
Context-dependent Incremental Intention Recognition
through Bayesian Network Model Construction

Han The Anh and Luı́s Moniz Pereira
Centro de Inteligência Artificial (CENTRIA)

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

h.anh@fct.unl.pt, lmp@di.fct.unl.pt

Abstract

We present a method for context-dependent and
incremental intention recognition by means of
incrementally constructing a Bayesian Network
(BN) model as more actions are observed. It is
achieved with the support of a knowledge base of
readily maintained and constructed fragments of
BNs. The simple structure of the fragments en-
ables to easily and efficiently acquire the knowl-
edge base, either from domain experts or auto-
matically from a plan corpus. We exhibit exper-
imental results improvement for the Linux Plan
corpus. For additional experimentation, new plan
corpora for the iterated Prisoner’s Dilemma are
created. We show that taking into account con-
textual information considerably increases inten-
tion recognition performance.

1 INTRODUCTION

We propose a method for intention recognition in a dy-
namic, real-world environment. An important aspect of in-
tentions is future-directedness, i.e. if we intend something
now, we mean to execute a course of actions to achieve
something in the future [3]. Most actions may be executed
only at a far distance in time. During that period, the world
is changing, and the initial intention may be changed to
a more appropriate one or even abandoned [3, 6]. An in-
tention recognition method should take into account these
changes, and may need to reevaluate the intention recogni-
tion model depending on some time limit; in addition, as
new actions are observed, the model should be reconfig-
urable to incorporate them.

Generally, intention recognition (also called goal recogni-
tion) is defined as the process of becoming aware of the in-
tention of another agent and, more technically, as the prob-
lem of inferring an agent’s intention through its actions and
their effects on the environment [10]. Plan recognition is

closely related to intention recognition, extending it to also
recognize the plan the observed agent is following in order
to achieve his intention [20]. Intention recognition is per-
formed in domains in which it is better to have a fast detec-
tion of just the user’s goal/intention rather than a more pre-
cise but time consuming detection of the complete user’s
plan, e.g. in the interface agents domain [12].

In this work, we use Bayesian Networks (BN) as the in-
tention recognition model. The flexibility of BNs for rep-
resenting probabilistic dependencies and the efficiency of
inference methods for BN have made them an extremely
powerful and natural tool for problem solving under un-
certainty [16, 17]. We present a knowledge representation
method to support incremental BN construction for per-
forming intention recognition during runtime, from an ini-
tially given domain knowledge base. As more actions are
observed, a new BN is constructed reinforcing some inten-
tions whilst ruling out others (Section 3). This incremen-
tal method allows domain experts to specify knowledge in
terms of small and simple BN fragments, which can be
easily maintained and changed. Alternatively, these frag-
ments can be learned from data. Our intention recognition
method is evaluated on the Linux Plan corpus [2] (Section
5) and on our new, so-called IPD plan corpora (Section 6).
We also propose a method to represent relationship among
intentions when considering the case that agents may pur-
sue multiple intentions simultaneously (Section 4). It is
an indispensable aspect, but mostly omitted in prior works,
which also allows us to sometimes significantly decrease
the complexity of the probability inference [7].

It is inspired in that knowledge experts often consider
a related set of variables together, and organize domain
knowledge in larger chunks. An ability to represent con-
ceptually meaningful groupings of variables and their in-
terrelationships facilitates both knowledge elicitation and
knowledge base maintenance [14, 13]. To this end, there
have been several methods proposed for BN construc-
tion from small and easily maintained network fragments
[16, 19, 14, 15, 13]. In essence, a combination of BNs is
a graph that includes all nodes and links of the networks,



where nodes with the same name are combined into a com-
mon node. The main issue for a combination method is
how the influence of different parents of the common node
can be combined in the new network, given the partial in-
fluence of each parent in the corresponding fragment. The
most popular method is Noisy-Or, firstly proposed by [16]
for BNs of Boolean variables, and generalized by [22] for
the general case of arbitrary domains.

2 BAYESIAN NETWORKS

Definition 1 A BN is a pair consisting of a directed acyclic
graph (DAG) whose nodes represent variables and miss-
ing edges encode conditional independencies between the
variables, and an associated probability distribution satis-
fying the Markov assumption of conditional independence,
saying that variables are independent of non-descendants
given their parents in the graph [16, 17].

In a BN, associated with each node of its DAG is a spec-
ification of the distribution of its variable, say A, condi-
tioned on its parents in the graph (denoted by pa(A))—i.e.,
P (A|pa(A)) is specified. If pa(A) = ∅ (A is called root
node), its unconditional probability distribution, P (A), is
specified. These distributions are called Conditional Prob-
ability Distribution (CPD) of the BN.

The joint distribution of all node values can be deter-
mined as the product of conditional probabilities of the
value of each node on its parents P (X1, ..., XN ) =∏N
i=1 P (Xi|pa(Xi)), where V = {Xi|1 ≤ i ≤ N} is

the set of nodes of the DAG.

Suppose there is a set of evidence nodes (i.e. their values
are observed) in the DAG, say O = {O1, ..., Om} ⊂ V .
We can determine the conditional probability distribution
of a variable X given the observed value of evidence nodes
by using the conditional probability formula

P (X|O) =
P (X,O)
P (O)

=
P (X,O1, ..., Om)
P (O1, ..., Om)

(1)

where the numerator and denominator are computed by
summing up the joint probabilities over all absent variables
with respect to V .

