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Abstract

In recent years, electronic tracking has pro-
vided voluminous data on vessel movements,
leading researchers to try various data mining
techniques to find patterns and, especially,
deviations from patterns, i.e., for anomaly
detection. Here we tackle anomaly detection
with Bayesian Networks, learning them from
real world Automated Identification System
(AIS) data, and from supplementary data,
producing both dynamic and static Bayesian
network models. We find that the learned
networks are quite easy to examine and ver-
ify despite incorporating a large number of
variables. Combining the mined models im-
proves performance in a variety of cases,
demonstrating that learning Bayesian Net-
works from track data is a promising ap-
proach to anomaly detection.

1 INTRODUCTION

A wealth of information on vessel movements has be-
come available to authorities through the use of the
Automated Identification System (AIS). Much of this
data has even filtered through to the general public via
the Internet. Surveillance authorities are interested in
using this data to uncover threats to security, illegal
trafficking or other risks. While in the past, surveil-
lance has suffered from a lack of solid data, electronic
tracking has transformed the problem into one of over-
abundance, leading to a need for automated analysis.

The main goal of vessel behaviour analysis is to iden-
tify anomalies. This requires the development of a
model representing normal behaviour, with anoma-
lous behaviour being then identified by the extent of
a vessel’s deviation from normality. A common ap-
proach is to cluster the data around a set of points in
a multi-dimensional feature space, where the features
of the track are items such as longitude and latitude,
speed and course (Laxhammar, 2008). Tracks that
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are within or near one of these clusters may be con-
sidered normal, while the remainder are flagged as po-
tential anomalies. Researchers use many different ma-
chine learning techniques to generate normality mod-
els from vessel movement data (typically AIS data),
and the models are commonly specified in the language
of Gaussian mixture models (Laxhammar, 2008), sup-
port vector machines (Li et al., 2006), neural networks
and others. A disadvantage of these approaches is that
they do not provide a causal model that a human user,
such as a surveillance officer, can understand, interact
with and explore.

Here, we explore the use of Bayesian Networks (BNs)
(Pearl, 1988; Korb and Nicholson, 2010) for analysing
vessel behaviour and detecting anomalies. While BNs
have been widely applied for surveillance and anomaly
detection (e.g., Wong et al., 2003; Cansado and Soto,
2008; Wang et al., 2008; Loy et al., 2010), to date
there have been only a few preliminary applications
of BNs to maritime anomaly detection. As noted by
Johansson and Falkman (2007), however, BNs poten-
tially have two substantial advantages in this domain
over other types of models: 1) BN models are eas-
ily understood by non-specialists and 2) they allow for
the straightforward incorporation of expert knowledge.
They can also represent causal relations directly and,
in that case, have the advantage of being more easily
verified and validated, as we show in Section 3.

Johansson and Falkman (2007) used the constraint-
based PC algorithm (Spirtes et al., 1993) to learn
BNs from simulated data representing normal vessel
behaviour. While they claimed their approach iden-
tifies a “reasonable proportion” of anomalous tracks,
while missing others, no specifics such as false (or true)
positive rates were given, nor did they examine how
their parameters affect anomaly detection. Helldin
and Riveiro (2009) also looked at the use of BNs in
anomaly detection with AIS data, but focused specifi-
cally on how the reasoning capabilities of a BN can as-
sist surveillance system operators, such as by flagging
potential anomalies, but they did not look at learning
BNs from the data.

Outside of the maritime domain, Wong et al. (2003)



use BNs to detect disease outbreaks by detecting
anomalous patterns in health care data, such as an
upswing in the number of people with flu or an un-
usual decrease in the number of people buying decon-
gestants. Wong et al. use a method called WSARE
(What’s Strange About Recent Events) to detect when
a temporal stream of such data begins deviating from
its own baseline profile. This differs from our approach
here in that we are concerned with tracks as a whole,
rather than trying to identify if and when a track has
begun deviating from a normal baseline.

In our study here we data mined AIS data supplied by
the Australian Defence Science and Technology Organ-
isation (DSTO). Since many factors can contribute to
the (ab)normality of a vessel’s behaviour, in this study
we also enhanced that data set by adding information
such as weather and time, as well as vessel interactions.
We used a metric BN learner, CaMML (Wallace and
Korb, 1999), that flexibly allows various kinds of struc-
tural priors (e.g., directed arcs and tiers), aiding the
learning of sensible models.

