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Abstract

Building probabilistic models for industrial
applications cannot be done effectively with-
out making use of knowledge engineering
methods that are geared to the industrial set-
ting. In this paper, we build on well-known
modelling methods from linear dynamic sys-
tem theory as commonly used by the engi-
neering community to facilitate the system-
atic creation of probabilistic graphical mod-
els. In particular, we explore a direction of
research where the parameters of a linear dy-
namic system are assumed to be uncertain.
As a case study, the heating process of paper
in a printer is modelled. Different options
for the representation, inference and learning
of such a system are discussed, and experi-
mental results obtained by this approach are
presented. We conclude that the methods de-
veloped in this paper offer an attractive foun-
dation for a methodology for building indus-
trial, probabilistic graphical models.

1 Introduction

As part of the manual construction process of a
Bayesian network for an actual problem one needs to
somehow translate knowledge that is available in the
problem domain to an appropriate graphical structure.
Problem characteristics also play a major role in the
choice of the type of the associated local probability
distributions. The whole process can be looked on as a
form of knowledge engineering, where the actual con-
struction of the Bayesian network is only one of the
many needed activities in the development process.
The acquisition of knowledge from domain experts is
traditionally seen as one of the most important bot-
tlenecks in knowledge engineering. It is well known
that this can be greatly alleviated if there is an easy

mapping from the informal ways domain knowledge
is described, in documents or verbally by experts, to
the Bayesian network formalism [7]. A typical exam-
ple of such a mapping is the exploitation of available
causal knowledge in a particular domain; often, causal
knowledge can be easily translated to an initial graph
structure of a Bayesian network, which can be refined
later, for example by examining the conditional in-
dependence relationship represented by the resulting
network. Fields where causal knowledge has been suc-
cessfully used in knowledge engineering for Bayesian
networks include medicine and biology.

However, for industrial applications the situation is
somewhat different. This is mainly because in time,
engineers have developed their own notational conven-
tions and formalisms to get a grip on the domain of
concern in the system-development process. In addi-
tion, industrial artifacts are designed by humans, and
already early in the design process models are available
that also can be used for other purposes: model-based
design and development is here the central paradigm.
Thus, rather than replacing methods from engineer-
ing by some new and unrelated methods, a better op-
tion seems to be to deploy as many of the engineer-
ing principles, methods, and assumptions as possible.
Linearity is one of the assumptions frequently used,
as it facilitates the development of complex models as
industrial applications often are. Another commonly
used method is the use of diagrams that act as ab-
stractions of the system being developed. Diagrams
act as important means for communication. Ideally,
one would like to use similar diagrams as a starting
point for building Bayesian networks or related prob-
abilistic graphical models.

In this paper we explore these ideas by taking Linear
Dynamic Systems, LDS for short, as a start for the con-
struction process. LDS models enjoy a well-developed
theory and practice, as they are widely used through-
out many engineering disciplines for tracking system
behaviour (cf. the well-known Kalman filter [4]) as well



as for controlling this behaviour. Like Bayesian net-
works, an LDS can often be represented by a graphical
diagram, which facilitates documentation and commu-
nication of the model among experts and non-experts.

Although an LDS is deterministic in nature, it is of-
ten used in situations that involve uncertainty. The
Kalman filter is the canonical example here: given
some noisy observations, it determines the expected
current state of the system (mean and variance). How-
ever, the Kalman filter only accounts for one specific
type of uncertainty: additive linear Gaussian noise on
the state and output variables.

In this article, we explore a different direction of aug-
menting an LDS with probabilities: we regard the pa-
rameters as unknown. This allows us for example to
model a printer that heats different types of paper, in
which it is uncertain what the current type is. Pre-
vious Bayesian networks modelling this situation were
developed in a laborious ad hoc manner by close coop-
eration of domain experts and probabilistic modelling
experts [3]; in this article we aim for a more systematic
approach.

2 LDS models and their role in the
engineering process

2.1 Basic definitions

In its most basic form, a Linear Dynamic System or
LDS describes a system’s behaviour by the differential
equation

d
dtx(t) = Ax(t) + Bu(t)

known as the state-space representation. Here, vector
x(t) represents the system’s state at time t, u(t) its in-
put at time t, and matrices A and B describe how the
current state change depends linearly on the current
state and input.

