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Abstract

There are now many large surveys of individ-
uals that include questions covering a wide
range of behaviours. We investigate longi-
tudinal data from the Add Health survey of
adolescents in the US. We describe how struc-
tural inference for (dynamic) Bayesian net-
works can be used to explore relationships be-
tween variables in such data and present this
information in an interpretable format for
subject-matter practitioners. Surveys such
as this often have a large sample-size, which,
whilst increasing the precision of inference,
may mean that the posterior distribution
over Bayesian networks (or graphs) is con-
centrated on disparate graphs. In such situ-
ations, the standard MC3 sampler converges
very slowly to the posterior distribution. In-
stead, we use a Gibbs sampler (1), which
moves more freely through graph space. We
present and discuss the resulting Bayesian
network, focusing on depression, and provide
estimates of how different variables affect the
probability of depression via the overall prob-
abilistic structure given by the Bayesian net-
work.

1 INTRODUCTION

Hypotheses of multifactorial causes of symptoms and
outcomes play an important role in the social sciences
and in public health. Regression-based approaches are
widely-used in these fields to explore such hypotheses.
A great deal of insight can be gained through such
approaches, but it is sometimes overly constraining to
fix a particular quantity as the dependent variable,
especially if the goal is to explore the possibility of un-
expected relationships between the data. Instead, we
can consider a number of variables on an equal footing,
and study the possibility of unexpected relationships

in the data.

Graphical models provide a statistical framework
within which the relationship between variables can
be studied. These models enable complex multivari-
ate distributions to be decomposed into simpler local
distributions. This can reveal a great deal about the
relationships between the variables, as well as provide
a statistical and computationally tractable description
of their (often large) joint distribution. The decompo-
sition is formed by the conditional independence struc-
ture, which can be represented by a graph. The use of
graphs helps to make the interpretation of the model
simpler. In this paper, we focus on the structure of
the model, as given by the graph. We aim to make
inference about this using statistical model selection.
The structure of the model suggests how the differ-
ent components of the system interact, which may be
helpful in understanding the system as a whole. These
methods have been widely adopted in molecular biol-
ogy (2, 3), and have been used in some areas of medical
sciences (4).

Consideration of unexpected relationships between
factors requires datasets that incorporate a wide range
of topics. Such data is now widely available for rep-
resentative samples of populations in many countries,
and for many sub-groups of interest. Many of these
datasets are derived from surveys that are general in
scope, and are not collected to study any one par-
ticular question. For example, in the US, the health
of the whole population is representatively sampled
annually for the Behavioral Risk Factor Surveillance
System (BRFSS) survey, and the Add Health study,
which we use here, followed a cohort of young peo-
ple from 1994 until 2008. Data from both of these
have been used in scores of studies, but these com-
monly focus on one specific aspect, often using the
data to evaluate existing hypotheses. Given the wide
scope inherent in the design of these studies and the
large samples available in many cases, it is possible to
broaden the scope of the analysis by considering richer



structures. In this paper, we discuss the potential that
such a more explorative approach yields. We do not
seek to make conclusive causal claims, but instead sug-
gest that a broader approach may uncover important
aspects that have been neglected.

Our focus will be on depression among adolescents in
the US, drawing on data from the National Longitu-
dinal Study of Adolescent Health (Add Health). It is
estimated that around 1–6% of adolescents each year
are affected by depression (5, 6). The effects of de-
pression in this age-group are wide-ranging (7), and
include the stigma associated with poor mental health
more generally (8). There is considerable evidence that
there are a wide range of causal factors for depression
amongst adolescents, spanning biological, psycholog-
ical and social domains. Understanding these causal
factors and separating them from the consequences of
depression has been recognised as an important aim
(9). Some of the relevant causal factors may interact
and the approach taken here accounts for this.

