists.

Ge et al. [3] mention two aspects related to serendipity.
The first one is that a serendipitous item should not yet
have been discovered and should not be expected by the
user. The second one is that the item should also be inter-
esting, relevant, and useful to the user. Although several re-
searchers have tried to improve serendipity, fixing the defini-
tion of serendipity and designing recommender systems that
improve serendipity are still an open problem. With respect
to unexpectedness, they follow the notion of Murakami et
al. [7]. They defined an unexpected set of recommendations
as follows:

UNEXP = RS\PM (1)

Here, PM denotes a set of recommendations generated by
primitive prediction models and RS denotes the recommen-
dations generated by a recommender system to be evalu-
ated. In addition, by using u(RS\PM ), which denotes the
usefulness of the unexpected recommendations, they defined
serendipity as follows:

SRDP =

P

i u(UNEXP i)

|UNEXP |
(2)

Here, UNEXP i denotes an element of UNEXP . When
u(UNEXP i) = 1, UNEXP i is useful to the user,and when
u(UNEXP i) = 0, UNEXP i is useless to the user. The use-
fulness of UNEXP i is given by the user. In Section 4, we
evaluate our system using Ge’s measures.

3. FUSION-BASED RECOMMENDER SYS-
TEM

In this section, we describe our proposed system, a Fusion-
based Recommender System.

First of all, a user of this system selects two arbitrary
items as input items to the system. Then the system finds
new items that have the mixed features of both items, using
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the item-fusion methods described in Section 3.3. After that,
the system makes a recommendation list from the item set,
and ranks the list by scoring methods described in Section
3.4. Finally, the system provides the top-N items to the
user. The user can then repeatedly use the system by using
items in the ranking results in order to find more satisfactory
items.

This section is organized as follows. In Section 3.1, we de-
scribe the database structure that the system assumes. In
addition, we define item similarity and supporting user, as
used in this paper. In Section 3.2, we explain the feature
representations of items used to apply the system. In Sec-
tion 3.3, we describe item-fusion methods for generating a
recommendation list, and in Section 3.4, we describe scoring
methods for ranking the list.

3.1 Preliminary

3.1.1 Database structure
First of all, in this section, we describe the database struc-

ture that the system assumes.
The system assumes that a database consists of the fol-

lowing tables:

(a) Item table (Item ID, Feature 1, Feature 2, . . . )

(b) User table (User ID, Profile 1, Profile 2, . . . )

(c) Rating table (User ID, Item ID, Rating)

Public datasets such as MovieLens Data Sets and Book-
Crossing Data Sets1 already include the above tables. Other
datasets can also be applied to the system by relating them
to the above tables.

3.1.2 Item similarity
The system calculates item similarity by measuring the

similarity between items. This paper defines the following
two types of item similarity:

(a) content-based similarity,

(b) collaborative-based similarity

Consider two items a and b.
(a) Content-based similarity is calculated based on fea-

tures of items in the item table. Although the features used
for the calculation of similarity depend on the datasets, for
each item, the system generates a feature vector whose el-
ements correspond to feature values. Then the system cal-
culates item similarity by the cosine similarity between the
feature vectors. Consider items a and b represented as fol-
lows:

a = (a1, a2, . . . , an) (3)

b = (b1, b2, . . . , bn) (4)

Here, n is the number of dimensions of the vector. Then the
similarity between the items sim(a, b) is calculated by the
following equation:

sim(a, b) =
a · b

‖a‖‖b‖
=

P

i
aibi

p
P

i
a2

i

p
P

i
b2
i

(5)

(b) Collaborative-based similarity is calculated based on
ratings given to items in the rating table. The system finds a

1http://www.grouplens.org/node/74

common set of users,U = {u1, u2, . . . , um} (m is the number
of common users), who gave ratings to both items a and b.
Let rating(ui, j) be a rating given by a user ui to an item j.
Consider items a and b, represented as follows:

a = (rating(u1, a), rating(u2, a), . . . , rating(um, a)) (6)

b = (rating(u1, b), rating(u2, b), . . . , rating(um, b)) (7)

Then the similarity between the items sim(a, b) is calculated
by Equation (5) in the same way.