3 INCREMENTAL INTENTION
RECOGNITION

In [18], a general BN model for intention recognition
is presented and justified based on Heinze’s intentional
model [10]. Basically, the BN consists of three lay-
ers: cause/reason nodes in the first layer (called pre-
intentional), connecting to intention nodes in the second
one (called intentional), in turn connecting to action nodes
in the third (called activity) (Figure 1). In this work, we

Causes/Reasons

C-2

C-x

I-1

I-y

A-1C-1

A-z

.

.

.

.

.

.

.

.

.

.

Intentions Actions

Figure 1: Bayesian Network for Intention Recognition.

present a method for incrementally constructing such BN
model for performing incremental intention recognition.

Definition 2 (Intention Recognition BN – IRBN)
A BN for intention recognition (IRBN) W is a triple
〈{Cs, Is,As}, pa, PW 〉 where

• Cs, Is and As are the sets of cause/reason nodes, in-
tention nodes and action nodes, respectively. They
stand for binary random variables (i.e. their value is
either true (T) or false (F)).
• pa is a mapping which maps a node to the set of

its parent nodes such that: pa(C ) = ∅ ∀C ∈ Cs;
pa(I ) ⊆ Cs ∀I ∈ Is; and ∅ 6= pa(A) ⊆ Is ∀A ∈ As .

• CPD tables are given by the probability distribution
PW , i.e. PW (X|pa(X)) defines the probability of X
conditional on pa(X) in W, ∀X ∈ Cs ∪ Is ∪As.

The intention recognition method will be performed by in-
crementally constructing an IRBN as more actions are ob-
served. The construction is based on a prior knowledge
base consisting of Unit BN Fragments.

Definition 3 (Unit Fragments) There are two types of
unit fragments used for IRBN model construction:

1. A unit fragment for an action A consists of an inten-
tion I connecting to (i.e. causally affecting) A, and is
denoted by UFA(I ,A).

2. A unit fragment for an intention I consists of a context-
independent and fixed over time set of causes/reasons
Cs connecting to (i.e. causally affecting) I , and is de-
noted by UFI(Cs, I ).

Definition 4 (Knowledge Base) The domain knowledge
base KB consists of a set of actions ∆, a set of intentions
Υ, a set of unit fragments for each action in ∆ and a single
unit fragment for each intention in Υ, satisfying that

• An intention I has a unique unit fragment in KB. The
set of its parents (causes) and the CPD table associ-
ated with it are fixed. Let C(I) denote the set of par-
ents of I and PKB(I|C(I)) define its CPD table.



A
.
.
.
.

I1

AIN

A

.

.

.

.

I1

IN

Figure 2: Noisy-OR Combination Method

• A cause C has the same prior probability distribution
in all the unit fragments (for intentions) that it belongs
to, denoted by PKB(C).

The simple structures of unit fragments enable domain ex-
perts to easily construct and maintain the knowledge base.
The fragments also can be learnt from appropriate datasets,
as we shall see later with the Linux and IPD corpora. Be-
fore presenting the intention recognition algorithm, let us
define some (original) operators for handling CPD tables
and IRBNs.

3.1 OPERATORS FOR CONSTRUCTING IRBN

As a new action A is observed, we need to incorporate it
into the current IRBN. First, appropriate unit fragments for
A are selected from KB. Let select(A) denote the set of all
unit fragments for A from KB 1. They are then combined
using the Noisy-OR method [16, 22], thereby obtaining a
BN with a single action A (Figure 2).

Definition 5 (Unit IRBN via Noisy-OR) The Unit IRBN
for action A is an IRBN with a single action, de-
noted by irBN (A) = 〈{Cs, Is, {A}}, pa, PW 〉. It
is obtained via Noisy-OR method as follows. Let
select(A) = {UFA(I1 ,A), ....,UFA(IN ,A)} and for 1 ≤
i ≤ N , P (A = T |Ii = T ) = qi (defined in fragment
UFA(Ii ,A)). Then,

• Is = {I1, ..., IN}; Cs =
⋃
I∈Is C(I);

• pa(I) = C(I) ∀I ∈ Is; pa(A) = Is;
• PW (C) = PKB(C) ∀C ∈ Cs; PW (I) =
PKB(I) ∀I ∈ Is; and, according to the Noisy-OR
method, PW (A = T |pa(A)) = 1−

∏
i:Ii=T

(1− qi).

The rationale and appropriateness of the application of the
Noisy-OR method here for combining unit fragments is
based on the intuition that each intention can be interpreted
as a “cause” of action A; and action A occurs when one or
more of the intentions are active. Detailed arguments for
this can be found in [5, 16].

1The selection can be done in a context-dependent manner, but
it is beyond the scope of this paper.

Definition 6 (Project of CPD Table) Let Tb be a CPD ta-
ble defining P (X|V ), the probability of a random variable
X conditional on a set of random binary variables V, and
V ′ ( V . The project of Tb on V ′, denoted by proj(Tb, V′),
is the part of Tb corresponding to all variables in V \ V ′
being false.

Now we need to combine the obtained unit IRBN, irBN(A),
with the current IRBN. For that, in the sequel we define
how to combine two IRBNs. Intuitively, we simply add up
all the new nodes and links of the new IRBN to the current
IRBN, keeping the CPD tables from the original IRBNs.