The remainder of this paper is organised as follows.
We first introduce the AddHealth dataset and de-
scribe the Bayesian network framework. Inference for
Bayesian networks is performed using Markov Chain
Monte Carlo (MCMC), but the large sample size of
the dataset we consider makes achieving convergence
difficult because the posterior distribution may be con-
centrated on disparate graphs, and so we describe an
alternative sampler that has superior properties in this
situation. Whilst the PC-algorithm (10, 11) has prop-
erties that often make it attractive in such contexts,
we found that the results in this situation were not
robust (see Discussion). We then present and discuss
the results for the Add Health dataset.

2 MATERIALS AND METHODS

2.1 Add Health

The data that we use are drawn from the National Lon-
gitudinal Study of Adolescent Health (Add Health)
that explores health-related behavior of adolescents
(12) in the US. The questionnaire contains over 2000
questions that cover many aspects of adolescent be-
haviours and attitudes. We consider the representa-
tive sample of adolescents from Waves I and II of the
in-home section, and the parental questionnaire from
Wave I of the study. The analysis we perform is not
feasible when the data is not complete (see Discus-
sion), and so individuals with missing data were re-
moved from the study. Removing incomplete samples
leaves 5975 individuals in the study.

Our measure of depression is a self-assessed scale based
upon the Centre for Epidemiologic Studies Depression

Scale (CES-D) (13). Two questions from the 20-item
scale are omitted from AddHealth, and two are mod-
ified, and so we scale the score given by the available
questions (14). A Receiver Operating Characteristic
(ROC) analysis showed that thresholds of 24 for fe-
males and 22 for males provided the best agreement
with clinical assessments of depression (15). We use
this threshold to create a binary indicator of depres-
sion status.

Many of the remainder of the variables that we con-
sider (Table 1) are drawn from the risk factors de-
scribed in the depression literature, and the mental
health literature more generally. A recent review (8)
described a wide range of factors that are associated
with poor mental health in young people, including
gender, poverty, violence and the absence of social net-
works in the local neighbourhood. The quality of rela-
tionships with parents is also thought to be important,
especially with the mother (16), as are parental alcohol
problems (17) and parental discord (16). The individ-
ual’s use of alcohol, drugs, smoking and HIV/AIDS
are all also associated with depression (18, 19). Phys-
ical exercise has been proposed in some studies as a
useful intervention for the management of depression,
but many of these studies have been deemed to be poor
quality (20).

2.2 Bayesian Networks

Our study uses Bayesian networks to explore the rela-
tionships between variables in the Add Health study.
Bayesian networks are a particular type of graphical
model that enable classes of probability distributions
to be specified using a directed acyclic graph (DAG).
A Bayesian network G is represented using a DAG
with vertices V = (V1, . . . , Vp), and directed edges
E ⊂ V × V . The vertices correspond to the compo-
nents of a random vector X = [X1, . . . , Xp]T , subsets
of which will be denoted by XA for sets A ⊆ {1, . . . , p}.
For 1 ≤ i, j ≤ p, we define the parents Gj of each
node Vj to be the subset of vertices V such that
Vi ∈ Gj ⇔ (Vi, Vj) ∈ E. Specifying the parents of the
vertices determines the edges E of the graph G. We
denote by G the space of all possible directed acyclic
graphs with p vertices. We will use XGi

to refer to the
random variables that are parents of Xi in the graph
G.

The graph specifies that the joint distribution for X,
with parameters θ = (θ1, . . . , θp), can be written as
a product of conditional distributions p(Xi | XGi

, θi),
given the variables XGi

corresponding to the parents
of Xi in the graph.

p(X | G, θ) =

p∏
i=1

p(Xi | XGi
, θi)



We will need to be able to evaluate the marginal like-
lihood p(X | G) easily, and so we consider only a con-
jugate analysis in which the conditional distributions
p(Xi | XGi

, θi) are multinomial, with Dirichlet priors
p(θi) for each θi. In this case, the marginal likelihood
can be evaluated analytically. Suppose each Xi takes
one of ri values, and define qi as the number of levels
of the sample space of XGi

, each element of which we
call a configuration. For each configuration j of XGi

,
let Nijk be the number of observations in which Xi

takes value k. We assume the Dirichlet priors for each
θi, each with hyperparameters N ′ijk, are independent.