We investigated two approaches to model learning.
First, we trained a model on the track data in its orig-
inal time series form. For variables related to motion,
we added new variables to represent the motion at
both step k and k + 1, effectively making the data
represent a dynamic Bayesian network (DBN), which
have been used successfully for other kinds of anomaly
detection (e.g., Loy et al., 2010). Second, we also cre-
ated single summary records of each track and learned
static models from them. Summary data included av-
erage speed and course, number of stops, major stop-
ping points and percentage of time travelling straight.

To assess the value of the networks in anomaly detec-
tion we took the common approach of using a mea-
sure for how probable a given track is according to the
learned models of normality. This measure was applied
to data sets representing both normal and anomalous
tracks. In addition, we also mutated the presumed
normal tracks to help us see how the network’s proba-
bility estimates change. This led to a very interesting
understanding of both the network’s behaviour and the
nature of the normal data set.

Next we describe our approach to the main compo-
nents of this study, including details of the time se-
ries and track summary methods, the variables used
by the BNs and the learning algorithms. We analyse
interesting aspects of the learned BNs, then present
experimental results in Section 3, which demonstrate
the value of Bayesian networks for anomaly detection.

2 APPROACH

While our basic approach is well known — applying a
BN learner to produce normality models to be used in
assessing degrees of anomaly — in practice the exper-
imental workflow was complex, as shown in Figure 1.
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Figure 1: Workflow for the experiments.

2.1 THE DATA

We used AIS data from May 1st to July 31st, 2009 for
a section of the NSW coast framing Sydney harbour
(see Figure 2). The raw data initially contained just
under 9.2 million rows and each row consisted of seven
fields: the vessel’s MMSI (a nine digit numerical vessel
identifier), a timestamp, the latitude and longitude of
the vessel, and its reported speed, course and heading
(see Table 1). We did not use the MMSI directly in
learning, but did use it in pre-processing and to locate
additional information about the vessel.

The AIS data was cleaned and separated into ‘tracks’,
first by assigning each record to a separate track based
on the MMSI. We then cleaned the data in each track
by rounding (and interpolating) each row to the near-
est 10 second interval and eliminating duplicate data.
However, since the raw data contained many cases in
which a single vessel transmits for much of the three
month period of the data, further track splitting was
required. We split a track record into multiple records
when the vessel was stopped or not transmitting for 6
hours or more.! This yielded 2,473 tracks across 544
unique MMSIs averaging 1,995 rows each.

Vessel track anomaly detection models have been lim-

We note, however, that since such stops may them-
selves indicate an anomaly, deciding what constitutes a
track warrants future investigation.



Figure 2: Example AIS tracks.

Table 1: An example of five consecutive rows from
the original AIS data, with information removed to
preserve anonymity. FEach row has been produced by
a different ship.

MMSI  Timestamp Lat Lon Speed  Course Hdng
X 200905X -33.X  151.X 18.7 49.9 46

X 200905X -34.X 151.X 2.1 218 80

X 200905X -33.X  151.X O 0 511
X 200905X -34.X  151.X 175 183 179
X 200905X -33.X  151.X 1.2 28 64

ited to kinematic variables, such as location, speed and
course, coupled with the type of the vessel (e.g., Jo-
hansson and Falkman, 2007). One aim of our study
was to investigate the possible advantages of consider-
ing additional factors. We added variables related to
the ship itself (including type, dimensions and weight),
the weather (such as temperature, cloud cover and
wind speed), natural temporal factors (including hour
of day and time since dawn or dusk), kinematic DBN
nodes and elementary information on vessel interac-
tions for both the time series and track summary mod-
els. Information about each ship was obtained from
three locations: the public websites marinetraffic.com
and digital-seas.com and also from the DSTO. Cov-
erage was generally excellent; for example, only 13 of
the 544 vessels lacked ship type information. On the
few occasions in which data was missing, we used a
“missing” value. Weather information for the period
was retrieved from the Australian Bureau of Meteo-
rology website, based on observation stations around
Sydney harbour (Bureau of Meteorology, 2010).

2.2 THE MODELS

We investigated two kinds of model based on two dif-
ferent forms of the training data. The first, the time
series model, uses the data in its original time series
form. Each timestep in a track was associated with a
set of variables, such as latitude, longitude, speed and
so on, that have corresponding nodes in the BN. This
approach, of course, has the advantage that learned
models can be used in online analysis, but it may miss
patterns at a broader time scale.