We define a similar-item set Sa for an item a as an item set
that consists of items whose similarity to item a is greater
than or equal to a threshold θ, i.e., the similar-item set Sa

is expressed by the following equation:

Sa = {x|sim(x, a) ≥ θ} (8)

3.1.3 Supporting user
We define a supporting-user set Va for an item a as a user

set that gave ratings equal to or greater than a threshold τ

to the item a, i.e., the supporting-user set Va is expressed
by the following equation:

Va = {x|rating(x, a) ≥ τ} (9)

3.2 Feature representation of an item
We define the feature representation of items on the basis

of the database described in Section 3.1. In this study, we
define the following naive representation.

(1) Bit-string representation.
This representation represents an item as a bit string.

Suppose that five elements, {“Action,”“Adventure,”“Com-
edy,” “Horror,” “Romance”}, are defined as attributes that
denote item genres. If an item a corresponds to the genres
{“Action,” “Horror”}, the item a is represented as bit(a) =
[10010].

(2) Set representation.
This representation represents an item as a set of related

elements. In this paper, we define the following two types
of representation, depending on the types of elements:

(2a) representation by a similar-item set,

(2b) representation by a supporting-user set.

Consider an item a.
In case (a), we extract a similar-item set Sa for item a,

based on item similarity as defined in Section 3.1.2. If the
similar-item set is given as Sa = {b, c, d, e, f}, the item a is
expressed by set(a) = Sa = {b, c, d, e, f}.

In case (b), we extract a supporting-user set Va for item
a, based on the rating table. If the supporting-user set is
given as Va ={“Alice,”“Bob,”“Carol”}, item a is expressed
by set(a) = Va ={“Alice,”“Bob,”“Carol”}.

3.3 Item-fusion method for generating recom-
mendation list

A user can find novel items by mixing two items a and b

that the user selected at will. The system defines criteria for
searching novel items, related to mixing features of items a

and b. Then the system finds an item set that matches the
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Figure 1: Item-fusion methods and scoring methods

in case that items a and b have common features

criteria from the database and adds them to a recommen-
dation list. Here, we consider the following assumptions,
depending on the features of the input items a and b.

(i) If there are common features between items a and b,
the user requests items that have the common features.

(ii) Otherwise, the user requests diverse items that relate
to either item a or item b.

Based on the above assumptions, we propose item-fusion
methods for each feature representation defined in Section
3.2. Figure 1 illustrates examples of the item-fusion methods
and scoring methods, which are described in Section 3.4, in
case that items a and b have common features.

(1) Bit-string representation.
Based on the notion of a bitwise AND and a bitwise OR,

which are the primitive bitwise operations, the system gen-
erates a recommendation list R.

Suppose that a user inputs two items a and b, represented
as bit(a) = [11100], bit(b) = [01110], respectively. Here,
since the values of the second and the third bit are all 1
in both items a and b, the items a and b have common
features. In order to emphasize these common features, the
system generates a representative query bit-string bit(q1),

based on the notion of the bitwise AND, i.e., in the case of
bits whose values are 1 in both items a and b, let the values
of the query bits be 1. In the other case, let the values of
the query bits be “.”. In this example, the query is expressed
by bit(q1) = [.11..]. Here, “.” matches either of {0, 1} while
searching.

However, if the number of bits is large, there is little pos-
sibility of finding items that match the query. In order to
avoid such cases, we consider a query set that considers all
combinations of the values {0, 1} except the bits whose val-
ues are “.”, i.e., in this example, the generated query set is
expressed by Q = {[.11..], [.10..], [.01..]} (see Figure 1 (1)).

Now consider two items a and b that are represented as
bit(a) = [10000], bit(b) = [00110], respectively. In this case,
the items a and b have no common feature. In order to
diversify the recommendation list, the system generates a
representative query bit-string bit(q1), based on the notion
of the bitwise OR, i.e., in the case of bits whose values are
1 in either item a or b, let the values of the query bits be 1.
In the other case, let the values of the query bits be “.”. In
this example, the query is expressed by bit(q1) = [1.11.].

In the same way, in this example, the generated query set
is expressed by Q = {[1.11.], [1.10.], [1.01.], [1.00.], [0.11.],
[0.10.], [0.01.]}.

Finally, the system finds an item set that matches each
query bit-string from the item table and then adds the item
set to the recommendation list R.

Now, we generalize the above examples. Consider items a

and b represented by n-digit bit-strings. Let bit(a)i be the
ith bit of item a. We define items a and b as having common
features if there is at least one i that satisfies bit(a)i =
bit(b)i = 1 (i = 1, 2, . . . , n).

