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ABSTRACT 

 

Motivation: Structure based methods for drug design offer great 

potential for in-silico discovery of novel drugs but require accurate 

models of the target protein. Because many proteins, in particular 

transmembrane proteins, are difficult to characterize experimentally, 

methods of protein structure prediction are required to close the gap 

between sequence and structure information. Established methods 

for protein structure prediction work well only for targets of high 

homology to known proteins, while biophysics based simulation 

methods are restricted to small systems and require enormous 

computational resources. 

Results: Here we investigate the performance of a world-wide 

distributed computing network, POEM@HOME, which implements a 

biophysical model for protein modeling, as a robust computational 

infrastructure for protein structure prediction. We demonstrate the 

use of this network for the time-consuming energy relaxations for 

decoy sets and two targets of the 2010 protein structure prediction 

assessment (CASP). 

Conclusion: We demonstrated the use of the POEM@HOME 

network as a robust computational resource for protein structure 

prediction based on relaxation in biophysical models. Efforts to 

implement a web-interface to make this resource available to life-

science researchers are presently under way.  

1 INTRODUCTION  

With the completion of sequencing efforts for many important 

genomes, protein structure and function prediction emerges as an 

important goal to make progress in structure based drug design 

(Kryshtafovych, et al., 2007; Moult, et al., 2005). Methods for 

protein modeling have a wide variety of objectives, such as struc-

ture prediction, molecular replacement, prediction of protein stabil-

ity/disorder or property prediction of mutations. Physics-based or 

forcefield-based methods, which were initially believed to hold 

great promise for protein structure prediction, now play only a 

marginal role in the (participant blind) biannual comparative as-

sessment of methods for protein structure prediction (CASP) 

(Kryshtafovych, et al., 2005). Presently, most models submitted to 

this computational experiment originate from bioinformatics based 

methods (Kryshtafovych, et al., 2007). One reason for this state-of-

affairs is the high computational cost of all-atom forcefield-based 

models. However, even for computationally feasible problems, for 

example for structure refinement (Das, et al., 2007), recent investi-

gations point to deficiencies for most of the presently available 
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forcefields (Fitzgerald, et al., 2007). Knowledge-based potentials, 

in contrast, perform very well in differentiating native from non-

native protein structures (Wang, et al., 2004; Zhou, et al., 2007; 

Zhou, et al., 2006) and have recently made inroads into the area of 

protein folding. Physics-based models retain the appeal of high 

transferability, but the present lack of truly transferable potentials 

calls for the development of novel forcefields for protein structure 

prediction and modeling (Schug, et al., 2006; Verma, et al., 2007; 

Verma and Wenzel, 2009).  

We have earlier reported the rational development of transferable 

free energy forcefields PFF01/02 (Schug, et al., 2005; Verma and 

Wenzel, 2009) that correctly predict the native conformation of 

more than 27 small proteins in simulations starting from a com-

pletely extended structure. In order to perform these simulations 

we have developed an increasingly sophisticated set of sampling 

methods of the low-energy landscape of the system (Herges, et al., 

2004; Schug, et al., 2005; Schug and Wenzel, 2004). Because the 

computational effort of the simulations increases very rapidly with 

system size, simulations for large systems are only feasible if a 

large number of processors can be exploited. In contrast to kinetics 

based simulation approaches, such as molecular dynamics, our 

approach permits splitting the simulations into several independent 

tasks (Verma, et al., 2007; Verma, et al., 2008). We have experi-

mented with a number of such schemes and found evolutionary 

algorithms, which evolve a population of conformations in a coarse 

grained parallel fashion, to be very effective. Using PC clusters 

and high-performance computational architectures we were able to 

fold small proteins with up to 60 amino acids using tens of thou-

sands of short independent simulations. Analyzing these simula-

tions we noted that the inherent parallelism of the protocols is so 

large that we might as well use grid computing (or cloud compu-

ting) resources to perform the simulations.  