Definition 7 (Combination of IRBNs) Let
W1 = 〈{Cs1 , Is1 ,As1}, pa1 ,P1 〉 and
W2 = 〈{Cs2 , Is2 ,As2}, pa2 ,P2 〉 be two IRBNs,
such that As1 ∩As2 = ∅ (the actions in As2
which are already in As1 are renamed). The com-
bination of these two IRBNs is an IRBN, denoted by
comb(W1, W2) = 〈{Cs, Is,As}, pa,PW 〉, where

• As = As1∪As2; Is = Is1∪Is2; Cs = Cs1∪Cs2;
• pa(I) = C(I) ∀I ∈ Is; pa(A) = pa1(A)∪pa2(A);
• PW (C) = PKB(C) ∀C ∈ Cs; PW (I|pa(I)) =
PKB(I|C(I)) ∀I ∈ Is; PW (A|pa(A)) =
PWk

(A|pak(A)) if A ∈ Ask (with k = 1, 2).

Note that here it is allowed the possibility that the observed
agent follows multiple intentions simultaneously. When
some intentions are found irrelevant—e.g. because they are
much unlikely2—those intentions should be removed from
the IRBN. This is enacted by considering them as com-
pletely false and employing the project operator.

Definition 8 (Remove Intentions from IRBN) Let
W = 〈{Cs, Is,As}, pa,PW 〉 be an IRBN and R ⊂ Is
a strict subset of Is. The result of removing the
set of intentions R from W is an IRBN, denoted by
remove(W, R) = 〈{CsR, IsR, AsR}, paR, PR〉, where

• AsR = As; IsR = Is \R; CsR =
⋃
I∈IsR

C(I);
• paR(I ) = C(I ) ∀I ∈ IsR; paR(A) = pa(A) \
R ∀A ∈ AsR;
• PR(C) = PKB(C) ∀C ∈ CsR; PR(I|paR(I)) =
PKB(I|C(I)) ∀I ∈ IsR; and for each A ∈
AsR, PR(A|paR(A)) is defined by the CPD table
proj(Tb, paR(A)) where Tb is the CPD table for A
in W, i.e. defined by PW (A|pa(A)).

Based on these operators, we now describe an algorithm for
incremental intention recognition in a real-time manner.

Incremental Intention Recognition Algorithm. Repeat
the following steps until some given time limit is reached;
the most likely intention in previous cycle is the final result.

2One intention is much less likely than the other if the fraction
of its likelihood and that of the most likely intention is less than
some small threshold. It is up to the KB designer to provide it.



• Let A be a new observed action. Combine
the current IRBN W with irBN(A) to obtain
W′ = comb(W, irBN(A)). If A is the initially observed
action, let W′ = irBN(A).

• Compute the probability of each intention in W ′, con-
ditional on the set of current observations in W ′. Re-
move the intentions which are much less likely than
the others (following Definition 8).

4 RELATION AMONG INTENTIONS

When considering the case in which the observed agent
may pursue multiple intentions simultaneously, it is un-
doubtedly indispensable to take into account and express
the relations amongst the intentions in the model. Pursu-
ing one intention may exclude some other intention to be
pursued. We introduce a so-called exclusive relation e—a
binary relation on the set of intention nodes—representing
that if one intention is pursued, then the other intention can-
not be pursued. It is usually, although perhaps not always,
the case that intentions exclusiveness is symmetric. Here
we assume that e is symmetric; it can be renamed mutually
exclusive relation.

Intentions I1 and I2 are mutually exclusive iff they cannot
be pursued simultaneously, i.e. P (I1 = T, I2 = T ) = 0.
Thus, for any action A, if I1, I2 ∈ pa(A) then the CPD ta-
ble for A is undefined. Hence, the BN needs to be restruc-
tured. The mutually exclusive intentions must be combined
into a single node since they cannot co-exist as parents of
a node. Each intention represents a possible value of the
new combined node. Namely, let I1, ..., It be such that
e(Ii, Ij), ∀i, j : 1 ≤ i < j ≤ t. The new combined node,
I , stands for a random variable whose possible outcomes
are either Ii, 1 ≤ i ≤ t, or Ĩ—the outcome corresponding
to the state that none of Ii = T . Note that if the intentions
are exhaustive, Ĩ can be omitted. Next, I is linked to all the
action nodes that has a link from one of Ii, 1 ≤ i ≤ t.

There remains to re-define CPD tables in the new BN. They
are kept the same for action A where I 6∈ pa(A). For A
such that I ∈ pa(A), the new CPD table at I = Ii cor-
responds to the CPD table in the original BN at Ii = T
and Ij = F ∀j 6= i, i.e. P (A|I = Ii, ...) = P (A|I0 =
F, ..., Ii−1 = F, Ii = T, Ii+1 = F, ..., It = F, ....). Note
that the left hand side is defined in the new BN, and the
right hand side is defined in the original BN. Similarly, the
new CPD table at I = Ĩ corresponds to Ii = F ∀1 ≤ i ≤ t.
We now specify the CPD table of I . In the new BN,
the causes/reasons of each intention are connected to the
combined node, i.e. pa(I) =

⋃t
i=1 C(Ii). Applying the

Markov assumption (Def.1) we have P (I = Ii|pa(I)) =
Pi(Ii = T |C(Ii)) and P (I = Ĩ|pa(I)) =

∏t
i=1 Pi(Ii =

F |C(Ii)), wherePi is the probability distribution of the unit
fragment for Ii.