The second model, the track summary model, was

based on summaries of each track — e.g., identifying
for a given track the number of times the vessel stops,
the main stopping locations, etc. While track sum-
maries cannot be used as easily in real-time surveil-
lance, they can capture patterns that occur at the time
scale of the track as a whole. For example, if a ves-
sel heads straight out to sea, turns around at a con-
stant rate, then returns directly home, each timestep
in the track may appear perfectly normal to any time
series-based normality model. However, the behaviour
embodied by the track as a whole may be anomalous
and worthy of attention. The variables for each type
of model are in Figure 3 (see Mascaro et al., 2010).

2.3 CLASSIFICATION AND
DISCRETIZATION

We were interested in whether the pre-processing sum-
marization might help us directly to identify types
of tracks and anomalies. To test this, we classified
the summary tracks using Snob (Wallace and Free-
man, 1992), an unsupervised clustering tool compara-
ble to AutoClass (Cheeseman et al., 1988), producing
a class variable for each track (see ‘Class’ node in Fig-
ure 3(b)).

Discretization of variables in the data set was needed
for technical reasons: (1) the version of CaMML that
allows structural priors requires discrete data and (2)
we used Netica, which also requires discrete variables.
To perform discretization, we again used Snob to clas-
sify each continuous variable in one dimension, with
each discovered class becoming a state. Using Snob
in this way allowed us to recover any hidden regu-
larities and is similar to the attribute clustering ap-
proach taken by Li et al. (2006). This can often lead
to nodes with uneven distributions. For example, the
‘Speed’ node in Figure 3a contains lower probability
states wedged amongst higher probability states. One
might expect to see a more even distribution, however
Snob has identified 12 underlying classes correspond-
ing to these 12 states — some of which are much more
frequent than their neighbours.

2.4 THE CaMML BN LEARNER

In this work, we make use of the CaMML BN learner
(Wallace and Korb, 1999). CaMML (Causal discov-
ery via MML) learns causal BNs from data using a
stochastic search (MCMC) and score approach. After
learning the structure, we parameterized the model
with a standard counting-based procedure (Hecker-
man, 1998), as did Johansson and Falkman (2007).

CaMML allows one to specify different types of ex-
pert priors (ODonnell et al., 2006). These can be hard
priors (e.g., an arc must be present or absent) or soft
priors that specify the probability of certain arcs con-
necting pairs of variables; other soft priors for more
indirect dependencies can also be specified. Here, we
used some simple hard priors in the time series model



Table 2: Causal tiers for the variables in the time series
model, given as hard priors to CaMML.

1st Tier  ShipType, ShipSize, Rainfall, Max-

Temp, EstWindSpeed, EstOktas

2nd Tier Lat, Lon, Speed, Course, Heading,
Acceleration, DayOfWeek, HourOfDay,
CourseChangeRate, HeadingChangeR-
ate, NumCloselnteractions, NumLo-
callnteractions, ClosestType, Clos-
estSpeed, ClosestCourse, ClosestDis-
tance, SinceDawn, SinceDusk

3rd Tier Lat-t2, Lon-t2, Course-t2, Heading-t2,

Speed-t2, Acceleration-t2

to guarantee that the right DBN relationships held
across time steps. We also specified priors in the form
of “temporal tiers”, putting a temporal partial order
over variables and so indicating which variables could
not be ancestors of which others (Table 2).

2.5 EXPERIMENTAL METHODOLOGY

After pre-processing the data, we ran experiments us-
ing CaMML. We divided the data randomly (both
time series and track summaries) into 80% (or 1,978
tracks) for training and 20% for testing. As is common
with anomaly detection models (e.g. Das and Schnei-
der, 2007; Johansson and Falkman, 2007), the training
data consisted of unfiltered real or ‘normal’ data in or-
der to produce a model of normality against which we
could assess deviations. We did a set of 10 runs of
CaMML, using different seeds, taking CaMML’s re-
ported “best” (highest posterior) network each time,
from which we derived the reported results.

3 EVALUATION

3.1 INTERPRETING THE LEARNED
MODELS

Figure 3(a) shows an example BN produced by
CaMML from the time series data, while Figure 3(b)
shows an example learned from the track summary
data. It is clear that few arcs in the learned networks
represent intuitive direct causal relations, other than
the DBN arcs (given as hard priors) and the weather
variables. Many of the other variables are simultane-
ous properties of the vessel, which will be correlated
by hidden common ancestors. For example, while we
would expect a ship’s speed, size and course to be
related, it isn’t obvious what the underlying causes
might be. They may be such things as the business
the vessel belongs to, the purpose of its trip or the
nature of its crew and contents. Some of these hidden
causes will be partly captured by the ShipType, e.g.,
the purpose of a trip employing a cargo ship is almost

always transport. This explains why that variable is
the common cause of so many others in the time series
models. In the track summary network this common
cause role is assumed by the ‘Class’ variable instead.