(i) If items a and b have common features, each bit of the
representative query bit-string bit(q1) is as follows:

bit(q1)i =

(

1 if bit(a)i = 1 ∧ bit(b)i = 1

“.” otherwise
(10)

(ii) Otherwise, each bit of the string is as follows:

bit(q1)i =

(

1 if bit(a)i = 1 ∨ bit(b)i = 1

“.” otherwise
(11)

As we stated in the above examples, the system generates
a query set Q, which considers all combinations of query bit-
strings. Finally, the system generates a recommendation list
R, based on the query set Q.

(2) Set representation.
Based on the notions of intersection and union, which are

the primitive set operations, the system generates a recom-
mendation list R.

Consider items a and b represented as set(a) = {a1, a2,

. . . , an}, set(b) = {b1, b2, . . . , bm}, respectively. We define
items a and b as having common features if set(a)∩ set(b) 6=
φ. We explain how to generate the recommendation list R

in cases of representation by (2a) a similar-item set, (2b) a
supporting-user set.

(2a) Representation by a similar-item set.
(i) If the items a and b have common features, the system

regards the intersection of similar-item sets of items a and
b as the recommendation list R. (ii) Otherwise, the system
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regards the union of the sets as the recommendation list R,
i.e., the recommendation list R in each case is as follows:

R =

(

set(a) ∩ set(b) if set(a) ∩ set(b) 6= φ

set(a) ∪ set(b) otherwise
(12)

For example, given an item a = {c, d, e, f} and an item b =
{e, f, g, h}, the recommendation list is R = set(a)∩ set(b) =
{e, f} (see Figure 1 (2a)). On the other hand, given an item
a = {c, d} and an item b = {e, f}, the recommendation list
is R = set(a) ∪ set(b) = {c, d, e, f}.

(2b) Representation by a supporting-user set.
(i) If the items a and b have common features, consider

the intersection V of the supporting-user sets of items a and
b. (ii) Otherwise, consider their union V , i.e., the user set
in each case is as follows:

V =

(

set(a) ∩ set(b) if set(a) ∩ set(b) 6= φ

set(a) ∪ set(b) otherwise
(13)

Then the system regards an item set supported by each
user vi ∈ V (who gave ratings equal to or greater than a
threshold τ to the item), i.e., the recommendation list is as
follows:

R =
[

vi∈V

{x|rating(vi, x) ≥ τ} (14)

For example, given an item set(a) ={“Alice,”“Bob,”
“Carol”} and an item set(b) ={“Bob,”“Carol,”“Dave”}, the
user set is V = set(a) ∩ set(b) ={“Bob,”“Carol”}. Further-
more, given an item set {c, d} supported by “Bob”, and an
item set {d} supported by “Carol,” the recommendation list
is R = {c, d} (see Figure 1 (2b)).

On the other hand, given an item set(a) = {“Alice,”“Bob”}
and an item set(b) ={“Carol”}, the user set is V = set(a) ∪
set(b) ={“Alice,” “Bob,” “Carol”}. Furthermore, given an
item set {a} supported by “Alice,” an item set {c, d} sup-
ported by“Bob”, and an item set {d, e} supported by“Carol,”
the recommendation list is R = {a, c, d, e}.

3.4 Scoring method for ranking recommenda-
tion list

Some combinations of items produce recommendation lists
that consist of an enormous number of items. In such cases,
the recommendation list should be ranked according to some
criteria in order to narrow the list of recommended items
shown to the user. In this section, we define scoring methods
for each item-fusion method provided in Section 3.3.

(1) Bit-string representation.
We define the following two scoring methods, S1-I and S1-

II, for bit-string representation. Examples of these scoring
methods are illustrated in Figure 1 (1).

(S1-I) Score based on the number of common bits.
As we stated in Section 3.3, the system generates a query

set Q, which consists of all combinations of query bit-strings.
We also explained that the value of each bit bit(qi)j can take
{1, 0,“.”}. We assume that the larger the number of bits that
satisfy bit(qi)j = 1, the more strongly the query bit-string
reflects common features of items a and b. Therefore, we
define the following score s(rk) for a recommended item rk:

s(rk) = |{x|bit(qk)x = 1}| (15)

Here, qk denotes a query used for searching the item rk.

(S1-II) Weighted score based on the number of common
bits.