This is a continuous-time representation; in order to
calculate with LDS models, time is usually discretized.
In this article, we therefore use the simple discretized
model

xt+1 − xt = Axt + But

in which the size of the discretization steps conve-
niently equals the unit of the time domain in order
to simplify the exposition (in practice one can use dis-
cretization steps of size ∆t and scale the A and B
matrices with this factor). The equation can then be
rewritten to:

xt+1 = Adxt + Bdut

Ad = A + I

Bd = B

(1)
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Figure 1: LDS model of paper heater. Left: as an elec-
trical diagram, where voltage represents temperature and
current represents heat flow. From top to bottom, the di-
agram consists of a (1) time-variable heat source, (2) heat
mass with capacity c, (3) heat resistance r, (4) heat mass
with capacity c′, (5) heat resistance r′, (6) heat sink with
temperature 20◦C modelling the constant flow of paper.
Right: as a graphical representation of the state-space
equations for two discrete time points t, t+1. The state of
the system is described by the T variables, which repre-
sent the temperatures of the two heat masses. Its input
is P in

t , the power entering the system. Auxiliary variables
represent the power flowing from the first heat mass to
the second (P trans

t ), and from the second to the heat sink
(P out
t ). Note: The parameters of the system are r, c, r′, c′

(instantiated with concrete values in a real system).

2.2 Role in engineering

In the engineering process, LDS models of systems are
often represented by means of diagrams. We exemplify
the role of these models and diagrams using a case
study which remains our running example thoughout
the paper. The case study originates from a manufac-
turer of industrial printers. To ensure print quality, pa-
per needs to be heated to a certain temperature, which
is accomplished by passing the paper along a metal
heater plate. It is quite important that the paper
reaches the right temperature. If it is too cold, print
quality suffers; if it is too hot, energy (and money)
is wasted or worse: the printer might malfunction.
Therefore, engineers have put a lot of effort in the ac-
curate modelling of the heating process. This results
in models such as Fig. 1, in which the heater is mod-
elled as two distinct heat masses: when the heater is
powered, the first mass is directly heated, thereby in-
directly heating the second mass, which transfers the



heat to the paper.1 In the diagram, the heating dy-
namics are represented as an electrical circuit, where
temperature plays the part of voltage and heat flow
that of current. A diagram like this has important
advantages for the engineering process:

• It is very well suited for documentation and com-
munication. A trained engineer can read the sys-
tem’s basic dynamic behaviour off this diagram
in a blink of an eye; for a non-expert with a sci-
ence background it is relatively easy to gain some
intuition.

• It has a formal meaning as an LDS; it trans-
lates into the state-space equations in the form
of Eq. (1), connecting it to a vast body of theo-
retical and practical knowledge.

• It separates qualitative and quantitative aspects of
the model; the former are determined by the dia-
gram structure, the latter by the parameters.

• It is composable: other models like this can be
developed independently and joined into a larger
system.

• It is supported by software: drawing and man-
aging modules of electrical circuits (and also
other graphical forms like bond graphs [5] and
schematic diagrams) can be done by tools like 20-
sim [11], which can also perform the translation
to the state-space representation. This represen-
tation can be used for simulation, e.g. in MAT-
LAB.

However, it is confined to modelling deterministic be-
haviour. In the realm of probabilistic modelling, the
formalism of Bayesian networks shares the above at-
tractive properties. A natural question is therefore:
how can we combine these well-known LDS models
with Bayesian networks?