We define Nij =
∑ri

k=1Nijk and N ′ij =
∑ri

k=1N
′
ijk,

and the local score p(Xi | XGi
) to be

p(Xi | XGi
) =

qi∏
j=1

Γ(N ′ij)

Γ(Nij +N ′ij)

ri∏
k=1

Γ(Nijk +N ′ijk)

Γ(N ′ijk)
.

The marginal likelihood can be shown to equal the
product p(X | G) =

∏p
i=1 p(Xi | XGi

) of these local
scores (21).

2.3 Structural inference for Bayesian
Networks

We aim to make inference about the DAG G, given
data X and so our interest focuses on the posterior
distribution Pr(G | X) on Bayesian networks. Under
the assumptions we have made, this can be written in
terms of the marginal likelihood p(X | G), and a prior
π(G) for the Bayesian network structure.

Pr(G | X) ∝ π(G)

p∏
i=1

p(Xi | XGi)

The priors π(G) can be chosen to encode domain infor-
mation (3). For the analyses in this paper, we choose
an improper prior π(G) ∝ 1 that is flat across the
space of graphs.

The posterior distribution Pr(G | X) is difficult
to evaluate, because cardinality of G grows super-
exponentially in p. This motivates the use of approx-
imations to Pr(G | X), which are usually based on
Markov chain Monte Carlo (MCMC).

2.4 Approximate inference for Bayesian
Networks

The standard form of MCMC that is used for struc-
tural inference for Bayesian networks is MC3 (22).
This is a Metropolis-Hastings sampler that explores G
by proposing to add or remove a single edge from the
current graph G. This sampler works surprisingly well
in many situations, but if the posterior distribution is
not unimodal, the local moves may fail to explore the

space fully because the sampler may become ‘trapped’
in one mode. This issue becomes more severe as the
sample size increases because the posterior distribu-
tion becomes more concentrated. A natural approach
in such situations is to use the PC-algorithm (10, 11),
which has been shown to be asymptotically consistent
(23), but we found in this case that the results were
not robust (see Discussion).

Our analyses in this paper were performed using a
Gibbs sampler (1), which we found to converge rapidly
to its equilibrium state. A näıve Gibbs sampler for
structural inference that proposes single-edge addi-
tions and removals can easily be constructed, but
this sampler offers no advantages over the analogous
MC3. This näıve scheme, however, can be improved
by ‘blocking’ together a number of components, and
sampling from their joint conditional distribution. In
theory, any group of components can be taken as a
block, but sampling from their joint conditional distri-
bution needs to be possible and, ideally, computation-
ally quick.

For Bayesian networks, the most natural blocks are
those consisting of parent sets G1, . . . , Gp. This is
natural because the marginal likelihood p(X | G) for
a graph G factorises across vertices into conditionals
p(Xj | XGj

) and these conditionals depend on the par-
ent set of the vertex. Therefore, since any graph G ∈ G
can be specified by a vectorG = (G1, . . . , Gp) of parent
sets, the posterior distribution on Bayesian networks
G ∈ G can be written as functions of G1, . . . Gp in the
following way.

Pr(G1, . . . , Gp | X) ∝ π(G1, . . . , Gp)

p∏
i=1

p(Xi | XGi)

In the following, we will denote subsets of the vector
G = (G1, . . . , Gp) by GA = {Gk : k ∈ A}, and the
subset given by the complement AC = {1, . . . , p} \ A
of a set A will be denoted by G−A = {Gk : k ∈ AC}.
In particular, the complete graph can be specified by
G = (G1, . . . Gp) = (Gi, G−i) for any i ∈ {1, . . . , p}.

