
Constructing a Dynamic Bayes Net Model of Academic Advising

Joshua T. Guerin and Judy Goldsmith∗

Department of Computer Science
University of Kentucky

Lexington, KY 40506-0046
jtguer2@uky.edu, goldsmit@cs.uky.edu

Abstract

In this paper we apply ideas from collabora-
tive filtering to the problem of building dy-
namic Bayesian network (DBN) models for
planning. We demonstrate that item-based
collaborative filtering can be used to con-
struct dynamic Bayesian networks for use
in large, factored domains with sparse data.
Such Bayesian networks can model the tran-
sition function for decision-theoretic plan-
ning. We demonstrate the feasibility and ef-
fectiveness of this technique on an academic
advising domain, based on student grades in
computer science and related courses at the
University of Kentucky.

1 Introduction

In this paper we examine the use of memory-based CF
algorithms for constructing static models of data. This
work is grounded in the real-world domain of academic
advising. We use an item-based collaborative filtering
algorithm to generate dynamic Bayesian network mod-
els of an advising domain from sparse grade data.

Collaborative filtering (CF) algorithms are designed to
aggregate the opinions or preferences of a large num-
ber of users to extrapolate information about unnamed
preferences for new and existing users. Recommenda-
tion systems are constructed using CF techniques to
locate items in a database which a target user is likely
to prefer. Preferences are typically defined by grades
that the user provides either explicitly (by the user
providing grades for items that have already seen) or
implicitly (often indicated by patterns of behavior such
as browsing habits). These grades can be represented
in a number of ways, but are often numerical in na-
ture; most recommender systems ask for a numerical
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grade (1–5) or a grade based on letters or “stars” which
is easily mapped to numerical grade (for instance 1–5
stars, or a letter grade of A–E).

CF algorithms can be roughly divided into model-
based and memory-based algorithms. Model-based al-
gorithms involve generating a predictive model based
on the data and using it to make preference-related
predictions. One formalism that has seen success in
model-based CF is the Bayesian network [1].

Memory-based CF operate over the database of items
to make predictions, leveraging a measure of similarity
between users or (more commonly) between items to
determine grades for unseen items. This class of algo-
rithms provides us with several notable features which
are useful for making predictions. Namely, these algo-
rithms are designed to operate over very large datasets
(common examples include the Netflix dataset, the
MovieLens datasets, or the Amazon.com recommenda-
tion system). Such datasets typically contain tens of
thousands of items and grades from hundreds of thou-
sands of users, however since most users only provide
grades for a small percentage of items these datasets
are very sparse. Because of this, modern recommenda-
tion systems must scale well and must work well with
very sparse data.

2 A Predictive Model for Academic
Advising

Reasoning in the domain of undergraduate academic
advising is often approached as a deterministic process.
Short and long-term decision making is based on the
assumption that a student’s actions (i.e., taking one
or more courses) will succeed. This doesn’t capture
the nuances and complexity of the real world. The
outcome of taking a course can not always be predicted
with certainty; even a student who makes consistent
A’s may perform poorly at some point.

Given the stochastic nature of grade prediction, it may



be desirable to construct statistics-based models of
student performance from real world data. Students
leave behind tangible evidence of progress in the form
of transcript data. Universities amass a wealth of data
with which to make predictions about grades. From
this we can construct probabilistic predictive models.
The Dynamic Bayesian Network (DBN) formalism has
a number of features which make it ideal for this sort
of modeling.

A DBN model consists of a directed acyclic graph with
links representing temporal, probabilistic relationships
between variables and conditional probability tables
(CPTs) that specify those relationships quantitatively
[2] (a discussion of DBNs will follow in Section 3.2).
We are interested in a class of DBNs which model only
a single time-step known as 2-slice DBNs. This im-
poses restrictions on the underlying graphical struc-
ture. Specifically, variable values at one time-step are
conditioned only on the values of parent variables at
the previous time-step.

The structural restrictions imposed on 2-slice DBNs
make them a potentially compact representation for
decision theoretic planning. For this reason we limit
our attention to 2-slice DBNs.