Specifically, this paper will explore the situation where
the parameters of the system (in this case: r, c, r′, c′)
involve uncertainty. This direction is induced by the
following use case: the paper heater modelled above
is used with different paper types {pt1, pt2, pt3} (for
example: 80 g/m2 A4, 200 g/m2 A4, 80 g/m2 Letter).
We have no direct knowledge about which type is in
the heater, and would therefore like to model it as a
probabilistic variable PT. Each paper type leads to a
different value for the system’s r′ parameter (the heat
resistance between plate and paper). The question we

1This is known as a lumped element model ; in con-
trast, the heat distribution could also be modelled as a
3-dimensional temperature field over the plate.
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Figure 2: The three basic types of Bayesian network
nodes we will use for LDS models. Left: Linear determin-
istic node P(y |x1, x2) = 1 if y = µ+ αx1 + βx2. Middle:
Linear Gaussian node P(Y |x1, x2) = N (µ+αx1+βx2, σ

2).
Right: Conditional linear Gaussian node P(Y |x1, x2, θ) =
N (µθ + αθx1 + βθx2, σ

2
θ) (for discrete Θ). The notation is

ours and is introduced in section 3.3.

ask ourselves is: How can we join the paper type vari-
able to the LDS model, so we can infer probabilistically
which paper type is in the heater, by observing the T ′

values of the system?

3 Augmenting LDS models with
uncertainty

3.1 Bayesian network representation

A Bayesian network B = (G,Φ) is an acyclic directed
graph G, consisting of nodes and arcs, that is faithful
to a joint probability distribution factored as Φ, which
contains for each node Y (with parents X1, X2, . . .) a
family of local conditional probability density or mass
functions P(Y |X1, X2, . . .). A dynamic Bayesian net-
work [1] is a special case of this, where the nodes are
partitioned in time slices all consisting of the same
structure and distributions. Furthermore, arcs are
only allowed between nodes in the same or adjacent
time slice.

For modelling linear dynamic systems as (dynamic)
Bayesian networks, only the following types of nodes
are needed:

Deterministic nodes: a node Y with parents
X1, X2, . . . is called deterministic if its conditional
probability distribution is

P(y |x1, x2, . . .) =

{
1 if y = f(x1, x2, . . .)

0 if y 6= f(x1, x2, . . .)

for a certain function f ; in this article, these func-
tions are mostly linear, i.e.

y = µ+ αx1 + βx2 + . . .

We use a special notation for these linear deter-
ministic nodes shown in Fig. 2 (left).



Linear Gaussians: a node Y with parents
X1, X2, . . . is known in Bayesian network
literature as a linear Gaussian if

P(Y |x1, x2, . . .) = N (µ+ αx1 + βx2 + . . . , σ2)

Networks that consist only of linear Gaussians
(with σ > 0) have theoretical significance: their
joint distribution is multivariate Gaussian, and
exact inference is easy and efficient (e.g. see [6]).
A linear Gaussian without parents N (µ, σ2) is
simply called Gaussian; the Gaussian N (0, 1) is
called a standard Gaussian. A linear Gaussian
can be written as a linear deterministic node with
two extra parents; see Fig. 2 (middle).

Conditional linear Gaussians: a node Y with par-
ents X1, X2, . . . and discrete parent Θ is condi-
tional linear Gaussian if

P(Y |x1, x2, . . . , θ) = N (µθ+αθx1+βθx2+. . . , σ2
θ)

i.e. it is linear Gaussian for each value θ. If
X1, X2, . . . are Gaussian, the marginal distribu-
tion over Y is a mixture of Gaussians:

P(Y ) =
∑
θ∈Θ

P(θ)N (µ̂θ, σ̂
2
θ)

µ̂θ = µθ + αθµX1
+ βθµX2

+ . . .

σ̂2
θ = σ2

θ + α2
θσ

2
X1

+ β2
θσ

2
X2

+ . . .

Again, this also holds for complete networks: if all
nodes are (conditional) linear Gaussian, the joint
distribution is a mixture of multivariate Gaus-
sians. However, this number of components in
this mixture is exponential in the number of Θ
variables, which can make inference hard. A con-
ditional linear Gaussian can also be written as a
deterministic node with extra parents. For this
we use a special notation shown in Fig. 2 (right),
to which we will return later.

As these three node types can all be written as deter-
ministic nodes, we will henceforth use the convention
that all non-root nodes in our networks are determin-
istic.