In the next section we focus on the single intention recog-

nition case, showing how the approach to representing rela-
tionships amongst intentions can significantly decrease the
complexity of the probability inference therein. We then
present experimental results on the Linux Plan corpus. Af-
ter that, in Section 6, we provide further experimentation
on our novel, so-called IPD plan corpora.

5 SINGLE INTENTION RECOGNITION

5.1 THE MODEL

Suppose the observed agent pursues a single intention. In
this case, all intentions are mutually exclusive, and they
can be combined into a single node. The IRBN then has
a single intention node, linking to all action nodes. All
cause/reason nodes are connected to the intention node.

Let I1, ..., In be the intentions in the original IRBN. As
usual, they are assumed to be exhaustive, i.e. the observed
agent is assigned an intention from them. The combined
node I thus has n possible outcomes Ii, 1 ≤ i ≤ n. Let
As = {A1, ..., Am} be the set of current observed actions.
The set of all cause/reason nodes are Cs = ∪ni=1C(Ii).
Suppose Ce ⊆ Cs is the set of cause/reason nodes which
are observed (evidence nodes). Let Cne = Cs \ Ce.

Applying Eq. 1, we obtain the probability of each intention
conditional on the current observations, for 1 ≤ j ≤ n,

P (I = Ij |Ce, As) =
P (Ij , Ce, As)∑n
i=1 P (Ii, Ce, As)

, where

P (Ij , Ce, As) =
m∏
i=1

P (Ai|Ij)

(∑
Cne

P (Ij |Cs)
∏
C∈Cs

P (C)

)
This implies that, when not including causes/reasons of in-
tentions (Cs = ∅) as in case of Linux Plan corpus below,
our intention recognizer has a linear complexity O(|n|).

If all the cause/reason nodes are not observable, i.e. Cne =
Cs (as in the case of the Linux Plan we examine in the
next subsection), it is easily seen that: P (Ij , Ce, As) =
P (Ij)

∏m
i=1 P (Ai|Ij). If all of them are observed (Cne =

∅) (as we shall see in the IPD Plan corpora), the term∏
C∈Cs P (C) is simplified in the fraction. Thus, in these

two cases, we do not need to define prior probabilities dis-
tribution of the root nodes in Cs. Note that in the latter
case we still need to compute the conditional probabilities
P (Ij |Cs).

5.2 EXPERIMENTAL EVALUATION

The Linux Plan Corpus. Plan corpus is the term used
to describe a set of plan sessions and consists of a list of
goals/intentions and the actions a user executed to achieve
them [1]. Although there are many corpora available for
testing machine learning algorithms in other domains, just



a few are available for training and testing plan/intention
recognizers; furthermore, each of the recognizers using
plan corpora usually has its own datasets, leading to a dif-
ficult comparison among them. For that important reason,
we chose Linux Plan corpus [2]—one of the rare regularly
used plan corpora—which was kindly made publicly avail-
able by Nate Blaylock—to test our system. It enables a bet-
ter comparison with other systems using this corpus [2, 1].

The Linux plan corpus was gathered from 56 human users.
The users have different levels of expertise in the use of
Linux, and they were allowed to perform as many times as
they wished, in order to contribute more plan sessions. The
sessions, consisting in sequences of commands performed
by the users to achieve a given goal/intention, were auto-
matically recorded. At the end of each session, the users
were asked to indicate whether they succeeded in achiev-
ing their goal. In total, there are 547 sessions, 457 of
which were indicated as successfully completing the goal,
19 goals and 43 actions.

The Linux Plan corpus is an important (especially in the
interface-agents domain [12]) and hard benchmark for in-
tention/goal recognition. First, data is collected from real
humans and thus noisy. Second, involved humans expertise
is varied, and they sometimes used wrong commands due to
limited knowledge about the domain [2]. Furthermore, we
observe that plan sessions’ lengths in the corpus are quite
varied. The minimum, maximum, and mean number of ac-
tions of a plan session are 1, 60, and 6.124, respectively.

Learning Unit Fragments from Data. For unit frag-
ment UFA(I ,A), the conditional probability of A given
I is defined by the frequency of A in a plan session for
achieving the goal/intention I divided by the frequency of
any action for achieving I: P (A = T |I = T ) = freq(AI )

freq(I ) .
For better understanding, in the plan corpus each action is
marked with the intention which the action is aiming at.
Then, freq(AI ) is the frequency of A being marked by I ,
and freq(I ) is the frequency of seeing the mark I .

Prior probabilities of all the intentions in the corpus are
given initially, and used for generating tasks for users [2].

Making Predictions. Similar to [2], instead of letting the
recognizer make a prediction after each observed action,
we set a confidence threshold τ (0 ≤ τ ≤ 1) , which al-
lows the recognizer to decide whether or not it is confident
enough to make a prediction; the recognizer only makes a
prediction if the likelihood of the most likely intention in
the model is greater than τ . Otherwise, it predicts “don’t
know”. In addition, instead of only predicting the most
likely intention, the recognizer provides a set of N most
likely ones (N-best prediction).