We therefore implemented our algorithm in a world-wide volun-

teer computational network, POEM@HOME, which has been 

operational since 2007 and has grown to over 60.000 participants 

in more than 100 countries, delivering an average performance of 

over 20TFLOP/s in 2010. While such a network delivers a signifi-

cant computational power, it is clearly unsuited for inherently 

sequential simulations. In this investigation we therefore wanted to 

test its performance for protein structure prediction (Gopal, et al., 

2009) as part of an ongoing effort to provide the life-science com-

munity with a POEM based protein structure prediction server. 

Here we therefore report the overall characteristics of the 

POEM@HOME network and results obtained in two characteristic 

applications for the development of methods for protein structure 

prediction. In the first application we used POEM@HOME as a 

workhorse for ranking large decoys sets to validate the selectivity 

of the underlying forcefield PFF02. It is well known that present-

day forcefields are not of sufficient accuracy to deliver protein 
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structure predictions with experimental resolution due to inherent 

forcefield errors. To improve these models requires very large 

scale computations in which the ranking of near-native confor-

mations in large decoy sets of competing structures is monitored 

for many proteins as a function of the forcefield parameters. In the 

second application we report the performance of POEM@HOME 

for structure prediction for two targets of last year’s competitive 

assessment of methods for protein structure prediction (CASP). In 

this exercise many computational groups compete to blindly pre-

dict the experimentally known, but not yet released, structure of 

proteins. In this investigation we report two complementary exper-

iments, for T0537 and T0643, a high- and low-homology target in 

this competition, respectively. Because predictions in CASP must 

be returned within three weeks of target release, use of a BOINC 

based network with very long average return times poses a signifi-

cant challenge.  

2 METHODS 

2.1 Forcefield 

All-atom refinement: POEM (Protein Optimization using Energy 

Methods) is an all-atom free-energy protein simulation package 

implementing the free-energy model PFF02 (Verma and Wenzel). 

PFF02 models the relevant protein interaction energy terms 

through five semi-empirical terms. The attractive and repulsive 

van-der-Waals forces are modeled using a 6-12 Lennard Jones 

potential. Electrostatic interactions could be described via a simple 

1/r vacuum potential modified by the exposed surface area of the 

interacting groups. An implicit solvent model is employed to rep-

resent the protein-solvent interaction. The exposed surface area of 

each atom is multiplied by a hydrophobicity index and then accu-

mulated. Hydrogen bonds are described via dipole-dipole interac-

tions included in the electrostatic terms and an additional short-

range term for backbone-backbone hydrogen bonding. In addition 

to the terms already present in PFF01, the forcefield PFF02 con-

tains an additional term, i.e. a torsional potential for backbone 

dihedral angles. This force field was demonstrated to select near-

native decoys for all 32 monomeric proteins (without cofactors) 

from the ROSETTA decoy set (Tsai, et al.) and used to fold a set 

of 24 proteins with helical, sheet and mixed secondary structure in 

de novo simulations (Verma and Wenzel).  

2.2 Relaxation Protocol 

Protein structures in this study were relaxed in the PFF02 

forcefield to allow the unbiased comparison of structures con-

structed from different sources. Single relaxation simulations 

consist of a fixed number of Monte Carlo steps changing main- 

and side-chain dihedral angles of the simulated protein by a ran-

dom angle. In case of proteins with several chains, also center-of-

mass degrees of freedom between the different chains are changed 

in the simulation. After each Monte Carlo step the Metropolis 

criterion is evaluated and the new conformation either rejected or 

accepted to achieve detailed balance. During the simulations struc-

tures are annealed using a geometrical temperature scaling scheme. 

The protein's high-dimensional conformational space necessitates 

parallel sampling, which can be achieved by starting relaxation 

simulations in various directions from an initial structure. There-

fore a multitude of single simulations were run for each initial 

structure. The conformation with the lowest energy was then used 

as the final prediction. 

