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Abstract

Most practical uses of Dynamic Bayesian
Networks (DBNs) involve temporal influ-
ences of the first order, i.e., influences be-
tween neighboring time steps. This choice is
a convenient approximation influenced by the
existence of efficient algorithms for first order
models and limitations of available tools. We
focus on the question whether constructing
higher time-order models is worth the effort
when the underlying system’s memory goes
beyond the current state. We present the re-
sults of an experiment with a series of DBN
models monitoring woman’s monthly cycle.
We show that higher order models are signif-
icantly more accurate. However, we have also
observed overfitting and a resulting decrease
in accuracy when the time order chosen is too
high.

1 Introduction

All real world systems change over time. Modeling
their equilibrium states or ignoring change altogether,
when it is sufficiently slow, is sufficient for solving a
wide spectrum of practical problems. In some cases,
however, it is necessary to follow the change that the
system is undergoing and introduce time as one of the
model variables.

We concentrate in this paper on models that belong to
the class of probabilistic graphical models, with their
two prominent members, Bayesian networks (BNs)
(Pearl, 1988) and dynamic Bayesian networks (DBNs)
(Dean & Kanazawa, 1989). BNs are widely used prac-
tical tools for knowledge representation and reasoning
under uncertainty in equilibrium systems. DBNs ex-
tend them to time-dependent domains by introducing
an explicit notion of time and influences that span over
time. Most practical uses of DBNs involve temporal

influences of the first order, i.e., influences between
neighboring time steps. This choice is a convenient
approximation influenced by existence of efficient algo-
rithms for first order models and limitations of avail-
able tools. After all, introducing higher order temporal
influences may be costly in terms of the resulting com-
putational complexity of inference, which is NP-hard
even for static models. Limiting temporal influences
to influences between neighboring states is equivalent
to assuming that the only thing that matters in the fu-
ture trajectory of the system is its current state. Many
real world systems, however, have memory that spans
beyond their current state.

The question that we pose in the paper is whether in-
troducing higher order influences, i.e., influences that
span over multiple steps, is worth the effort in the
sense of improving the accuracy of the model. The
idea of increasing modeling accuracy by means of in-
creasing the time order of the model was beautifully
illustrated by Shannon (1948). In his seminal paper,
he shows sentences in the English language, generated
by a series of Markov chain models of increasing time
order, trained by means of the same corpus of text.
The following sentence was generated by a first order
model:

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH
EEI ALHENHTTPA OOBTTVA NAH BRL.

Compare this with the following sentence generated by
a sixth order model:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM
FOR AN UNEXPECTED.

The resemblance of the latter sentence to ordinary En-
glish text, an informal measure of the model’s accu-
racy, has increased dramatically between the first and
the sixth orders. A first order model was essentially



impotent in its ability to model the problem.

While generation of English sentences may be too hard
of a problem, the vehicle for our experiments is the
problem of monitoring the woman’s monthly cycle, a
problem central to family planning. Every couple seek-
ing help in a fertility clinic is asked to monitor the
monthly cycle before any intervention is undertaken.
An accurate monitoring model can be a great aid in
natural family planning, indicating optimal days for
sexual intercourse. What is important from the per-
spective of the question posed in this paper is that
woman’s monthly cycle is a system with memory going
most certainly beyond one day and probably spanning
over a period of roughly a month.

We report the results of an experiment in which we
successively introduce higher order DBNs modeling
the monthly cycle and measure the accuracy of these
models in predicting the day of ovulation. We train
our models on real time series data obtained from a
longitudinal study of fecundability conducted in sev-
eral European centers (Colombo & Masarotto, 2000).
We show that increasing the time order of the model
greatly improves its accuracy. However, we also ob-
serve that when the time order is too high, the model
can overfit the data and the quality of its predictions
may decrease.

2 BNs and DBNs

Consider the simple BN shown in Figure 1, illustrat-
ing various causes and effects of allergy in children. All
variables in this example are Boolean. The tendency
to develop allergies has a hereditary component: Al-
lergic parents are more likely to have allergic children,
whose allergies are likely to be more severe than those
from non-allergic parents. Exposure to allergens, es-
pecially in early life, is also an important risk factor
for allergy. When an allergen enters the body of an
allergic child, the child can cough or develop a rash.
Figure 1 shows the dependency structure among the
variables and the conditional probability distributions
for each of the variables.