Evaluation Metrics. For evaluating our system and com-
paring with the previous ones [2, 1], we use three different
metrics. Precision and recall report the number of correct

Table 1: Intention Recognition Results on the Linux Plan Corpus

N-best 1-best 2-best 3-best 4-best
τ 0.95 0.5 0.45 0.42

Precision 0.786 0.847 0.870 0.883
Recall 0.308 0.469 0.518 0.612

Converg. 0.722 0.799 0.822 0.824

predictions divided by total predictions and total prediction
opportunities, respectively. More formally (also see [1]),
let Seq = a1, ..., an be a sequence of actions (plan ses-
sion) achieving intention I . Considering N-best prediction
case, let correct(A) = 1 if I is one of N most likely inten-
tions, and 0 otherwise. Then, precision and recall for Seq
are defined as: precision(Seq) = (

∑n
i=1 correct(ai))/z;

recall(Seq) = (
∑n
i=1 correct(ai))/Z, where z and Z are

the number of predictions made (when the recognizer is
confident enough) and the total number of prediction op-
portunities (i.e. when τ = 0), respectively.

On the other hand, convergence is a metric that indicates
how much time the recognizer took to converge on what
the current user goal/intention was. Let t be such that
correcti = 0 for 0 ≤ i ≤ t − 1 and 1 for t ≤ i ≤ n
(i.e. t is the first time point which from there on the system
always correctly predicts), convergence for Seq is defined
as: convergence(Seq) = (z − t+ 1)/z.

Finally, the overall precision, recall and convergence are
obtained by taking averages over all testing sessions.

Experiments and Results. Because of the small size of
the Linux corpus, similar to previous works, we ran exper-
iments using the one-out cross validation method [1].

Table 1 shows the results for different values of N (and the
corresponding value of τ ). Similar to the previous works
[2, 1], we keep the best results for each value of N w.r.t. τ .
For example, we obtained a precision of 78.6% for 1-best
that is increased to 87.0% for 3-best prediction and 88.3%
for 4-best one. Convergence is increased from 72.2% for
1-best to 82.2% for 3-best and 82.4% 4-best prediction.

The best performance on the Linux corpus (namely, in
terms of precision and convergence) so far was reported
in [1], where the authors use variable Markov model with
exponential moving average. Here we got an increment of
14% better precision and 13.3% better convergence for 1-
best prediction, 8.2% better precision and 9.3% better con-
vergence for 2-best prediction, and 7.5% better precision
and 7.7% better convergence for 3-best prediction. We also
obtained better recalls comparing with [2] in all cases.

The Linux corpus allows an appropriate comparison with
existent works. However, it does not include contextual
information (reasons/causes of intentions), and there is no
intention change/abandonment occurrences (users follow a



single intention throughout entire plan sessions). To eval-
uate the context-dependent aspect as well as the capabil-
ity of dealing with intention change/abandonment, we next
present new plan corpora.

6 IPD PLAN CORPORA

We present new plan corpora in the context of iterated Pris-
oner’s Dilemma (IPD) [21] and provide experimental re-
sults for them. The intentions/goals to be recognized are
the (known) strategies in IPD (see below). Plan sessions
are sequences of moves played by such strategies.

6.1 ITERATED PRISONER’S DILEMMA

Prisoner’s Dilemma (PD) is a symmetric two-player non-
zero game defined by the payoff matrix

„ C D

C R,R S, T
D T, S P, P

«
Each player has two options in each round, cooperates

(C) or defects (D). A player who chooses to cooperate
with someone who defects receives the sucker’s payoff S,
whereas the defecting player gains the temptation to defect,
T . Mutual cooperation (resp., defection) yields the reward
R (resp., punishment P) for both players. PD is charac-
terized by the payoff ranking T > R > P > S (and, in
addition, 2R > S + T for IPD). Thus, in a single round, it
is always best to defect, but cooperation may be rewarded
if the game is iterated. Let r denote the (average) number
of rounds the game is iterated.

IPD is usually known as a story of tit-for-tat (TFT), which
won both Axelrod’s tournaments [21]. TFT starts by coop-
erating, and does whatever the opponent did in the previous
round. It will cooperate if the opponent cooperated, and
will defect if the opponent defected. But if there are erro-
neous moves due to noise (i.e. an intended move is wrongly
performed with a given execution error), the performance
of TFT declines: it cannot correct errors or mistakes. Tit-
for-tat is then replaced by generous tit-for-tat (GTFT), a
strategy that cooperates if the opponent cooperated in the
previous round, but sometimes cooperates even if the oppo-
nent defected (with a fixed “forgiveness” probability p > 0)
[21]. GTFT can correct mistakes. Subsequently, TFT and
GTFT were replaced by win-stay-lose-shift (WSLS) as the
winning strategy chosen by evolution [21]. WSLS repeats
the previous move whenever it did well, but changes oth-
erwise. Some other less famous strategies (which we are
going to use later) are GRIM – a grim version of TFT, pre-
scribing to defect except after a round of mutual coopera-
tion, and Firm-But-Fair (FBF) – known as a tolerant brother
of TFT, prescribing to defect only if getting a sucker’s pay-
off S in previous round. Details of all strategies described
above can be found in [21] (Chapter 3).

Next, we describe how training and testing plan corpora are
created employing these strategies.