To be able to construct a Gibbs sampler using
parent sets, we need to find their conditional dis-
tribution, given the other parent sets G−j =
{G1, . . . , Gj−1, Gj+1, . . . , Gp}. Parent sets Gj for
which G = (Gj , G−j) is cyclic will have no probabil-
ity mass in the conditional distribution. Let K?

j be
the set of parent sets Gj such that G = (Gj , G−j) is
acyclic. The conditional posterior distribution of Gj is
multinomial, with weights given by the posterior dis-
tribution of G = (Gj , G−j). When the cardinality of
K?

j is constrained (for example, by restricting the max-
imum number of parents of each node) the conditional
posterior distribution for Gj ∈ K?

j can be evaluated
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Gibbs sampler

Figure 1: Diagnostic runs for MC3 (left) and the
Gibbs sampler (right). The posterior edge probabili-
ties given by two independent runs are plotted against
each other. When the two runs give the same estimates
of the posterior edge probabilities, all of the points ap-
pear on the line y = x. We observe that the two Gibbs
runs gives similar posterior edge probabilities, but the
MC3 runs do not. (5 runs of 750,000 samples (MC3)
or 100,000 samples (Gibbs) of each sampler were per-
formed; the first half of the samples were discarded as
burn-in; mean Pearson correlation between runs was
0.9999 ± 0.0002 (standard deviation) for Gibbs and
0.6322± 0.0477 for MC3.)

exactly.

Pr(Gj | G−j ,X) =
Pr(Gj , G−j | X)

Pr(G−j | X)

=
Pr(Gj , G−j | X)∑

Gj∈K?
j

Pr(Gj , G−j | X)
(1)

We can improve the speed of convergence of this sam-
pler by allowing pairs of parent sets to be sampled
together. At each step of the Gibbs sampler we
conditionally sample pairs of parent sets (Gj1 , Gj2),
given the remainder of the graph G−{j1,j2}. Parent
sets G−{j1,j2} such that G = (Gj1 , Gj2 , G−{j1,j2}) is
cyclic have no probability mass in the conditional dis-
tribution. Let K?

j1,j2
be the set of pairs of parent

sets (Gj1 , Gj2) such that G = (Gj1 , Gj2 , G−{j1,j2})
is acyclic. For (Gj1 , Gj2) ∈ K?

j1,j2
, the conditional

posterior distribution is multinomial, by analogy with
(1), with weights given by posterior distribution of
G = (Gj1 , Gj2 , G−{j1,j2}).

Pr(Gj1 , Gj2 | G−{j1,j2},X)

=
Pr(Gj1 , Gj2 , G−{j1,j2} | X)∑

(Gj1 ,Gj2 )∈K
?
j1,j2

Pr(Gj1 , Gj2 , G−{j1,j2} | X)

Similarly, sets of three parent sets can be conditionally
sampled. Full technical details are presented in (1).
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Figure 3: Conditional probability of depression. The
conditional probability of being depressed at Wave II
given the variable indicated is changed to the level in-
dicated by the colours, conditional on the DAG shown
in Figure 2. For binary variables, is true, and is
false; shades of grey indicate intermediate levels. Wave
number (time point) is indicated in parentheses. Only
variables for which the conditional probability differed
between levels by at least 0.005 are displayed.

3 RESULTS

The variables that we consider are detailed in Ta-
ble 1. As is common when using graphical models
(24), all of these variables were grouped, initially into
‘Background’, ‘Wave I’ and ‘Wave II’, and then re-
fined into whether the question asked about the long-
or short-term, as shown in Table 2. These groups de-
fine constraints on the Bayesian networks that are con-
sidered. Specifically, no edges can be directed back-
wards through the groups. Edges, however, are al-
lowed within groups. For example, no edge is allowed
to be directed into ‘Gender’, and no edge can pass
backwards in time, for example, from Depression at
Wave II to Depression at Wave I. Additionally, no
edge can pass from a short-term variable to a long-
term variable, for example, from Depressed at Wave I
to Have HIV/AIDS at Wave I.

We precomputed the local scores, and then drew
100,000 samples (the first half of which were discarded
as burn-in) using the Gibbs sampler (Section 2.3),
which took 30 minutes (on a single core of a cluster
computer). The graph space was constrained such that
no node had more than 3 parents, to ensure Equation
1 could be evaluated.