3.2 LDS models as Bayesian networks

The paper heater model in Fig. 1 translates to the fol-
lowing discrete-time state-space equations in the form
of Eq. (1):[

Tt+1

T ′t+1

]
= Ad

[
Tt
T ′t

]
+ Bd

[
P in
t

20◦C

]
Ad =

[
1− 1/rc 1/rc

1/rc′ 1− 1/rc′ − 1/r′c′

]
Bd =

[
1/c 0
0 1/r′c′

] (2)

The state of the system consists of the temperatures Tt
and T ′t of the two heat masses. In fact, translating the
electrical diagram by tools such as 20-sim first leads to
a more elaborate form in which auxiliary power vari-
ables are present. It is instructive to represent this
form as a Bayesian network consisting only of linear
deterministic nodes; this is shown at the right side of
Fig. 1. As the network is completely deterministic,
it might also be read as a system of equations over
ordinary variables:

• Each node represents the left-hand side of an
equation, consisting of one variable.

• The incoming arcs represent the right-hand side:
a linear combination of the parent variables, with
coefficients as specified on the arcs. Note: we
follow the convention that empty arcs carry a co-
efficient of 1.

For example, the figure shows that

P trans
t =

1

r
Tt +

−1

r
T ′t =

Tt − T ′t
r

Tt+1 =
1

c
P in
t + Tt +

−1

c
P trans
t = Tt +

P in
t − P trans

t

c

The state-space equations (2) are obtained from this
system by substituting the P trans and P out variables
for their right-hand sides. Interpreted as a Bayesian
network, this corresponds to marginalization.

We will now start to add uncertainty to the LDS. First,
as is often done (e.g. in the Kalman filter), we augment
the state variables with additive zero-mean Gaussian
noise: [

Tt+1

T ′t+1

]
= Ad

[
Tt
T ′t

]
+ Bd

[
P in
t

20◦C

]
+

[
Wt

W ′t

]
Wt ∼ N (0, σ2)

W ′t ∼ N (0, σ′2)

(3)

The noise is represented by two independent variables
Wt and W ′t . A graphical representation of this system
is shown in Fig. 3; we have only replaced Wt and W ′t by
two anonymous standard Gaussian variables N (0, 1)
whose value is multiplied by σ and σ′. As a result, the
Tt variables now have the linear Gaussian form from
Fig. 2 (middle).

In fact, this makes the whole system Gaussian: al-
though the P trans

t and P out nodes are not linear Gaus-
sian, we have already seen that they can be marginal-
ized out, making the Tt+1, T

′
t+1 nodes directly depend

on Tt, T
′
t . As for the P in

t node: as it is always used
with concrete evidence pin

t , it never represents a prob-
ability distribution, and can be reformulated to take
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Figure 3: LDS of Eq. (3), containing
additive zero-mean Gaussian noise on
the state variables.
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Figure 4: LDS of Eq. (3) augmented
with uncertain parameters. These are
modelled by conditional linear deter-
ministic nodes.
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Figure 5: The model from Fig. 4,
summarized using vector variables
(where Θ represents R, C, R′, C′) and
augmented with a paper type variable
with a discrete distribution. The re-
lation between time slices t− 1 and t
is also shown. There are several op-
tions for the relation between paper
type and Θ (the dashed arc here is
not a linear influence).

the place of µ in the Tt+1 distribution. Thus, Fig. 3
is a dynamic Bayesian network with a Gaussian joint
distribution. This means that we can use a variant of
the standard Kalman filter to do exact inference on
this network; we discuss this in detail in Sect. 4.

3.3 LDS models with uncertain parameters

Above, we have shown how to represent an LDS with
additive zero-mean Gaussian noise as a Bayesian net-
work; while it may be instructive, thus far it is only a
convenient reformulation of known theory. However,
to model the relation with the paper type variable,
we need uncertainty in the parameters, i.e. the coeffi-
cients of the linear relation. Our solution is to trans-
form these coefficients into probabilistic variables. We
accomplish this by introducing a new node type:

Conditional linear deterministic node: a linear
deterministic node extended with a special par-
ent, which is distinguished from the rest because
its arc ends in a diamond (and carries no coeffi-
cient); we call this parent the conditioning parent.
The coefficients on the other arcs can depend on
the value of the conditioning parent. This depen-
dence is shown by putting a bullet in the place
where this value is to be filled in.