Causal discovery relying on joint sample data very of-
ten gets arc directions wrong, in the anti-causal direc-
tion, because it is dependent upon sparse information
about any uncovered collisions (where two parents of
a child node are not themselves directly connected) to
infer all arc directions. For example, Figure 3(a) shows
ShipType— Weather, for a variety of weather variables.
Of course, ship type cannot affect the weather. A plau-
sible interpretation of this result is that weather con-
ditions do affect which types of ship put to sea, so,
if anything, the arc directions here are reversed. The
simplest and very effective method of dealing with this
problem is to introduce extra prior constraints, such
as putting some weather variables into a zeroeth Tier.

Exploring Bayesian networks is very easy and natural
and here turned up many points of interest. In con-
firming the reasonableness of the time series model,
we found that entering ‘Tug’ or ‘Pilot Vessel’ into the
‘ShipType’ variable significantly increases the chance
of another vessel being nearby. Cargo ships, on the
other hand, travel mostly solo and tankers almost
exclusively so. Ship sizes (i.e., the ‘ShipSize’ vari-
able) are also highly correlated with position (the ‘Lat’
and ‘Lon’ variables) via the ‘ShipType’ variable, with
larger vessels tending to appear in a restricted set of lo-
cations. The track summary model shows that cargo
ships and tankers spend most of their time travelling
straight, while tug directions are much more variable.
Tugs also tend to stop in different locations from cargo
ships, and they tend to be stopped for longer periods
than cargo ships.

3.2 ANOMALY SCORES

There is no generally accepted method for detect-
ing anomalies from BN models. Jensen and Nielsen
(2007) proposed a “conflict measure” to detect possible
incoherence in evidence E = {Fy =ey,..., Ep, = e }:

P(Elzel)x...xP(Em:em)
P(E)

Jensen and Nielsen use this to identify when a power
plant begins behaving abnormally. Unfortunately, this
will only catch cases where each attribute is indepen-
dently common but jointly uncommon. Here, we’re
interested in any kind of joint uncommonness, even
when variables are independently uncommon, which
simply comes down to a difference in requirements.
In other approaches Loy et al. (2010) used learned
DBNs to calculate log-likelihoods and compare them
against thresholds selected to maximize the accuracy,
extended to detecting abnormal correlations between
multiple objects. Cansado and Soto (2008) simply as-
sumed that records with low probabilities given the
learned BN are anomalies.

C(E) = log
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Figure 3: Example BNs produced by CaMML for the (a) time series data and (b) track summary data.
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Figure 4: The KDE distributions of anomaly scores
for all tracks in the data set according to the (a) time
series and (b) track summary networks.

We started from the same assumption as Cansado and
Soto, however we think choosing any particular thresh-
old for deciding when tracks are anomalous would be
arbitrary. In real applications a specific threshold may
present itself as most suitable, but in general we feel it
is better to present the probability itself to surveillance
operators, albeit in a more convenient form.

Thus, for track summary data, we first computed each
track’s prior probability given the normality model.
Since these probabilities are usually very low (around
the order of 171%) we took the negative log (base 2) to
produce an “anomaly score” (i.e., the number of bits
required to describe the data, given the model). Put
simply, the higher the anomaly score, the less probable
the track.

For time series networks we took a similar approach,
but instead fed each timestep of the track into the net-
work to yield a probability estimate for that timestep.
We then took the average probability over all timesteps
to generate a negative log anomaly score. For time se-
ries data it is possible, of course, to base anomaly cri-
teria upon changes in the track over time. Johansson
and Falkman (2007), for example, used sliding win-
dows across a track, looking for any anomalous win-
dows. For this study, however, we focused on criteria
for assessing the tracks as wholes, leaving this kind of
alternative for future investigation.

Calculating anomaly scores for all the tracks in our
data set and plotting the distribution of the results
(using a Gaussian Kernel Density Estimator [KDE)),
we obtained Figure 4. These show a fair amount of
diversity among anomaly scores, i.e. they do not sim-
ply clump around the lowest possible score. Note that
the scores produced by the time series model are quite
distinct from those of the track summary model. One

likely reason is that the track summary scores are sim-
ply based on more variables, making each instance
more specific and less probable. There is a surpris-
ingly small correlation between the two sets of scores
(r =0.159; p < 0.001).2 The two models look at differ-
ent aspects of each track, and, as we see below, rein-
force each other when performing anomaly detection.