We ran 5 independent samplers, with disparate initial
states. This enables a simple test of convergence to
be performed that compares the posterior edge prob-
abilities obtained from each of the independent runs
(25). The agreement between runs can be examined
graphically by plotting the edge probabilities against
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Figure 2: Summary network for the AddHealth variables considered. The edge colors are given by the Kendall
correlation coefficents between the two variables, with green edges corresponding to positive correlation, and
red edges to negative correlation. The strength of the correlation is indicated by the transparency of the line,
with greater transparency indicating weaker correlation. The variables ‘Depressed (1)’, ‘Depressed (2)’ and their
parents are shown in bold.

each other (Figure 1). Mean Pearson correlation coef-
ficients between edge probabilities from pairs of runs
were 0.9999±0.0002 (standard deviation) for the Gibbs
sampler and 0.6322± 0.0477 for MC3. The agreement
between the independent runs of the Gibbs sampler
gave us confidence in our results, in contrast to the
large disagreements between MC3 runs. In addition,
cumulative edge probability plots for each edge showed
regular excursions around the mean (26), and a nu-
merical diagnostic (27) monitoring the number edges
in the sampled graph also clearly suggested that suffi-
cient samples had been drawn (R̂ ≈ 1.0).

The samples drawn using MCMC allow the posterior
distribution of Bayesian networks to be approximated.
In particular, the samples can be used to estimate the
posterior edge probability P (e|X) with e ∈ E. Fig-
ure 2 displays all edges with posterior probability of
at least 0.5.

Our focus is on depression, the parents of which in
Figure 2 we observe are “Didn’t present to doctor”
and “Gender”. It important, however, to note that

the model does not say that these are the only factors
that are important. For example, “Drug user” at Wave
I is related to depression through “Didn’t present to
doctor” at Wave I and II (Figure 2).

This is shown in Figure 3, which gives the conditional
probability of being depressed at Wave 2 when a par-
ticular variable is set to a specific value. We see that
general health, violence, academic performance and
drug use all affect the conditional probability of de-
pression at Wave II. Note that to compute this prob-
ability, links from the parents of the variable in which
we ‘intervene’ are removed; this is equivalent to the
‘do-operator’ in the terminology of Pearl (28).

The analysis reveals the interaction between the many
aspects of life that have an impact on depression. The
connection between the depression and its two parents
in Figure 2 have been previously discussed in the lit-
erature. The importance of gender in depression is
particularly extensively documented in the literature
(8). The connection to a failure in seeking medical care
even when the individual thinks they should has also



been discussed in the literature, often in terms of poor
accessibility of health care services for young people
(29, 8). Several decades of research have revealed the
complex causation of depression in young people, as
suggested by this study (8).

4 DISCUSSION

There is a large amount of information held in large
social science questionnaires. In this paper we have ex-
amined a graphical model approach to inferring struc-
ture amongst the variables in such questionnaires. In
contrast to the standard regression-based approaches,
a graphical model approach forgoes the need to specify
a particular variable as the response. Instead, a more
comprehensive estimate of the entire structure of the
underlying system can be obtained. Regression ap-
proaches posit a particular conditional-independence
structure, while graphical approaches allow considera-
tion of more general structures.

The limitations of this study include those of all simi-
lar studies using observational data that are collected
for multiple audiences. These forms of data, including
the longitudinal data used here, do not permit strong
causal conclusions to be drawn. In particular there
may be important variables that we have not included
in the analysis. However, the results are consistent
with studies that have used other research approaches
including experimental designs. The connection be-
tween an individual not seeking medical care when
they think they should and depression supports cur-
rent practice guidance in the UK (30) where there is an
emphasis on providing access to health care through
the school system rather than expecting young people
to seek health care themselves. Not seeking medical
care despite believing it should be sought is a com-
plex factor because it captures both barriers to getting
medical care within the individual, such as lacking mo-
tivation to seek care, and barriers within the individ-
ual’s environment, such as poor access to care. This
may mean that the variable encapsulates a number of
different characteristics related to depression, and thus
may form a ‘marker’ for depression. However, the use
of a form of the question “Has there been any time over
the past year when you thought you should get medi-
cal care, but you did not?” as a screening question in
different contexts needs further consideration.