We have already given an example of such a node:
the conditional linear Gaussian node in Fig. 2. Just
like the linear Gaussian node is an instance of a linear
deterministic node, viz. having specific parents 1 and
N (0, 1), a conditional linear Gaussian node is a specific
instance of conditional linear deterministic node.

By using conditional linear deterministic nodes, we can
extend our already noisy paper heater model with un-
certain parameters: we replace parameter r by vari-
able R—which becomes the conditioning parent of the
node that depended on r—and do the same for the
other parameters. The result is shown in Fig. 4.

We can now proceed to connect a discrete paper type
variable to the model, with an example distribution as-
signing to pt1, pt2, pt3 the probabilities 0.3, 0.5 and 0.2.
Like we mentioned, the paper type determines the R′

parameter, but for generalization’s sake we will assume
that it influences all the parameters. The resulting
model, in Fig. 5, also shows that the notation for (con-
ditional) linear deterministic nodes extends very nat-
urally to vector-valued variables: coefficients become
matrices. These are the matrices from Eq. (2), written
as functions Ad(θ) and Bd(θ) of θ = (r, c, r′, c′). Thus,
we have made a graphical summary of the model which
is linked very clearly to the state-space equations. Al-
though this hides some of the model’s internal struc-
ture, it is useful for keeping an overview.



Regarding the probability distribution of the Θ vari-
able, we give two examples:

Discrete Θ: The paper types pt1, pt2, pt3 determin-
istically set a value θ1, θ2, θ3 (resp.) for Θ. In
fact, this turns Tt and Tt+1 into conditional lin-
ear Gaussians (conditioned by the paper type), so
the joint distribution is a mixture of 3 Gaussians.

Continuous Θ: The paper types pt1, pt2, pt3 de-
termine the parameters (µθ1, σθ1), (µθ2, σθ2),
(µθ2, σθ2) for a Gaussian-distributed Θ. This
model is no longer linear.

These options have an influence on inference and learn-
ing in the model, which we discuss in the next sections.

4 Inference

In this section, we shortly discuss inference in the
uncertain parameter model of Fig. 4, for both the
discrete and continuous Θ given above. Assume
we observe the system’s T ′t variable responding to
the P in

t input for a while, resulting in data D =
{pin

0 , t
′
0, . . . , p

in
m−1, t

′
m−1, t

′
m}, and the goal is to find out

the paper type.

This can be done by a forward pass over the model as
known from dynamic Bayesian network literature. We
start with the prior distribution

P(t0, θ, t
′
0) = P(t0)P(θ)P(t′0)

and perform a recursive forward pass from t = 0 to
t+ 1 = m:

P(tt+1, θ, p
in
0..t, t

′
0..t+1) =∫

P(tt, θ, p
in
0..t−1, t

′
0..t)P(tt+1 |tt, t′t, pin

t , θ)P(t′t+1 |tt, t′t, θ) dtt

Finally, we marginalize out tm:

P(θ,D) =

∫
P(tm, θ,D) dtm

The details of the inference algorithm depend on the
model used. For the discrete Θ, all the distributions
above are linear Gaussian, so we can multiply and in-
tegrate exactly. To be precise, P(tt+1 |tt, t′t, pin

t , θ) and
P(t′t+1 |tt, t′t, θ) are linear Gaussian for each of the 3
individual θi values; the algorithm thus independently
works on 3 Gaussians.

For the continuous Θ, the conditional distributions of
Tt+1 and T ′t+1 are not linear Gaussian; we can do ap-
proximate inference by linearizing these distributions
at each timeslice around the means of Tt,Θ (given the

data up to t), in analogy to the Extended Kalman Fil-
ter (see e.g. [6, 10]).