Some datasets have different weights for each bit. If the
weight wj for each bit j is assigned in advance, we define
the following weighted score s(rk):

s(rk) =
X

j∈{x|bit(qk)x=1}

wj (16)

How the weight for each bit is calculated depends on the
datasets, but, for a simple example, we can employ the bit
variance in the dataset.

(2) Set representation.

(2a) Representation by a similar-item set.
We define the following three scoring methods, S2a-I, S2a-

II, and S2a-III, for representation by a similar-item set. Ex-
amples of these scoring methods are illustrated in Figure 1
(2a).

(S2a-I) Score based on item similarity to input items.
We define the following score s(rk), based on the

collaborative-based similarities sim(rk, a) and sim(rk, b) be-
tween the recommended item rk and the input items a and
b:

s(rk) =

(

1
2
(sim(rk, a) + sim(rk, b)) if set(a) ∩ set(b) 6= φ

max(sim(rk, a), sim(rk, b)) otherwise

(17)

(S2a-II) Score based on the number of items similar to
the recommended item.

We define the following score s(rk), based on the number
of items similar to the recommended item rk:

s(rk) = |{x|sim(rk, x) ≥ θ}| (18)

Here, θ denotes the similarity threshold.

(S2a-III) Score based on the reciprocal of the number
of items similar to the recommended item.

This score is in contrast to that in S2a-II. It is based on
the assumption that the more the recommended item rk is
restricted to only items similar to the input items a and b,
the more strongly the recommended item rk is related to
the input items a and b. Thus, we define the following score
s(rk):

s(rk) =
1

|{x|sim(rk, x) ≥ θ}|
(19)

Here, θ denotes the similarity threshold.

(2b) Representation by a supporting-user set.
We define the following three scoring methods, S2b-I, S2b-

II, and S2b-III, for representation by a supporting-user set.
Examples of these scoring methods are illustrated in Figure
1 (2b).

(S2b-I) Score based on the number of common users.
Among users who support the recommended item rk, we

assume that the larger the number of users who support both
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input items a and b, the more strongly the recommended
item rk is related to the input items a and b. Therefore, we
define the following score s(rk):

s(rk) = |Vrk
∩ (Va ∪ Vb)| (20)

Here, Vrk
, Va, and Vb denote the supporting-user set for item

rk, and the input items a and b, respectively.

(S2b-II) Score based on the mean of the number of
items supported by supporting users.

We define a score based on the mean of the number of
items supported by the supporting-user set Vrk. We assume
that the larger the number of items the user supports, the
more reliable the user is. Thus, we define the following score
s(rk):

s(rk) =
1

|Vrk|

X

vi∈Vr
k

|{x|rating(vi, x) ≥ τ}| (21)

Here, τ denotes the threshold for whether the user supports
the item.

(S2b-III) Score based on the mean of the reciprocal of
the number of items supported by supporting users.

It is based on the assumption that the greater the extent
to which the user restricts support to only the recommended
item rk, the better the user supports item rk. Thus, we
define the following score s(rk):

s(rk) =
1

|Vrk|

X

vi∈Vr
k

1

|{x|rating(vi, x) ≥ τ}|
(22)

Based on each scoring method, the system calculates the
score for each recommended item. Then the system orders
the recommendation list R according to the scores.

4. EXPERIMENTS
We conducted experiments for evaluating serendipity of

recommendation lists generated by the item-fusion methods
and scoring methods described in Section 3. In Section 4.1,
we explain the dataset used for evaluation, feature represen-
tation of items, measures and baseline methods for compar-
ison, respectively. After we describe experimental steps in
Section 4.2, we show experimental results and discuss them
in Section 4.3.

4.1 Experimental setup

4.1.1 Dataset and feature representation of items
We used MovieLens Data Set in the experiments. This

dataset consists of 100,000 ratings (1-5) from 943 users on
1682 movies. This dataset has the principal tables shown in
Table 1.

Followed the tables described in Section 3.1.1, the u.item,
u.user and u.data correspond to an item table, user table,
and rating table, respectively. Attributes, “movie title” to
“Western” of u.item, correspond to item features. Partic-
ularly, 18 attributes, “Action” to “Western,” represent item
genres, which are given by either {0, 1} according to contents
of the movie.

According to Section 3.2, we define feature representation
of items based on the Table 1 as follows.