6.2 CORPUS DESCRIPTION

We made an assumption that all strategies to be recognized
have the memory size bounded-up by M (M ≥ 0)—i.e.
their decision at the current round is independent of the
past rounds that are at a time distance greater than M . The
strategies described above have memory M = 1. Abusing
notations, R, S, T and P are referred to as game states (in
a single round or interaction). We too use E (standing for
empty) to refer to the game state having had no interaction.

An action in the corpus is of the form s1...sMξ, where
si ∈ {E,R, T, S, P}, 1 ≤ i ≤ M , are the states of the M
last interactions, and ξ ∈ {C,D} is the current move. We
denote by ΣM the set of all possible types of action. E.g,
Σ1 = {EC,RC, TC, SC, PC,ED,RD, TD, SD,PD}.
This encoding method enables to save the game states with-
out having to save the co-player’s moves, thus simplifying
the corpus representation, described below.

Suppose we have a set of strategies to be recognized. The
plan corpus for this set consists of a set of plan sessions
generated for each strategy in the set. A plan session of
a strategy is a sequence of actions played by that strategy
(more precisely, a player using that strategy) against an ar-
bitrary player. As an example, let us consider TFT and
the following sequence of its interactions with some other
player (denoted by X), in the presence of noise

round : 0 1 2 3 4 5
TFT : − C C D D D

X : − C D D C D

TFT-states : E R S P T P

The corresponding plan session for TFT is
[EC,RC, SD,PD, TD]. At 0-th round, there is no
interaction, thus the state is E. TFT starts by cooperating
(1-st round), hence the first action of the plan session is
EC. Since player X also cooperates in the 1-st round, the
game state at this round is R. TFT reciprocates in the
2-nd round by cooperating, hence the second action of the
plan session is RC. Similarly for the third and the fourth
actions. Now, at the 5-th round, TFT should cooperate
since X cooperated in 4-th round, but because of noise, it
makes an error to defect. Therefore, the 5-th action is TD.

6.3 PLAN CORPORA GENERATION

Let us start by generating a plan corpus for seven most pop-
ular strategies within the IPD framework: AllC (always co-
operate), AllD (always defect), TFT, GTFT (probability of
forgiving a defect is p = 0.5), WSLS, GRIM and FBF.

We collect plan sessions of each strategy by playing a ran-
dom move (C or D) in each round with it. To be more thor-



ough, we can also play all possible combinations for each
given number of rounds r. E.g, if r = 5, there are 25 com-
binations: C or D in each round. When noise is present,
each combination is played repeatedly several times.

The training corpus to be used here is generated by playing
with each strategy all the possible combinations 10 times,
for each number of rounds r from 5 to 10. The testing
dataset is generated by playing a random move with each
strategy in each round, also for r from 5 to 10. We continue
until obtaining the same number of plan sessions as of the
training dataset (corpus). Both datasets are generated in the
presence of noise (namely, an intended move is wrongly
performed with probability 0.05).

In this testing dataset, intention (strategy)
changes/abandonment are not taken into account. The
players use the same strategy in all the rounds. We
refer to this testing dataset as Testset-IRFIX. For
testing the context-dependent aspect of our intention
recognizer, as well as taking into account intention
changes/abandonment, we next introduce the concept of
social learning within the framework of evolutionary game
theory [11].

6.4 SOCIAL LEARNING

In social learning, individuals in a population can observe
the behavior of others and the outcomes of those behav-
iors. They copy the behavior of others whenever these ap-
pear to be more successful [21]. The accumulated payoff
from all interactions emulates the individual fitness or so-
cial success and the most successful individuals will tend
to be imitated by others. There are many ways to model
social learning [11, 21]. The most popular one is imple-
mented using the so-called pairwise comparison rule [21]:
an individual A with fitness fA will adopt the strategy of a
randomly chosen individual B with fitness fB with a proba-
bility given by the Fermi function (from statistical physics):
p(fA, fB) =

(
1 + e−β[fB−fA]

)−1
, where the quantity β

controls the “imitation strength”, i.e. how strongly the
players are basing the decision to imitate on payoff com-
parisons. Henceforth, A and B are referred to as imitating
and imitated individuals, respectively. For simplicity, we
use β = 1 for the rest of this paper: the imitation depends
on comparing the exact payoffs.

It is now allowed the possibility that a player can change
his/her strategy (intention) by imitating the randomly met
player’s strategy (intention), depending on how the lat-
ter player is more successful. The two players’ ongo-
ing success difference (SD) causally affects the imitat-
ing player’s current intention. In addition, this intention
is causally affected by the so-called imitation event (IE),
stating whether the player is meeting some other player
for learning/imitating. Now we have an IRBN with two
cause/reason nodes, a single intention node, and observed

Imitation Event
(IE)

Intention (I)

Success Difference
(SD)

A-1

A-m

.

.

.

.

Figure 3: IRBN in IPD Context

action nodes (Figure 3).

We define the conditional probability distribution
P(Ii |IE ,SD). If the player does not meet any other player
for imitation (i.e. IE = F ), Ii is independent of the suc-
cess difference SD: P(Ii |IE = F ,SD) = P(Ii |IE = F ).
Now, let us consider the case IE = T . If the successes are
also observable (thus, SD is observed, say, equal χ)3, but
the strategy of the imitated player is not, we have

P(Ii |IE = T ,SD = χ) = (1−u)pi +
u

S − 1

∑
j 6=i

pj (2)

where u = (1+e−χ)−1; pi is the probability that Ii was the
player’s intention in the last prediction; and S is the number
of strategies in the corpus. The formula is explained as fol-
lows. With probability (1−u)pi the imitating player’s strat-
egy remains Ii. Moreover, not being observed, the proba-
bility that Ii was the imitated player’s strategy is (assumed)
equal 1/(S−1). The second term expresses the probability
that the player adopts the new strategy Ii by imitation.