A second type of inference that we do with the model
is smoothing. In particular, we want to calculate
P(θ, tt, tt+1 |D) for each timeslice, in order to do EM
learning (see the next section). We have used a Rauch-
Tung-Striebel -type smoother [9]. This uses a forward
pass like discussed above, with the adjustment that it
stores the distributions over two time slices. The last
of these, i.e. P(tm−1, tm, θ,D), is used as the input for
a recursive backward pass defined as follows:

P(tt−1, tt, θ,D) =∫
P(tt, tt+1, θ,D)P(tt−1 |tt, θ,D) dtt+1

where the first factor in the integral is the recursive
one, and the second is calculated from the distribution
over tt−1, tt stored in the forward pass:

P(tt−1 |tt, θ,D) = P(tt−1 |tt, pin
0..t−1, t

′
0..t)

=
P(tt−1, tt, p

in
0..t−1, t

′
0..t)∫

P(tt−1, tt, pin
0..t−1, t

′
0..t) dtt−1

The advantage of such a smoother over an independent
backward pass is that it does not linearize the distribu-
tion over Tt−1, T in two different ways (the backward
pass uses the linearization of the forward pass).

5 Learning

For learning the model, we discuss the situation
where we know the paper type (assume it is pt1)
and observe the system like before, i.e. D =
{pin

0 , t
′
0, . . . , p

in
m−1, t

′
m−1, t

′
m}. The goal is to learn

the parameter set ρ that maximizes the likelihood
P(D|pt1; ρ). The situation is a little different depend-
ing on the model for Θ.

5.1 EM for continuous Θ

For the continuous Θ, the restriction to pt1 means that
we are learning the parameters for one multivariate
Gaussian variable Θ (actually consisting of four inde-
pendent variables R, C, R′, C ′) and the σ, σ′ pro-
cess noise parameters. Thus, ρ = (µθ1, σθ1, σ, σ

′).
This can be done by a standard EM algorithm [2] for
Bayesian networks: given a set of initial parameters
ρi, the approximate smoother infers the distributions
P(tt, tt+1, θ|D, pt1; ρi). From these, the expected suf-
ficient statistics are gathered for maximizing

P(D, T0..m,Θ|pt1; ρi+1)

expected under the old parameters ρi; this is repeated
until convergence.



5.2 EM for discrete Θ

For the discrete parameter space model, we are look-
ing for the parameter set (θ, σ, σ′) that maximizes the
likelihood

P(D|pt1,Θ = θ;σ, σ′)

Note that the role of Θ is different here; we are not
learning the optimal parameters for a distribution
over Θ, but the optimal single value. This requires
some adjustments to the smoother: it should store dis-
tributions over (Tt, Tt+1) instead of over (Tt, Tt+1,Θ),
and should not use a prior distribution over Θ ei-
ther. Because all the probability distributions are lin-
ear Gaussian again, smoothing is exact now.

However, maximizing the expected likelihood is not so
trivial now: we are looking for the optimal linear Gaus-
sian distribution P(tt+1, t

′
t+1 |tt, t′t, pin

t , θ) constrained
to a certain form prescribed by A and B. Specifically,
the log likelihood for an individual time slice is:

logP(tt+1, t
′
t+1 |tt, t′t, pin

t , θ) = −1

2
δTΣ−1δ − 1

2
log |2πΣ|

where Σ =
[
σ2 0
0 σ′2

]
and δ is an abbreviation for

δ =

[
tt+1

t′t+1

]
−Ad(θ)

[
tt
t′t

]
−Bd(θ)

[
pin
t

20◦C

]
Separating variables and parameters, we can write:

δ = D(θ)xt

D(θ) =
[
I −Ad(θ) −Bd(θ)

]
xt =

[
tt+1 t′t+1 tt t′t pin

t 20◦C
]T

The log likelihood for all the time slices (ignoring the
term − 1

2 log |2πΣ| for now) is then:

logP(D, t0..m |θ) = −1

2

∑
t=0..m

(D(θ)xt)
TΣ−1D(θ)xt

= −1

2

∑
t=0..m

(D1(θ)xt)
TD1(θ)xt
σ2

+
(D2(θ)xt)

TD2(θ)xt
σ′2

where Di denotes the ith row of D. The goal is to
maximize the expected value of this expression. At
first sight, it seems that the two terms are dependent
through θ, but on closer inspection

D(θ) =
[

1 0 −1+1/rc −1/rc −1/c 0

0 1 1/rc′ −1+1/rc′+1/r′c′ 0 −1/r′c′

]
we see that the values in the first row do not con-
strain those in the second, or vice versa. We can
therefore minimize the expected value of the two
terms independently. We can also see that there are
linear constraints for the values within a row, e.g.