In the case of discrete-valued variables, each child node
in the DBN has an associated conditional probability
table (CPT) which gives a probability distribution over
possible values for every possible assignment to parent
variables (incoming edges in the graph) at a previous
time-step. Because all possible assignments to parent
variables may need to be enumerated explicitly, CPT
size is exponential in the number of parent variables.
For example, a CPT for a single course with 5 parents,
each of which has 6 possible values (A–D, Failure, and
NOT TAKEN) will have 65 = 7, 776 rows, each con-
taining a probability distribution over the 6 possible
outcomes.

For modern computers, tables of this size are unlikely
to cause representational issues. However the need for
enough data to populate a table’s 66 = 46, 656 proba-
bilities makes seemingly abundant data seem rather
sparse. Popular or required courses may be taken
by hundreds or even thousands of students within
the span of several years, but even this is insuffi-
cient to derive realistic probability distributions from
straight statistical analysis. This problem is worse for
most courses (and for smaller colleges and universi-
ties) where enrollment over several years may reach
only hundreds of students or fewer.

In order to deal with the problem of prediction when
data is sparse, we turn to techniques from collaborative
filtering to aggregate the data that is available. Col-
laborative filtering algorithms are commonly used to

narrow down choices based on a user’s preferences and
the preferences of current and past users. A common
example application is predicting preferences over un-
seen items (movies, music, groceries) based on grades
given for other items [1].

The problem of grade prediction very closely resem-
bles the problem of grade prediction in collaborative
filtering: make predictions about a student’s grades in
untaken courses, given their past grades and the tran-
script data from many past students. Letter “grades”
can map directly to integers where A=1 and Fail-
ure=5.

In this paper we present a simple collaborative filtering
algorithm, and demonstrate how it is used to generate
a valid DBN model of state transitions in the advising
domain. We use real-world data from the Computer
Science Department at our university as a testbed for
our model generation techniques.

3 Background

3.1 Bayesian Networks

A Bayesian network is a directed acyclic graph G =
〈V,E〉, where each vertex v ∈ V is a variable with
domain dom(v). Each v ∈ V has an associated proba-
bility distribution over values in dom(v), conditioned
on the values of Pav ⊂ V , the parents of v. These con-
ditional probability distributions are usually enumer-
ated in tabular form as conditional probability tables
(CPTs) for each variable.

Learning of Bayesian networks is often divided into
structure learning and parameter learning. Structure
learning is the problem of learning the graphical struc-
ture E by discovering predictive or causal dependen-
cies between variables. Parameter learning is the prob-
lem of learning the conditional probability distribu-
tions for a given network structure.

Because the space of all possible networks is very large,
structure learning is usually approached as a heuristic
search problem or an exact search of a constrained
version of the search space (see [4,6,11] for examples).
Search for an an optimal (or near optimal) network
structure is guided by some scoring function (one ex-
ample is the log-likelihood scoring function).

Once structure is known, CPT parameters (probabil-
ity distributions over outcomes) are generally learned
from the data. Examples of parameter learning for
DBNs include maximum likelihood estimation (one ex-
ample being the expectation maximization [3] algo-
rithm), or Bayesian estimation.

Unlike most Bayesian network learning algorithms, our
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Figure 1: An example DBN structure.

validation is based on the quality of predictions rather
than of inference. In other words, our work looks
forward in time rather than backward. We conjec-
ture that good learned probabilistic planning models
may actually differ from probabilistic inference models
learned from the same data.

3.2 2-Slice Dynamic Bayesian Networks

Bayesian networks have been demonstrated to be use-
ful for inference in a number of domains, however the
standard framework does not have an explicit notion
of time. A dynamic Bayesian network builds upon the
Bayesian network idea, incorporating temporal or se-
quential aspects of data into its structure. Variables
at one time-step may influence the value of variables
at future time-steps (or at the same time-step).

We are interested in a special case of dynamic Bayesian
networks, the 2-slice dynamic Bayesian network. A 2-
slice dynamic Bayesian network is a Bayesian network
with V = V, V ′, representing variables at time t and
t+1, and edges from V to V ′ (and sometimes between
vertices in V ′). In DBNs of this form, V and V ′ may
be visualized as two separate columns representing,
respectively, the variables at time t and t+ 1.

This structural formulation implies two theoretical
assumptions under which we operate. These are a
stationary assumption where models are not time-
dependant and a Markov assumption where there is no
memory of past states; future values are conditioned
only over the current system state.