Now, in case the imitated player’s strategy is also observ-
able, denoted by Ii? , similarly we have

P(Ii? |IE = T ,SD = χ) = (1− u)pi + u
∑
j 6=i?

pj

P(Ii |IE = T ,SD = χ) = (1− u)pi ∀ i 6= i?
(3)

Testing Dataset. The testing dataset in this setting is gen-
erated by using a simplified evolutionary simulation as fol-
lows. We play a random choice with each of the seven
above mentioned strategies for 10 rounds. The payoff of
each strategy is accumulated over all the rounds. Then,
for each strategy, another strategy is randomly chosen from
the other six for imitation using the pairwise comparison
rule. After all the seven strategies are given the chance to
change their strategy (imitate another), the interactions are
repeated for 10 more rounds. At the 10-th round, we save
the accumulated payoff values of the imitating and imitated
strategies. We experiment until obtaining the same number
of plan sessions as in the training dataset. The PD payoff

3There may be noise in the evaluation of the successes. The
observed value χ of SD is randomly taken in the range ((1 −
ε)χ1, (1+ ε)χ1), where ε is a small positive number (here we use
ε = 0.01) and χ1 is the exact value of the difference.



N=2

N=1

No Info Successes Strategy

a. b. c.

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Τ

Pr
ec
isi
on

3�best

2�best

1�best

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Τ

C
on
ve
rg
en
ce

3�best

2�best

1�best

� � � � � �
� � � � � � � �

� � � � � �
� � � � � �

� � � � �
� � �

� � � � � �
� � � �

� � �
� � �

� � �
� � � � � � �� � � � � �

� � � � � � � � � � � � � �

� � � � � �
� � � � � � � � � � � � � �

� � � � � �
� � � � � � � � � � � � � �

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

Τ

Pr
ec
isi
on

Figure 4: Panels (a) and (b): Precision and convergence for τ ∈ [0, 1] and for different values of N (N = 1,2,3) with respect to
Testset-IRFIX dataset. Panel (c): Precision for different levels of contextual information, for τ ∈ [0, 1], with respect to
Testset-IRCHANGE dataset. We consider N = 1 (dashed diamond) and N = 2 (circle).

matrix being used: T = 20, R = 15, P = 10, S = 5;
and noise = 0.05. This testing dataset is referred to as
Testset-IRCHANGE.

6.5 RESULTS

The intention recognition model is acquired using the
training corpus. Figures 4a and 4b show the preci-
sion and convergence of the model with respect to the
Testset-IRFIX. Given that the training as well as
the testing datasets are generated in presence of noise,
the achieved performance is quite good. Namely, for
big enough τ , both precision and convergence scores are
greater than 0.9, even for the 1-best case.

In Figure 4c we show the effects of having different levels
of contextual information on the intention recognition per-
formance, using Testset-IRCHANGE dataset. Namely,
in the first setting (blue curves), there is no information
about the imitation event (IE) – it is not known if the recog-
nized player may imitate and adopt another strategy. In the
second setting (black curves), IE and the successes are ob-
servable. In the third setting (red curves), the strategy of the
imitated player is also observable. It is clearly shown that
the performance is considerably increased as more contex-
tual information is available. Namely, comparing with the
first setting where no contextual information is taken into
account, an increase of about 5% and 15% precision is
achieved in the second and third settings, respectively.

7 RELATED WORK

Bayesian Networks have been one of the most successful
models applied for the intention/plan recognition problem,
e.g. in [4, 6]. Depending on the structure of plan libraries, a
knowledge-based model construction is employed to build
BNs from the library—which is then used to infer the pos-

terior probability of explanations (for the set of observed
actions). These works address a number of important is-
sues in intention/plan recognition (see [6] for details), but
they made several assumptions for the sake of computa-
tional efficiency. First, prior probabilities of intentions are
assumed to be fixed. This assumption is not reasonable
because those prior probabilities should depend on the sit-
uation at hand [3], and can be captured by causes/reasons
of the intentions as in our work. Second, intentions are
assumed to be independent of each other. This is not gen-
erally the case since the intentions may support or exclude
one another. Those works hence do not appropriately ad-
dress multiple intention recognition. This latter assumption
must always, explicitly or implicitly, be made by the ap-
proaches based on (Hidden) Markov Models, e.g. [1], or
statistical corpus-based machine learning [2]. Generally, in
those approaches, a separate model is built for each inten-
tion; thus no relations amongst the intentions are expressed
or can be expressed. These works were restricted to the
single intention case.

Different from all above mentioned works, our model
is context-dependent, which is achieved by including in
it causes/reasons of intentions. This way, our model
can appropriately deal with the abandonment/changes of
intentions—when the causes/reasons do not support or
force the intending agent to hold those intentions anymore.

8 CONCLUDING REMARKS AND
FUTURE WORKS

We have presented a novel method for incremental and
context-dependent intention recognition. The method is
performed by dynamically constructing a BN model for in-
tention recognition from a prior knowledge base consisting
of easily maintained fragments of BN. We have evaluated



the method on the Linux Plan corpus and compared with
previous works. In general, our performance is better than
all existent ones that make use of the corpus.