D1,3(θ)+D1,4(θ) = −1. We record these constraints in
a matrix C and vector c such that CDT

1 (θ) = c. Sub-
stituting d = DT

1 (θ), for the first term we are looking
for the d that minimizes∑

t=0..m

E(xTt ddTxt) = dT

[ ∑
t=0..m

E(xtx
T
t )

]
d

under the constraint Cd = c. This is a linearly con-
strained quadratic optimization problem that can be
solved by the method of Lagrange multipliers. The
second term can be minimized in the same way.

In conclusion, we have derived the M-phase for the
discrete Θ model; in the E-phase, we therefore have to
collect the expected sufficient statistics E(xtx

T
t ).

5.3 Comparison

It is interesting to compare learning for continuous and
discrete Θ. In order to do this, we have simulated the
system in Fig. 1 for 150 time slices, with a sine wave
as P in input and random Gaussian disturbance. We
provide the EM algorithms discussed above with the
P in and the generated T ′t data. Typical results of a
60-iterations run are shown in Fig. 6.

The most interesting fact to observe is that the two
approaches converge to different values (but the same
log likelihood). This probably means that the system
is not identifiable: several choices for Θ lead to the
same likelihood of the observed behaviour T ′t . To test
this hypothesis, we also generated synthetic Tt, T

′
t data

(without disturbance) for systems with the learned pa-
rameters. The results are plotted in Fig. 7. These
results indeed show that both methods arrive at the
same approximation (green, red) of the original (blue)
T ′t data; however, the different values for the parame-
ters lead to a different behavior of Tt.

A second observation from Fig. 6 is that learning con-
tinuous Θ converges faster than learning discrete Θ.
The explanation for this is as follows: the EM algo-
rithm for the continuous parameter space uses infer-
ence to compute a posterior distribution over the vari-
able Θ. In this algorithm, the posterior distribution
is updated for each time slice. However, we can also
regard the algorithm as doing full Bayesian learning
where Θ is viewed as a parameter; the algorithm is
then performing incremental EM [8], which is known
to converge faster.

6 Conclusion

The central scientific hypothesis which initiated the re-
search described in this paper was that knowledge en-
gineering methods for industrial applications of prob-
abilistic graphical models should be based as much as
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Figure 6: EM learning of the Θ parameters: compar-
ison of discrete parameter space (parameters are single
values; shown in green) and continuous parameter space
(parameters are Gaussians; µ values shown in red). The
horizontal axis represents 60 EM iterations. Also shown
are the learned distribution over T1 (Gaussian, µ value)
and the log likelihood.
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Figure 7: Blue: synthetic data used for learning (Tt and
T ′t are shown, but only the latter is given to the learn-
ing algorithms). As input P in

t , we used a sine wave. We
disturbed the system with additive zero-mean Gaussian
noise. Green, red: response of an undisturbed determin-
istic system using the learned parameters (with discrete
and continuous parameter space, resp.) to the same P in

t

sine wave.

possible on existing methods from engineering. We
have developed a systematic framework, where we
start with linear system theory and associated dia-
grams and notations as the first step in the knowl-
edge engineering process. The advantage of this ap-
proach is that engineers have already dealt with the
unavoidable complexity issues in representing realistic
models. Subsequently, it was shown how linear dy-
namic system models can be augmented with proba-
bilistic variables for uncertain parameters, transform-
ing them into dynamic Bayesian networks with con-
ditionally linear nodes. We introduced a concise no-
tation that combines LDS and Bayesian network con-
cepts in a natural way and demonstrated methods for
inference and learning from data in these models. The
practical usefulness of the framework was illustrated
by a case study from the domain of large production
printers.
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