3.3 RESULTS ON ANOMALOUS DATA

Unfortunately, we did not have any access to known
anomalous tracks nor are there any standardised or
publicly available vessel track data sets containing
anomalies (or otherwise). Nevertheless, there are
many ways to create anomalous data. Cansado and
Soto (2008) generated anomalies by modifying se-
lected attributes to random values within their ranges.
Johansson and Falkman (2007) generated anomalous
data using anomalous models.? Here, we tried three
approaches, partly inspired by these previous meth-
ods: modifying instances by swapping incorrect ship
type information, splicing tracks together, and draw-
ing anomalous tracks.

3.3.1 The False Ship Effect

For each track in the training set, the ship type infor-
mation was swapped with that of another randomly
selected ship of a different type, leaving the track data
alone. Figure 5(a) shows how this affected the anomaly
score. In most cases this false ship effect is positive,
increasing the anomaly score. The false ship effect for
the time series model is positive in around 87.2% of
the cases as opposed to 69.4% of cases for the track
summary model. Sometimes, however, tracks have be-
come more probable given incorrect ship information,
which itself seems anomalous! To be sure, many of the
ship types are in fact quite similar (e.g., there are sev-
eral sub-categories of cargo ship) so switching between
these may randomly produce a more likely track. How-
ever, this does not account for all the cases. A closer
look at these showed that many are highly improbable
(i.e., have high anomaly scores), suggesting that ei-
ther they have been mislabelled or, more intriguingly,
that they do indeed behave anomalously according to
their type. This suggests a new criterion for anoma-
lousness based not merely upon the probability of the
given track but on what alterations might explain the
track better. This has some of the spirit of Jensen and
Nielsen’s conflict measure, though is clearly quite dif-
ferent; we leave this possibility for future exploration.

Figures 5(b) and 5(c) show scatter plots of the anomaly
score versus the false ship effect. With the time series
model, we can see that as the anomaly score grows, the

2Earlier iterations with cruder discretizations and more

variables in common showed a stronger correlation — how-
ever, as models grew more detailed, the correlation shrank.

3Wang et al. (2008), without known anomalous data,
simply weakened their threshold to find “anomalies”,
whether they were there are not!
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Figure 5: False ship effect: (a) anomaly score differ-
ences for false ship information versus correct ship in-
formation, sorted by score; and scatter plots for (b)
time series and (c¢) track summary networks.

false ship effect falls (r =-0.70, p < 0.01). This also
occurs with the track summary model, to a smaller
extent (r =-0.31, p < 0.01).

3.3.2 Track Splices

We also created anomalous tracks by splicing random
tracks together. This allowed us to test our models
for their ability to detect discontinuities as well as ma-
jor changes in behaviour. Specifically, we selected 140
tracks at random and replaced their tails with those of
other tracks (retaining the times and types of the orig-
inal track). We spliced half of the tracks with those
created by ships of a different type and we spliced the
other half with tracks created by ships of the same
type. When assessing these tracks using the track sum-
mary model, tracks forged from different types yield
an average anomaly score of 121.3 while those forged
from the same type yield an anomaly score of 115.4
(p < 0.01). Both scores are significantly different from
the average anomaly score for all data of 89.0.

With the spliced tracks, as we expected the track sum-
mary model performed slightly better than the time se-
ries approach, because the time series model is not able
to detect unusual behaviour across the whole track.
Tracks put together from ships of different types pro-
duced an average score of 48.9 while those spliced from
same types had a score of 45.6; while a small differ-
ence, this was statistically significant (p < 0.01). In
addition, while the higher score was significantly dif-
ferent (p < 0.01) from the average of the full data set
(43.8), the lower score was not (p > 0.01). Here we
can see the advantage of the higher level view of the
track summaries.

3.3.3 Manually drawn anomalies

Finally, we tested models using anomalous tracks
drawn with a mouse over a map, where the mouse loca-
tion and speed generated the vessel location and speed
respectively. Other factors were created randomly, in-
cluding the time and duration, noise in the data, vessel
details and maximum speed. This allowed us to com-
pare the performance of both models across several
different categories of anomalous behaviour, thereby
shedding light on the strengths and weaknesses of each
model. Anomalous behaviour in these tracks included
very noisy data, close interactions with many other
vessels, vessels that circle in unusual patterns, vessels
travelling over land, overly short tracks in the middle
of the sea and vessels behaving against their type. In
all, 107 such tracks were created.