Table 1: Contents of MovieLens Data Set

(1) Bit-string representation.
We represent an item as a bit string based on the genres of

the item. For example, since the movie whose movie id = 1,
which is “Toy Story,” corresponds to the third, fourth and
fifth genres, {“Animation,” “Children,” “Comedy”}, respec-
tively, it is represented as bit(1) = [001110000000000000].
We also employed the bit variance in the dataset as the
weight for each bit wj in the scoring method S1-II in the
experiments.

(2a) Representation by a similar-item set.
We obtain a similar-item set for each item based on the

item similarity described in Section 3.1.2. In the experi-
ments, we calculated the item similarity by the collaborative-
based similarity. Here, we let the similarity threshold be
θ = 0.95.

(2b) Representation by a supporting-user set.
We obtain a supporting-user set for each item based on

the calculation shown in Section 3.1.3. We let the threshold
be τ = 3.0.

4.1.2 Measures
Our proposed system regards serendipity as important

rather than recommendation accuracy. Therefore, we evalu-
ate our sytem from the point of view of how the system can
generate serendipitous items.

In the experiments, we introduce r-unexpectedness and
r-serendipity based on the notions of Murakami et al. [7]
and Ge et al. [3] presented in Section 2.

First of all, we present the Equation (1) again.

UNEXP = RS\PM (23)

Here, RS denotes a recommendation list generated by the
proposed system. We also employed the following two meth-
ods as the primitive prediction methods: PM mean, a pre-
diction method based on the mean ratings, and PM num, a
prediction method based on the number of ratings.

The PM mean regards the top-N items with the highest
mean ratings as a recommendation item set. The PM num

regards the top-N items with the largest number of ratings
as a recommendation item set. Finally, we utilize the union
of the PM mean and PM num as PM . Thus, the PM includes
items whose total number is 2N .

We introduce r-unexpectedness that denotes a ratio of the
number of the unexpected items of the top-r ranked recom-
mendation list, and represent it as follows:

r-unexpectedness =
|UNEXP(r)|

r
(24)

Here, UNEXP(r) denotes UNEXP when the top-r items are
provided by the RS .

We also introduce serendipitous item set as follows (note
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that this is different from the Equation (1)):

SERENDIP = UNEXP ∩ USEFUL (25)

Here, USEFUL denotes useful item set given separately. In
the experiments, we gave the usefulness of items based on
their mean ratings. Then we regard items equal to or greater
than a threshold υ as useful items. The USEFUL consists
of the useful item set.

In the same way, we introduce r-serendipity that denotes
a ratio of the number of the serendipitous items of the top-r
ranked recommendation list, and represent it as follows:

r-serendipity =
|SERENDIP(r)|

r
(26)

Here, SERENDIP(r) denotes SERENDIP when the top-r
items are provided by the RS .

4.1.3 Baseline methods
In order to evaluate serendipity of the proposed system,

we compare the system with the following three types of
baseline methods: CBa and CBb, content-based filtering for
input items a and b, CFa and CF b, collaborative filtering
for input items a and b, and RAND , random method.

Here, the CBa and CBb provide items in order of content-
based similarity to items a and b, respectively. In the exper-
iments, in order to calculate the similarity, we used cosine
similarity between feature vectors whose elements denote 18
item genres. The CFa and CF b provide items in order of
collaborative-based similarity to items a and b, respectively.
The RAND provides items selected and ordered at random
from the item table.

4.2 Experimental steps
We conducted the experiments by using 1000 pairs of

items selected from the item table at random. Given an
item pair (a, b), the experimental steps are as follows:

step 1 Generate a recommendation list R by each item-fusion
method (see Section 3.3) for the item pair (a, b).

step 2 Make a ranking list R′ for the recommendation list R

by each scoring method, i.e., S1-I, S1-II, S2a-I, S2a-II,
S2a-III, S2b-I, S2b-II, and S2b-III (see Section 3.4),
and by each baseline method.

step 3 Obtain r-unexpectedness and r-serendipity for each R′.

4.3 Results and discussion
In this section, we show experimental results and dis-

cuss them. In the experiments, we used N = 50, which
is the number of items provided by each primitive predic-
tion method PM , and r = 20 for r-unexpectedness and
r-serendipity . Before the experiments, we conducted prelim-
inary experiments under conditions of N = {10, 20, . . . , 100}
and r = {10, 20, . . . , 100}. Note that we found that relative
relationship between scoring methods did not significantly
depend on the conditions. We also used υ = 3.0 that is the
threshold for whether the item is useful.