DBNs (Dean & Kanazawa, 1989) are an extension of
BNs for modeling dynamic systems. The term dy-
namic means that we model the system’s development
over time and not that the model structure and its pa-
rameters change over time, even though the latter is
theoretically possible. In a DBN, the state of a system
at time t is represented by a set of random variables
Xt = (Xt

1, . . . , X
t
n). The state at time t generally de-

pendents on the states at previous k time steps. There
is nothing in the theory that prevents k from being any
number between 1 and t− 1.

Figure 1: A simple BN illustrating selected causes and
effects of allergy in children

When each state of the model depends only on the
immediately preceding state (i.e., k = 1, the system is
first-order Markov, often assumed in practice), we rep-
resent the transition distribution P (Xt|Xt−1). This
can be done using a two-slice BN fragment (2TBN)
Bt, which contains variables from Xt whose parents
are variables from Xt−1 and/or Xt, and variables from
Xt−1 without their parents. A first order DBN is of-
ten defined as a pair of BNs (B0,B→), where B0 repre-
sents the initial distribution P (X0), and B→ is a two
time slice BN, that defines the transition distribution
P (Xt|Xt−1) as follows:

P (Xt|Xt−1) =
n∏

i=1

P (Xt
i |Pa(Xt

i )) .

Consider a two years old child whose parents suffer
from allergy and who has been exposed to allergens.
We know that this child has not developed any symp-
toms of allergy in the previous year. Suppose that we
want to know the probability that allergy appears in
the third year. If we use the BN pictured in Figure 1,
we omit all historical information except that for the
current year. Figure 2a shows a DBN of first temporal
order, which allows us to predict the probability of the
child developing allergy in this and in the future years.
Number of slices is the number of steps for which we
perform the inference. In this example, one step means
one year. Temporal plate is the part of a DBN that
contains nodes changing over time. Hereditary Factor
is outside of the temporal plate and, hence, is time
invariant.

Figure 2b shows a second time-order DBN, i.e., a
model in which there are two temporal arcs from node
Allergy, the first order takes the information from one
step before, the second from two steps before. Typi-
cally, the older the child, the lower the probability of
allergy appearing. And, generally, a child who has not
developed allergy two years in a row has a lower chance
of developing allergy in the third year. A reasonable
expectation is that modeling higher order dependen-
cies should increase the accuracy of the model.



Figure 2: DBNs modeling causes and effects an allergy
in children: first order (a) and second order (b) DBN

3 Woman’s monthly cycle

Woman’s monthly cycle is driven by a highly com-
plex interaction among hormones produced by three
organs of the body: the hypothalamus, the pituitary
gland, and the ovaries. There are five main hor-
mones involved in the menstrual cycle process: es-
trogen, progesterone, gonadotropin releasing hormone
(GnRH), follicle stimulating hormone (FSH), and lut-
enizing hormone (LH).

Figure 3: Levels of hormones during the phases of the
woman’s monthly cycle (Barron & Fehring, 2005)

The woman’s monthly cycle consists of four phases
(Figure 3 shows these four phases along with the asso-
ciated hormone levels): (1) menstruation, (2) the fol-
licular phase, (3) ovulation, and (4) the luteal phase.
Counting from the first day of the menstrual flow, the
length of each phase may vary from woman to woman
and then cycle to cycle.

In addition to measurable blood hormone levels, there
are several easily accessible indicators of the phase of
the cycle, two of which we will use in our models. Basal
body temperature (BBT) is defined as the body tem-
perature measured immediately after awakening and
before any physical activity has been undertaken. It
should be measured every day at the same time. Be-
fore ovulation, BBT is relatively low. Following the
ovulation, as a result of an increased level of proges-
terone in the body, women typically experience an in-
crease in the basal body temperature (BBT) of at least
0.2◦C. This shift indicates that ovulation has occurred.
The BBT charting may provide valuable information

about woman’s monthly cycle, such as duration of the
cycle, length of the follicular and luteal phases, and the
pattern of the timing of ovulation. Sometimes BBT
can rise due to causes other than ovulation. This atyp-
ical rise is treated as disturbance and can be caused
by a change in conditions around the measurement,
such as later measurement time, lack of sleep, differ-
ent thermometer, high stress, travel, or illness.