When combined with the normal track test data, and
scored using the two models both independently and
combined, the ROC (receiver operating characteristic)
curves of Figure 6 are the result. The ROC curves
demonstrate the tradeoffs that can be made (if we
were to settle on specific thresholds for anomalies) be-
tween false positives and true positives; the greater
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Figure 6: ROC curves for test data, containing both normal tracks and manually created anomalous tracks,
given the (left) time series, (middle) track summary and (right) combined models.

the area under the curve (AUC), the less severe the
tradeoff needs to be. We can see that the track sum-
mary model (with an AUC of 0.780) performs better
than the time series model (AUC 0.712). Adding the
anomaly scores from the two models together (in effect,
creating a combined model with equal weight given to
each individual model) performs better again (AUC
0.809). Table 3 shows the average scores each model
yielded for various kinds of anomalous tracks. We can
see that both models easily detected the tracks con-
taining too many close interactions (average scores of
139.9 and 75.8, against the test averages of 90.8 and
45.7, giving Deltas of +49.1 and 430.1 for track sum-
mary and time series models, respectively). The time
series model detected overly short tracks best (track
summary: —+4.7; time series: +17), while the track
summary model substantially outperformed the time
series model for tracks containing unusual stops, as
would be expected (track summary: +28.3; time se-
ries: +2.9). In most cases, the track summary model
outperformed the time series model.

3.3.4 Testing on Johansson & Falkman’s
simulated data

We also applied our methods to the simulated data
used by Johansson and Falkman (2007), both normal
and anomalous. Our models, while not well suited
to the simulated data, performed reasonably well. In
particular, with the track summary model, anomalous
tracks received an average anomaly score of 22, while
normal tracks averaged 17; while in the time series
model, anomalous tracks received an average score of
29, with normal tracks averaging 25. When we cal-
culated the ROC curves, we found that the time se-
ries model performed better with this data set with an
AUC of 0.691, over the track summary AUC of 0.652.
This was likely due to a lack of extended ship type
information. The combined model (whose ROC curve
is shown in Figure 7) again performs better than both
individually, with an AUC of 0.727.

Combined ROC curve

True positive rate

False positive rate

Figure 7: ROC curves for the Johansson and Falkman
data using the combined models.

We also examined what happens when the ship type
of the tracks is altered. Interestingly, the only cases in
which this change created a notable negative false ship
effect (i.e., increased the probability of the track) again
involved high anomaly scores. These scores were 25
and above for the track summaries and 36 and above
for the time series — both much higher than the re-
spective average scores for the anomalous tracks.*

4 CONCLUSION

We have demonstrated Bayesian Networks are a
promising tool for detecting anomalies in vessel tracks.
By using a BN learner on AIS data supplemented
by additional real world data, we produced both
dynamic and static networks, which demonstrated
distinct and complementary strengths in identifying
anomalies. Thus, we were able to improve anomaly
detection by combining their assessments. This sug-

4For further details of our comparison with Johansson
& Falkman’s work, see Mascaro et al. (2010).



Table 3: Average anomaly scores for various forms of anomaly. Columns headed ‘Delta’ indicate the difference

from the average score for normal test tracks.

Track Time
Summary Series
Type Score Delta Score Delta
Normal test tracks 90.8 (0) 45.7 (0)
" Random movement in the middle of water 102.4° +11.7 50,8 451
~Closed tracks in the middle of water 1017 +10.9 537 480
~Very short tracks T 955 4T 62.7 4170
“Unusual stops Ty 1191 +28.3 48.6° 429
Tracks with many interactions 7 139.9 +49.1 7584301
Tracks with many Toops T 12627 +354 52,7 40T
~Travel over land T 1222 +31.4 60.2 4145
Appearing at edges of observable area only =~ 1035 127 542486
~Very noisy observations T 135.2° +44.4 546 489
Tracks behaving against type 113.7 +229 578 4120
Multiple anomalies T Y 1269 +36.1 53.9 482

gests that learning networks at still additional time
scales, intermediate between the full track and each
AIS snapshot, may improve anomaly detection even
further. Such approaches may well generalize to other
kinds of anomaly detection and can be extended to
work with other kinds of track, such as those created
by cars, planes and humans.
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