This method of analysis clarifies the complexity of
depression and suggests why when using traditional
methods of analysis it can be difficult to clarify
whether or not factors, such as experiences in the fam-
ily, in the wider community and at school, impact on
the experience of depression for young people. It may
also suggest why interventions for prevention of de-

pression have not yet been demonstrated to be cost
effective (31).

We performed structural inference for the Bayesian
network using a Gibbs sampler (1), because MC3 did
not mix in a reasonable time. We have also found
(1) this algorithm to be superior to the REV sampler
(32), and it has the advantage of avoiding the need to
consider an order prior as required by order MCMC
methods (33, 34), which induces a bias that can only
be corrected exactly by NP-hard computation of a cor-
rection factor.

An alternative to the MCMC method used here is the
PC-algorithm (10, 11). This method is computation-
ally efficient and is asymptotically consistent. How-
ever, to test whether the sample size available here is
sufficient to reach the asymptotic regime, we applied
the PC-algorithm (without constraints) to 10 differ-
ent subsamples, each containing 90% of the data. We
found that these results differed significantly, with a
mean 84 in structural Hamming distance between the
pairs of completed partially directed acyclic graphs
(CPDAGs) given for the subsamples.

We used a Multinomial-Dirichlet model for the local
conditional distributions, which yields a closed-form
marginal likelihood. This model posits an entirely
general discrete distribution, allowing its form to be
guided by the data. However, the number of parame-
ters in the local distributions for this model increases
exponentially with the number of parents, which may
mean that overly-sparse models are preferred. This is
problematic when the sample size of the available data
is small, because models with many parameters cannot
be assessed adequately without a large dataset. The
large sample size of the dataset used here minimises
this issue, but it would nonetheless be worthwhile to
consider more compact parameterisations. However,
estimating such models (35) significantly increases the
complexity of the model space, which makes such an
approach computationally challenging in this setting.

For this paper, we removed samples with missing data.
It is possible to handle missing data formally, for exam-
ple by using structural EM (36), and similarly consider
latent variables (e.g. shared genetics driving both child
and parent behaviour). However, at present, doing so
whilst robustly exploring large model spaces remains
an open challenge. Tackling these computational and
inferential issues is a key area for future research.
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Table 1: The table shows the label used in the plots above, the number of levels (r), and the exact word-
ing of the question. The ID(s) of the relevant variables in the Add Health dataset are in parentheses. See
www.cpc.unc.edu/projects/addhealth for full details of all of these questions.

Label r Question

Female 2 Interviewer, please confirm that R’s sex is (male) female. (BIO SEX)
Hisp/Latino 2 Are you of Hispanic or Latino origin? (H1GI4)
White 2 What is your race? [White] You may give more than one answer (H1GI6A)
Black/Af Am 2 What is your race? [Black or African American] You may give more than one

answer (H1GI6B)
Am Ind/Nat Am 2 What is your race? [American Indian or Native American] You may give more

than one answer (H1GI6C)
Asian/Pac Isl. 2 What is your race? [Asian or Pacific Islander] You may give more than one

answer (H1GI6D)
Other race 2 What is your race? [Other] You may give more than one answer (H1GI6E)
Skips school 4 [If SCHOOL YEAR:] During this school year [If SUMMER:] During the 1994-

1995 school year how many times HAVE YOU SKIPPED/DID YOU SKIP
school for a full day without an excuse? (H1ED2; H2ED2)

Experiences prejudice 3 [If SCHOOL YEAR:] Students at your school are prejudiced [If SUMMER:] Last
year, the students at your school were prejudiced. (H1ED21; H2ED17)

In physical fights 4 In the past 12 months, how often did you get into a serious physical fight?
(H1DS5; H2FV16)

Didn’t present to doc-
tor

2 Has there been any time over the past year when you thought you should get
medical care, but you did not? (H1GH26; H2GH28)

Severely injured 3 Which of these best describes your worst injury during the past year? (H1GH54;
H2GH47)

Have HIV/AIDS 2 Have you ever been told by a doctor or a nurse that you had... HIV/AIDS
(H1CO16D; H2CO19D)