As the cycle progresses, due to hormonal fluctuations,
the cervical mucus increases in volume and changes
texture. When there is no mucus or the mucus dis-
charge is small, the day is considered infertile. There
can be also a feeling of dryness around the vulva.
Around the ovulation, mucus is the thinnest, clear-
est, and most abundant, resembling egg white. In the
luteal phase, it returns to the sticky stage.

It seems that the menstrual cycle is a temporal pro-
cess with memory spanning over the entire cycle. This
means that the current state is not only influenced by
the previous state but also by prior days, going back
to the beginning of the phase.

4 The Model

Accurate prediction of the fertile phase of the men-
strual cycle is critical for couples who want to conceive
or couples who want to avoid pregnancy using natural
methods. The fertile phase of the menstrual cycle is
defined as the time when an intercourse has a non-zero
probability of resulting in conception.

The number of fertile days during the menstrual cycle
is difficult to specify, as it depends on the life span
of the ovum and sperm, which varies from person to
person and from cycle to cycle. It is generally believed
that an ovum can be fertilized only within the first
24 hours after ovulation. Many authors agree that
the start of the fertile interval is strictly connected
with changes in vaginal discharge and, in particular,
estrogenic-type cervical mucus secretions. However,
they differ in their estimates of the length of the fertile
window. Potter (1961) calculated that there are only
two days during the menstrual cycle when a woman
can become pregnant. Wilcox et al. (1995) found that
the maximum sperm life span equals approximately
five days (in presence of sufficient level of estrogenic-
type mucus), which comes down to a fertile period
of six days, including the day of the ovulation. The
results of a multi-center study conducted by the World
Health Organization (WHO, 1983) estimate the fertile
period to be 10-days before ovulation. Natural family
planning methods assume this interval to be as long
as 13 days.

It is useful and important to be able to predict ovu-



lation. Because the fertile period starts roughly five
days before ovulation, prediction has to be made in
advance and, hence, asks for models that include an
explicit notion of time.

Figure 4: A first-order DBN model of woman’s
monthly cycle

Our model (Figure 4), combines information retrieved
from BBT charting with observations of the cervical
mucus secretions. It contains a variable Phase with
four states: menstruation, follicular, ovulation, and
luteal. We included three observation variables: Basal
Body Temperature (BBT), Bleeding and Mucus obser-
vation. All variables are discrete. BBT has two possi-
ble values: lower range and higher range, representing
temperature before and after the BBT shift respec-
tively. Bleeding describes whether on a particular day
the woman had menses or not. Cervical observation
can be in one of four states (s1 through s4), described
in detail in (Dunson, Sinai, & Colombo, 2001). We
modeled time explicitly as n time steps, where n is
the number of days of the longest monthly cycle of the
particular woman.

Admittedly, this is a simple model. However, we would
like to point out that it reasonably models the causal
interactions among the variables in the data available
to us.

5 The Training Data

Our training data are drawn from an Italian study
of daily fecundability (Colombo & Masarotto, 2000),
which enrolled women from seven European centers
(Milan, Verona, Lugano, Düsseldorf, Paris, London
and Brussels). To our knowledge, this is one of
the most comprehensive data sets describing woman’s
monthly cycle. Between the years 1992 and 1996, 782
women recorded a total of over six thousand monthly
cycles. Women participating in the study satisfied the

following five entry criteria: (1) experienced in use of a
Natural Family Planning method, (2) married or in a
stable relationship, (3) between 18th and 40th birth-
day at admission, (4) had at least one menses after
cessation of breastfeeding or after delivery, (5) not tak-
ing hormonal medication or drugs affecting fertility. In
addition, neither partner could be permanently infer-
tile and both had to be free from any illness that may
affect fertility.

In each menstrual cycle, the subject was asked to
record the days of her period, her basal body temper-
ature and any disturbances such as illness, disruption
of sleep or travel. She was also asked to observe and
chart her cervical mucus symptoms daily during the
cycle and to record every episode of coitus, with speci-
fication whether the couple used contraceptives or not.