4.3.1 Comparison with baseline methods
Figure 2 shows the mean r-unexpectedness and

r-serendipity by the scoring methods and baseline methods.
The horizontal axis denotes r-unexpectedness and the ver-
tical axis denotes r-serendipity . Note that, on the baseline

Figure 2: Mean r-unexpectedness and r-serendipity

by scoring methods and baseline methods

methods, this figure shows the mean of them obtained by
three types of baseline methods described in Section 4.1.3.

We found that S1-II, S2a-II, S2b-II, and S2b-III produced
significantly higher r-unexpectedness and r-serendipity than
the baseline methods produced (p < 0.01). Notably, since
S1-II, S2a-II, S2b-II, or S2b-III can yield high serendipity for
each item-fusion method, (1), (2a), and (2b), we believe that
the proposed system works effectively by using any feature
representation of items. We discuss these cases in detail in
the next section.

On the other hand, r-unexpectedness by S1-I, S2a-I, and
S2a-III are less than ones by the baseline methods while
r-serendipity by them are higher than ones by the baseline
methods. Particularly, the r-unexpectedness by S2a-III is
much less than one by the baseline methods. In addition,
both r-unexpectedness and r-serendipity by S2b-I are less
than ones by the baseline methods.

As we described in Section 3.4 (2b), the S2b-I calculates
scores based on the number of users who support both the
recommended item rk and input item a or b. In the ex-
periments, we employed the PM num, which is based on the
number of ratings, as one of the primitive prediction meth-
ods. Since the items rated by many users can be easy to be
predicted, the S2b-I yields low r-unexpectedness .

As we described in Section 3.4 (2a), we assume that the
more the recommended item rk is restricted to only items
similar to the input items a and b, the more strongly the
recommended item rk is related to the input items a and b.
However, this result shows that the assumption is not cor-
rect. Since S2a-II, which is opposite to the S2a-III, showed
higher r-serendipity , we found that we should employ S2a-II
for the purpose of improving serendipity.

4.3.2 Comparison of serendipity by different relation-
ship between input items

We conducted an additional experiment to analyze differ-
ence between S1-II, S2a-II, S2b-I, and S2b-II, which yielded
higher serendipity. We analyzed the difference of
r-serendipity depending on the relationship between input
items. We focus on the relationship between input items
shown in Table 2. We grouped 1000 item pairs used in the
experiments by the relationship between input items. As
shown in Figure 3, we obtained r-serendipity for each group.

We found that S2a-II could produce significant high
serendipity (p < 0.01) in all cases except for mean-HH and
num-HH. We also found that S2b-II and S2b-III in case of
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Table 2: Relationship between input items

Figure 3: Mean r-serendipity by scoring methods

depending on combinations of input items

mean-HH, and S2b-II in case of num-HH could produce sig-
nificant high serendipity (p < 0.01), respectively. On the
basis of this result, we can expect that effectiveness of the
system can be improved by introducing a switching method
that dynamically switches scoring methods depending on re-
lationship between user-input items.

Furthermore, we are interested in that S2a-II can pro-
duce high serendipitous items by using unpopular items, i.e.,
items with low or few ratings, as materials for item-fusion.
We believe that we can expect that system usage can be
broadened by using such items effectively.

5. CONCLUSION
In this paper, we proposed a Fusion-based Recommender

System that aims to improve the serendipity of recommender
systems. The system is based on the novel notion that the
system finds new items, which have the mixed features of
two user-input items, produced by mixing the two items
together. The system consists of item-fusion methods and
scoring methods. We proposed three item-fusion methods
and eight scoring methods on the basis of the item-fusion
methods.

Experimental results showed that S1-II, S2a-II, S2b-II,
and S2b-III produced higher serendipitous items than base-
line methods produced. This paper describes these methods
and gives experimental results. The results also showed that
S2a-II could produce high serendipity in most cases. We also
found that S2b-II and S2b-III in case of using input items
with high mean ratings, and S2b-II in case of using input
items with high ratings could produce high serendipity, re-
spectively. These results suggest that effectiveness of the
system can be improved by introducing a switching method
that dynamically switches scoring methods depending on re-
lationship between user-input items.

In the future, we would like to analyze the results qualita-
tively. We want to know what kind of item pair yields what

kind of recommendations. Although we used static ratings
for judging useful items, we will conduct experiments with
real users for evaluating serendipity. We plan to implement
other feature representation of items, e.g., by a tag set and
feature vectors. We also plan to design user interface of the
system that makes the system usage more effective.
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