Seen shooting 3 During the past 12 months, how often did each of the following things happen?
You saw someone shoot or stab another person. (H1FV1; H2FV1)

Mother warm/loving 4 Most of the time, your mother is warm and loving toward you. (H1PF1; H2PF1)
Been suspended 2 Have you ever received an out-of-school suspension from school? (H1ED7;

H2ED3)
Been expelled 2 Have you ever been expelled from school? (H1ED9; H2ED5)
Good health 3 In general, how is your health? Would you say... (H1GH1; H2GH1)
Talks to neighbours 2 In the past month, you have stopped on the street to talk with someone who

lives in your neighborhood? (H1NB2; H2NB2)

Age 5 Age at interview, computed from date of birth, and date of interview (Con-
structed from IYEAR, IMONTH, IDAY, H1GI1Y, H1GI1M)

Live with mother 2 Indicator variable (Constructed from H1HR3A-T; H2HR4A-Q)
Live with father 2 Indicator variable (Constructed from H1HR3A-T; H2HR4A-Q)
Smoker 4 Frequency of smoking (Constructed from H1TO1/2/5; H2TO1/5)
Drinks alcohol 4 Frequency and amount of drinking alcohol (Constructed from H1TO12/15/18;

H2TO15/19/22)
Exercises 3 Amount of exercise (Constructed from H1DA4/5/6; H2DA4-6)
Depressed 2 Rescaled CES-D, following (14) (Constructed from H1FS1-18; H2FS1-18)



Victim of violence 2 Indicator variable (Constructed from H1FV2-6; (H2FV2-5)
Family bereavement 3 Number of bereavements (Constructed from H1NM2/F2, H1FP24A1-5;

H2NM4/F4, H2FP28A1-3)
Strong academically 4 Quartiles (Constructed from H1ED11-4; H2ED7-10)
Drug user 2 Indicator variable (Constructed from H1TO30/34/37/41; H2TO44/50/54/58)

Family poor 5 Census Bureau measure of poverty (Constructed from H1HR2/3/7/8, PA55)
Parents unhappy to-
gether

4 (Parent asked.) Do you and your partner argue/talk of separating? (Constructed
from PB19/20)

Parent drinks 4 (Parent asked.) Number/frequency of drinks (Constructed from PA61/2)
Householder smokes 3 (Parent asked.) Either parent or others in household smokes (Constructed from

PA63/4)
Has learning disability 2 (Parent asked.) Does (he/ she) have a specific learning disability, such as diffi-

culties with attention, dyslexia, or some other reading, spelling, writing, or math
disability? (PC38)

Parents aid decisions 5 (Parent asked.) How often would it be true for you to make each of the following
statements about {child’s name}? {Child’s name} and you make decisions about
(his/ her) life together. (PC34B)

Table 2: The groupings of the variables that were used to determine constraints on the Bayesian networks. Each
variable in the analysis is either a Background variable, or from Wave I or Wave II of the Add Health study.
Within each wave of the study, variables were further classified into whether they asked about the short- or
long-term.

Background Wave I Long-term Wave I Short-term Wave II Long-term Wave II Short-term
Female Skips school Househol. smokes Seen shooting Smoker
Age Experiences prejudice Smoker Alcohol Live with mother
Hisp/Latino In physical fights Live with mother Drug user Live with father
White Didn’t pres. to doctor Live with father Mother warm/loving Talks neighbours
Black/Af Am Severely injured Parent drinks Have HIV/AIDS Exercises
Am Ind/Nat Am Have HIV/AIDS Talks neighbours Family bereavement Depressed
Asian/Pac Isl. Seen shooting Exercises Experiences prejudice
Other race Mother warm/loving Depressed Been expelled
Has learning dis. Been suspended Been suspended

Been expelled Victim of violence
Good health In physical fights
Alcohol Strong academically
Victim of violence Didn’t pres. to doctor
Family bereavement Skips school
Strong academically Severely injured
Drug user Good health
Family poor
Parents unhappy togth.
Parents aid decisions