Typically, a menstrual cycle is defined as the interval
in days between the first day of menstrual bleeding in
two neighboring cycles, where day 1 was the first day
of fresh red bleeding, excluding any preceding days
with spotting. The day of ovulation was identified
in each cycle from records of basal body temperature
and mucus symptoms. The daily mucus observations
were classified into four classes; ranging from a score of
1 (no discharge and dry) to 4 (transparent, stretchy,
slippery). The cervical mucus peak day was defined
as the last day with best quality mucus, in a specific
cycle of the woman. If there were different mucus ob-
servations on one day, the most fertile characteristic
of the mucus observed determined the classification.
To determine the BBT shift, the “three over six” rule
was used: The first time in the menstrual cycle when
three consecutive temperatures were registered, all of
which were above the average temperature of the last
six proceeding days.

6 Experiments

We tested our model on two different women taken
from the Italian study. For each woman, we created a
BN and nine DBNs of temporal orders ranging from
1 to 9, training them (i.e., learning their parameters)
on the available monthly charts, using the leave-one-
out method, i.e., training the network on all but one
chart and testing it on the remaining chart. Because of
computational limitations (with 30 time slices, ninth
order models become fairly complex), we had to find
women with a not too long average duration of the
follicular phase. We were able to find two women with
over 30 monthly charts each, whose follicular phase
lasted typically around 9 days. We set the number of
slices of the DBNs to the length of the longest cycle.

Just to give an idea of the capability of such models
to reproduce the monthly cycle, we present the prob-



Figure 5: Probabilities of each phase during the
monthly cycle: order 1 (a) and order 7 (b) DBNs

abilities of the four phases of the monthly cycle as a
function of time in Figure 5. These probabilities were
generated by models of the first (a) and the seventh
(b) order DBNs, trained on monthly charts of one of
the women in the data set. We entered no observation
into the models, except for anchoring the first time
step to the first day of menses, i.e., first day of the
monthly cycle. Please note the increased similarity of
the shape of the curves to that of the hormone levels
in Figure 3, which are direct indications of phases of
the monthly cycle. Memory of the order 7 model is
such that the model is capable of predicting roughly
the day of ovulation on the first day of menses.

To compare the accuracy of different models, we used
two measures: the true positive rate (TPR) and the
false positive rate (FPR). These are defined as TPR =
TP/(TP + FN) and FPR = FP/(FP + TN) respec-
tively. In our model, TP is the number of true pos-
itives, i.e., the number of days of the cycle classified
as ovulation that in fact were ovulation. FP is the
number of false positives, i.e., the number of days of

the cycle classified as ovulation that in fact belong to
menstruation, follicular, or lutheal phase. TN is the
number of true negatives, i.e., the number of days of
the cycle not classified as ovulation that in fact belong
to menstruation, follicular, or lutheal phase. FN is the
number of false negatives, i.e., the number of days of
the cycle not classified as ovulation that are ovulation.

From the practical perspective, for a model of a
monthly cycle to be useful, it has to predict the day
of ovulation at least five days in advance. Please note
that because of a possible application of a model like
this in family planning, false negatives may be very
costly, so the model should minimize its false nega-
tive rate to zero. This is essentially the case with all
natural family planning methods.

For each network, we created ROC graphs (Fawcett,
2003) by plotting sensitivity (TPR) vs. complement of
specificity (1−FPR). For each model, we had as many
curves as there were cycles of the particular woman
available. To plot the ROC curves, we used vertical av-
eraging, i.e., for each FPR we took the averaged TPRs
of the ROC curves over all cycles. For each curve, we
also calculated the area under the ROC curve (AUC),
which is a measure of model’s ability to predict ovu-
lation five days in advance. A useless model would
have the AUC of 0.5. A model with perfect ability
to predict would have the AUC of 1.0. If the 95%
confidence interval of the model’s AUC would include
0.5, the model would be not likely to predict accu-
rately. We used ROCR (Sing, Sander, Beerenwinkel,
& Lengauer, 1975), an R package for evaluating and
visualizing classifier performance.

Figure 6 shows selected ROC curves created for the
two selected women: static BN, first order DBN, DBNs
with temporal orders from first to fourth, from first
to sixth, from first to seventh, and with temporal or-
ders from first to ninth. We did not picture every
curve in order to avoid clattering the graphs but in-
stead showed the ranges (vertical lines on the plot).
Figure 7 presents the average AUCs for these women
along with their ranges (vertical bars).