Figure 1 gives the structure of an example of a 2-slice
DBN which could be used for planning in an academic
domain. This DBN structure shows that the expected
grade in Logic and Theory of Computing (LTC) is con-
ditioned over the grades obtained in Introduction to
Programming (INTR), Discrete Mathematics (DISC),
and Introduction to Numerical Methods (INUM).

Rather than selecting a single ideal structural size we
choose to make structure size a parameter of our al-
gorithm. Since we are considering models for the pur-
pose of planning, we must consider the tradeoff be-
tween accuracy of the representation and tractability
of planning. Our goal is to be able to generate DBNs
of different sizes for different purposes. We examine
how our algorithm fares as a function of structure size
in Section 5. At this point we are left with the question
of how to select n parent nodes for each node.

Goldenberg et al. approached a similar problem of
learning Bayesian network structures from sparse data
using frequent set mining [5]. Frequent sets are
widely used in data mining for learning common co-
occurrence between sets of items. The idea of applying
frequent set mining to academic advising may be useful
in other capacities (learning combinations of courses
which should or should not be taken together), how-
ever co-occurrence of actions is less applicable to build-
ing predictive models of advising; courses which are
frequently taken together are unlikely to make good
predictors for each other. Parent courses should be
taken before child courses, otherwise they provide lit-
tle information.

Rather than using co-occurance we make the assump-
tion that similar variables make better predictors than
dissimilar variables. We examine the use of pairwise
item similarity in selecting parent nodes. Item simi-
larity is commonly used in collaborative filtering and
other data mining applications to determine which
items hold the most predictive power for a target item,
allowing for better predictions to be made.

One of the most common approaches for collaborative
filtering is to use the database of user grades to deter-
mine item-item similarity. For each pair of items in
the database a vector of grades is created (retaining
only grades where users voted for both items) [7]. To
these vectors a number of distance metrics can be ap-
plied. In our implementation we tested two common
vector similarity metrics: Pearson’s correlation coeffi-
cient and cosine similarity.

3.3 Collaborative Filtering

Collaborative filtering recommendation algorithms
typically fall into one of two general categories: model-
based algorithms and memory-based algorithms [1].
Model-based algorithms involve generating a model
based on data, and using the model to make predic-
tions. We are interested in memory-based algorithms
which use the entire data set to make predictions. This
class of algorithms is described in Section 3.4.

Collaborative filtering algorithms also rely heavily on
the notion of similarity. That is, similar users are likely



to assign similar grades to items. Likewise, similar
items may also be given similar grades. Collaborative
filtering systems often employ one of these assump-
tions. These are known as user-based and item-based
collaborative filtering. In this paper we focus on the
use of item-based collaborative filtering because of the
performance demonstrated by these algorithms and
because of their user-independent nature.

3.4 Item-Based Collaborative Filtering

The collaborative filtering algorithm that we used in
this paper is an item-based algorithm presented by
Sarwar et al. [7]. First, item-item similarity is cal-
culated over all items in the database. For item-item
similarity we are using Pearson’s correlation coefficient
and cosine similarity. For a user u and an item i, pre-
dictions are made using the weighted sum of u’s grades
for all items which are similar to i. This can be ex-
pressed as:

pu,i =

∑
all similar items,N (si,N ∗Ru,N )∑

all similar items,N(|si,N |)
. (1)

Here, pu,i is the predicted grade that user u might give
item i, si,N is the similarity between items i and N ,
and Ru,N is the grade that u provided for item N .

Equation 1 produces a single, most likely grade for
the given user and item. Because a DBN requires a
probability distribution over all possible grades, we
are not yet ready to encode our DBNs.

4 Algorithm Details

The CF algorithm based on the function pu,i described
in Section 3.4 defines a deterministic version of the
DBN CPTs that we want to generate. We use these
predictions and the data from past students’ tran-
scripts to generate probability distributions over pos-
sible grades to produce full CPTs. Algorithm 1 de-
scribes the process of turning deterministic predictions
from pu,i into CPTs.

In this algorithm we make the assumption that devia-
tion from predictions in past data will produce a dis-
tribution which is a reasonable approximation of the
probability distribution.