For further experimentation, we have created the so-called
IPD plan corpora for the famous strategies in the con-
text of the iterated Prisoner’s Dilemma. We employed
the famous model of (human) behaviors by means of so-
cial learning and evolutionary game theory to simulate
intention changes/abandonment—enabling us to evaluate
the context-dependent aspect of our intention recognizer
and as well as its capability of dealing with intention
changes/abandonment. Our experimental results show that
taking into account contextual information is crucial, en-
abling to achieve significant recognition improvements.

The good performance of our method with respect to
the Linux corpus shows its applicability to the important
interface-agents domain [12]. In addition, given that PD
and other social dilemmas [21] are regularly found in real
life [11, 21], its good performance for the IPD corpora
makes it highly applicable for a wide range of application
domains, as diverse as Economics (e.g. recognizing com-
panies policies), Psychology and Biology (e.g. the role of
intention recognition in the evolution of cooperation, as our
recent works exhibit in [8, 9], using the intention recogni-
tion methods described in this paper).

In Section 4 we made an implicit assumption that the inten-
tions to be combined are perfectly mutually exclusive. This
assumption can be relaxed by utilizing a latent variable for
any subset of perfectly mutually exclusive intention nodes.
We are exploring this direction to provide a more gen-
eral method for representing relationships amongst inten-
tion nodes.

9 Acknowledgments

We thank the reviewers for useful comments. HTA
acknowledges the support from FCT-Portugal, grant
SFRH/BD/62373/2009.

References

[1] M.G. Armentano and A. Amandi. Goal recognition
with variable-order markov models. In IJCAI’09.

[2] N. Blaylock and J. Allen. Statistical goal parameter
recognition. In ICAPS04, pages 297–304.

[3] M. E. Bratman. Intention, Plans, and Practical Rea-
son. The David Hume Series, CSLI, 1987.

[4] E. Charniak and R.P. Goldman. A Bayesian model of
plan recognition. Artificial Intelligence, 64(1), 1993.

[5] F. G. Cozman. Axiomatizing noisy-or. In ECAI’04.
[6] C. W. Geib and R. P. Goldman. A probabilistic plan

recognition algorithm based on plan tree grammars.
Artificial Intelligence, 173:1101–1132, 2009.

[7] V. Gogate and R. Dechter. SampleSearch: Importance
sampling in presence of determinism. Artificial Intel-
ligence, 175(2):694–729, 2011.

[8] T. A. Han, L. M. Pereira, and F. C. Santos. The role of
intention recognition in the evolution of cooperative
behavior. In IJCAI’2011.

[9] T. A. Han, L. M. Pereira, and F. C. Santos. Intention
recognition promotes the emergence of cooperation.
Adaptive Behavior, 2011.

[10] C. Heinze. Modeling Intention Recognition for Intel-
ligent Agent Systems. PhD thesis, The University of
Melbourne, Australia, 2003.

[11] J. Hofbauer and K. Sigmund. Evolutionary Games
and Population Dynamics. Cambridge U. P., 1998.

[12] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. The lumière project: Bayesian user
modeling for inferring the goals and needs of software
users. In UAI’98, pages 256–265, 1998.

[13] K. B. Laskey. MEBN: A language for first-order
Bayesian knowledge bases. Artificial Intelligence,
172(2-3):140 – 178, 2008.

[14] K.B. Laskey and S.M. Mahoney. Network fragments:
Representing knowledge for constructing probabilis-
tic models. In UAI’97, 1997.

[15] S. Natarajan, P. Tadepalli, T. G. Dietterich, and
A. Fern. Learning first-order probabilistic models
with combining rules. Annals of Mathematics and Ar-
tificial Intelligence, 54:223–256, 2008.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
man, 1988.

[17] J. Pearl. Causality: Models, Reasoning, and Infer-
ence. Cambridge U.P, 2000.

[18] L. M. Pereira and T. A. Han. Intention recognition
with evolution prospection and causal Bayesian net-
works. In Computational Intelligence for Engineer-
ing Systems, pages 1–33. Springer, 2011.

[19] A. Pfeffer, D. Koller, B. Milch, and Ken T.
Takusagawa. Pook: A system for probabilistic object-
oriented knowledge representation. In UAI’99, 1999.

[20] F. Sadri. Logic-based approaches to intention recog-
nition. In Handbook of Research on Ambient Intelli-
gence: Trends and Perspectives. 2010.

[21] Karl Sigmund. The Calculus of Selfishness. Princeton
U. Press, 2010.

[22] S. Srinivas. A generalization of the noisy-or model.
In UAI’93, 1993.


	INTRODUCTION
	BAYESIAN NETWORKS
	INCREMENTAL INTENTION RECOGNITION
	OPERATORS FOR CONSTRUCTING IRBN

	RELATION AMONG INTENTIONS
	SINGLE INTENTION RECOGNITION
	THE MODEL
	EXPERIMENTAL EVALUATION

	IPD PLAN CORPORA
	ITERATED PRISONER'S DILEMMA
	CORPUS DESCRIPTION
	PLAN CORPORA GENERATION
	SOCIAL LEARNING
	RESULTS

	RELATED WORK
	CONCLUDING REMARKS AND FUTURE WORKS
	Acknowledgments