As we can see, in both women, a BN is not much bet-
ter than a random classifier. From all DBNs, the net-
works with first temporal order and with first and sec-
ond temporal orders give the worst results. In case of
woman ID 20050265, the higher order of the network,
the higher sensitivity at the same point of specificity
(Figure 6a).

Figure 6b shows that for woman ID 20380003 the curve
for DBN with orders higher than 6 does not achieve
value TPR = 1.0 until 1 − FPR = 0.42. Starting at
the 1−FPR = 0.28, these high order DBNs give worse
results than DBNs with lower temporal orders. Fig-



Figure 6: ROC curves with vertical averaging of BN
and DBNs for prediction of the ovulation day

ure 8 shows this for each cycle separately. As we can
see, there is one curve, whose AUC is smaller than 0.5.
In this cycle, the follicular phase lasted only six days,
while in all previous cycles its most common length
was nine days. The model, learned on the basis of
previous cycles, predicted ovulation day for the 15th
day, while in reality it took place on the 12th day.
Figure 9 is an equivalent of Figure 6b but with this
anomalous cycle omitted. In this case, the higher or-
der of the network, the higher sensitivity at the same
point of specificity.

Clearly, too high of an order can reduce accuracy of
the model. What is the optimal order of a model? We
performed a number of additional experiments with
monthly cycles of other women, varying the model or-

Figure 7: AUC ROC curves of BN and DBNs for pre-
diction of the ovulation day

der, and came to the conclusion that the optimal order
of the DBN model depends directly on the nature of
the system and the task that we set to perform. This
number should be derived from the domain knowledge.
If anomalies are to be expected, it does not make any
sense to go beyond the order equal to the smallest of
the following three numbers: (1) the length of the sys-
tem’s memory, which could be argued in our case to
be the length of the woman’s monthly cycle, (2) the
length of the prediction horizon, which is the number
of slices that we want to predict ahead (6 in our case),
and (3) the maximum order that is still computable
comfortably, which was in case of SMILE around 9.

Furthermore, while any DBN model should contain at
least one first order influence (if that were not the case,



Figure 8: ROC curves for individual cycles of a DBN
of order 1 through 9

Figure 9: ROC curve for the DBN with temporal or-
ders from 1 to 9 with anomalous cycle removed

some slices would be disconnected from the model!), a
model of order k does not need to include influences of
all orders between 1 and k−1. In our experiments with
the monthly cycle, we focused on those influences that
seemed critical for phase transitions and used orders
that were equal to the lengths of the menstruation and
the follicular phases, as given usually a clear indication
the end of the menses, these influences could fairly
precisely pinpoint the expected day of ovulation, even
without additional observations.

Figure 10 shows ROC curves generated by DBNs with

Figure 10: ROC curves with vertical averaging of ad-
ditional DBNs for prediction of the ovulation day

temporal orders including the shortest, the longest, the
most common, and the average length of the menstru-
ation and the follicular phases. The last pictured net-
works have temporal orders connected with the mini-
mum, maximum, mode, and average length of the fol-
licular phase of the particular woman, whose charts
were used to train the model. Figure 11 shows net-
works with selected orders for woman 20380003 with
the anomalous cycle removed.

7 Discussion

We have presented the results of an experiment with
a series of DBN models monitoring woman’s monthly
cycle. We have shown that higher order models are



Figure 11: ROC curves with vertical averaging of ad-
ditional DBNs for prediction of the ovulation day with
the anomalous cycle removed

significantly more accurate than first order models, as
summarized by the AUC graph in Figure 7. The ROC
curves for higher order models were clearly closer to
the upper left corner of an ROC graph, which indicates
a better ability of the model to predict ovulation.

However, we also observed overfitting and a result-
ing decrease in accuracy when the time order cho-
sen was too high. Having learned the lengths of the
phases, which were shorter than the model’s memory,
the model seemed to lose its ability to predict accu-
rately, when the cycle happened to be anomalous in
terms of its length. Model’s memory seemed to have a
stronger influence on prediction than observations col-
lected during the cycle. DBNs of lower orders reached
sensitivity of 1.0 for lower values of specificity (Fig-
ures 6b and 10).

Thorough understanding of the underlying system and
the task at hand is required to select the optimal or-
der of the model. In addition to computational issues
and issues related to a negative influence of model com-
plexity on the quality of parameters learned from data,
one should avoid choosing orders that are higher than
system’s memory and the task horizon.
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