Given the predictions from the CF function described
in 4, we build a distribution table, grade distribution,
for the set of items with rows and columns indexed by
predicted and actual grades. If G1 and G2 are possible
grades, then the grade distribution[G1][G2] entry in
the table is the number of transcripts for which the
CF algorithm predicted G1 and the student received
G2 for the class in question.

After we construct grade distribution we normalize
each row of the table to form probability distributions.
For a grade g, row grade distribution[g] is now a prob-
ability distribution over actual grades when R predicts
g.

Input: Past Users - a database of past user grades.
Output: CPT - A set of CPTs for each course
foreach user in Past Users do

foreach item in user’s graded items do
p = puser,item;
actual = actual grade for item;
grade distribution[p][actual]++;

end

end
normalize rows of grade distribution;
foreach item do

T = create prediction table for item;
foreach row in T do

u* = temporary user using grade assignments
in row;
p = puser,item;
add distribution from grade distribution[p] to
current row of T;

end
CPT(course) = T;

end

Algorithm 1: Generate DBNs from CF predictions

The second half of our algorithm constructs a set of
prediction tables for each course. A prediction table
T for a course c reflects the overall structure of a fi-
nal CPT for c; each row of T contains a set of val-
ues for parent variables (defined by δ and our distance
metric). For each row of T , we fill in the probability
distribution over grades using the appropriate row of
grade distribution.

Each row of the prediction table T implies a hypo-
thetical user transcript as an assignment over past
grades. Using R we can make a prediction p for
each row. We select a probability distribution from
grade distribution[p], adding probability distributions
over grades to each row of T .

After completion, CPT is a set of CPTs for each
course, where CPT (c) is the CPT for course c.

5 Results

In this section we describe the tests we run on the
academic advising data. We evaluate the two variants
of the item-based collaborative filtering algorithm on
this dataset. We also generate two baseline DBN mod-
els and two collaborative filtering based models, and



analyze their performance on this dataset.

5.1 Data and Experimental Setup

Models are generated from the transcript data for
approximately 4760 undergraduate students who en-
rolled during the 2000–2003 academic years. These
anonymized data are a time-stamped (semester and
year) series of transactions labeled with course and in-
structor information and grade outcomes. Because we
have meta-data from computer science courses, we re-
stricted our attention to students who took computer
science courses during their academic careers.

Our analysis is broken down into two steps: collab-
orative filtering evaluation and DBN evaluation. We
chose to evaluate the item-based collaborative filter-
ing algorithm first to give a measurement of the algo-
rithm’s performance on an academic dataset. Testing
of both collaborative filtering and DBNs is performed
using 10-fold cross validation (partitioned randomly).

We are looking at two methods for evaluating the item-
based collaborative filtering algorithm on this dataset:
mean absolute error and the percent of misclassified
predictions. Together, these statistics give us an indi-
cation of how far predictions are from actual grades
and how often predictions are misclassified, respec-
tively. We selected these statistics because they are
fairly straightforward to interpret, and because mean
absolute error has been used in the past for collabora-
tive filtering evaluation, allowing comparison to per-
formance on other datasets.

As a baseline for comparison of our 2-slice DBNs we
generated baseline DBNs using more standard tech-
niques. Baseline DBN structures were found through
exhaustive search of the network structure space, us-
ing Bayesian information criterion (BIC) [8] as a scor-
ing function. The highest scoring network was selected
for a specified neighborhood size, and parameters were
estimated using both maximum likelihood (ML) and
Bayesian parameter estimation. Baseline DBNs were
generated using the bnlearn software package [9].

As a means of evaluating the performance of the DBNs
we calculated the log-likelihood loss of the models, and
the percent of misclassified predictions. Log-likelihood
loss is the negation of the log-likelihood, which we wish
to minimize. “Predictions” in this case are similar to
the deterministic predictions made by a collaborative
filtering algorithm. We select the most likely outcome
as a deterministic prediction and count the number
that were classified correctly/incorrectly. This also
gives us a basis for comparing our DBNs to the item-
based collaborative filtering algorithm.
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Figure 2: CF prediction mean absolute error
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Figure 3: Percent of misclassified predictions.

5.2 Collaborative filtering evaluation

Figures 2 and 3 show that the two different distance
metrics, Pearson’s correlation and cosine similarity,
yield DBNs that perform very similarly. These fig-
ures display the mean absolute error and percent of
misclassified predictions for both Pearson correlation
and cosine distance similarity metrics.

Figure 2 shows that mean absolute error decreases
swiftly as the neighborhood size increases. After about
11 neighbors this decrease slows and little change is
observed as the number of predictors continues to in-
crease. This curve is similar to tests conducted on the
MovieLens dataset [7].

Figure 3 shows how the percent of misclassified pre-
dictions changes as neighborhood size increases. At
first there is an abrupt jump in this percent, however



afterward this curve resembles the curve for mean ab-
solute error, with an apparent ideal neighborhood size
of about 15 neighbors.

5.3 DBN evaluation

Figures 4 and 5 show that the DBNs learned using col-
laborative filtering (Pearson and cosine) outperform
the baseline DBNs. Figure 4 shows the log-likelihood
loss averaged over all models for a given neighborhood
size. Figure 5 shows the percent of misclassified pre-
dictions for each model. Baseline DBNs are labeled
as “Bayes” and “ML” for their parameter estimation
methods. Collaborative filtering inspired DBNs are la-
beled “Pearson” and “Cosine” for the distance metric
used in the collaborative filtering algorithm.

In terms of minimizing loss (Figure 4), the maximum-
likelihood, Pearson, and cosine models show similar
performance. At a neighborhood size of 2, these mod-
els have a log-likelihood loss tightly clustered around
1.14–1.16. Loss shows a steady decrease as the neigh-
borhood size increases. However, the Bayesian model
appears unable to cope with increasing neighborhood
size, showing an increasing loss. This is likely due to
the sparsity of data, and the increase in the possible
number of configurations that corresponds with an in-
creased neighborhood size.

Classification accuracy (Figure 4) shows steady im-
provement as neighborhood size increases across all
models, with collaborative filtering models showing
much better accuracy than Bayes and maximum-
likelihood models at all neighborhood sizes. At a
neighborhood size of only one the Pearson and co-
sine models show comparable accuracy (48.74-49.45%
misclassified respectively) to the ML model Bayesian
model at a neighborhood size of 5 (49.52% misclassi-
fied) and 7 (49.47% misclassified), respectively. At a
neighborhood size of 10, the Pearson model shows the
lowest misclassification rate at approximately 42.18%.

Comparing Figures 3 and 5, we find that at 6-7 parent
variables, our baseline DBNs outperformed the item-
based collaborative filtering algorithm. This is consis-
tent with other experiments that demonstrated that
Bayesian methods of classification showed better re-
sults than the standard item-based algorithm [10].

However, in terms of the percent of misclassified ob-
servations the CF-based DBNs outperformed both our
benchmarks and the item-based collaborative filtering
algorithm that they were based on at all neighborhood
sizes. At 17 neighbors the CF algorithm hit a misclas-
sification rate of approximately 49.6%, however at a
neighborhood size of only 10 the CF-based DBNs had
a misclassification rate of approximately 42.18%. This
indicates that by observing the way that predicted
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Figure 4: Average Log-Likelihood Loss.
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Figure 5: Observations misclassified by the DBN.

grades deviated from actual grades on a per-item ba-
sis (as we did with CPT generation in algorithm 1)
one may be able to construct a better collaborative
filtering algorithm.

Across all tests the Pearson model showed a slight ad-
vantage over the cosine model. This indicates that
improvements in the item-based collaborative filtering
used to generate DBNs may lead to improvements in
resulting DBN models.

6 Conclusions and future directions

Our goal is to develop DBN transition models for the
purpose of decision-theoretic planning. In this pa-
per we have presented a novel approach for gener-
ating DBN planning models from sparse data. We
used academic advising data to show the validity of



our method. One of the benefits of this method is
the flexibility regarding the use of collaborative fil-
tering recommendation algorithms. Our models were
constructed using a generic item-based collaborative
filtering algorithm. Any similar item-based collabora-
tive filtering algorithm can be used in its place, giving
us a wide variety of algorithms which can be employed
using off-the-shelf software packages.

We are also investigating methods for modeling util-
ity in this and similar domains, as well as decision-
theoretic planning algorithms that can run on domains
of the size and complexity presented here, and larger.
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