 

 

Fig 1: Schematic of the prediction protocol: Two parallel workflow 

branches predict initial models using homology modeling (left) and heuris-

tic fragment assembly (right). The homology modeling workflow (left) 

searches for similar sequences among the database of all known experi-

mental structures. Structural information from these models is then used to 

build structure candidates. Small parts of the sequence are matched using a 

fragment database of known structural segments. These are then assembled 

to full models of the whole protein. Models generated using these two 

branches are accumulated and relaxed on the POEM@HOME volunteer 

architecture. The best energy structure is chosen as the final prediction.     
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3 PROTEIN STRUCTURE SIMULATION 

In the following we report on the use of the POEM@HOME 

world-wide distributed volunteer network for protein structure 

prediction in the context of two targets of the CASP9 protein struc-

ture prediction exercise. The general prediction protocol is summa-

rized in Fig 1. Given the target we first search for homologous 

proteins for which an experimental structure is known. If this is the 

case (high homology target), we identify all such templates and 

generate initial models which then need to be ranked in energy. If 

no homologous targets are known (low-homology targets), we use 

heuristic methods to generate a large set of possible conformations, 

which are then again ranked in energy in our forcefield. Because 

the energy landscape is very rough, ranking the starting models 

generates very noisy predictions. For this reason we need to per-

form a short relaxation simulation, which attempts to map each 

model to a nearby local minimum (see methods section). In order 

to demonstrate the success of this approach for a system where the 

result was known, we precede the examples from CASP with the 

analysis of the ranking of published decoy sets for two test pro-

teins, where the experimental structure is already known. 

3.1 POEM@HOME  

POEM@HOME is a distributed volunteer computing architecture 

implemented using the BOINC (Anderson 2004) framework. A 

BOINC server holds a database of workunits, which are scheduled 

to run on computers of volunteers, participants of the project, in 

remote locations. The BOINC client decides when to download 

new work units, when to compute them and when to return the 

results, however the user has options to constrain runtime and time 

of day for the simulations. This imposes several constraints on the 

types of work units that can be processed as well as on the type of 

algorithms that can be used. Single workunits should not exceed 

four hours in runtime and one Megabyte in space, as otherwise 

either common DSL connections are inadequate for transferal or 

PCs are simply shut off. Furthermore job processing has to be 

asynchronous as work units cannot be expected to return in time. 

Asynchronous means that jobs sent at the same time return at 

different times due to the BOINC scheduling and the users’ set-

tings in the BOINC client. Lost jobs are rescheduled automatically; 

a work unit can however never be guaranteed to return. Figure 2, 

top plot, shows the turnaround time for a work unit with an aver-

age 1 hour compute time demonstrating the asynchronous behavior 

of the sent workunits. Independent from the compute time of the 

Fig 2: Top: Histogram of return times of one batch of 13000 relaxation 

jobs submitted at the same time. Assimilation means the moment in time, 

when the BOINC server registers the arrival of the completed workunit;  

Bottom: Growth of the computational power of the POEM@HOME net-

work as a function of time. The graph shows both the growth in users and 

in the computing power. The peak in computational time during September 

2008 is related to a local competition on our server. 
Fig 3: Scatter plots of PFF02 energies and root mean square deviations to 
native structure (RMSD) for proteins 1JRH chain I (top) and 1A1X (bot-

tom) from the decoy set. Both plots show a correlation between the RMSD 

and the simulated energies. 
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work unit, the graph presents an expected turnaround time of 15 

hours.  

POEM@HOME runs on two machines, a MySQL and BOINC 

daemon host with 8 Intel Xeon 5130 cpus with 16 GB RAM and 

160GB of host memory on 10,000 rpm disks in a RAID 1 configu-

ration and on a storage backend with 3TB of host memory on 

7,200 SATA disks in a RAID 5 configuration plus hot-spare. Both 

are connected using Gigabit Ethernet. BOINC projects need cus-

tomized validator and assimilator daemons tailored to the project. 

After workunit completion a client delivers a finished simulated 

structure and an energy fitting this structure. Validation of the 

structure is hence possible by simply recalculating the energy on 

the server once more. The assimilator then just moves the structure 

into an appropriate directory on the server where statistics of all 

simulated structures are accumulated. 

3.2 Performance of POEM@HOME for decoy sets  

Since relaxation and rating of decoys is the most computationally 

demanding task, establishing confidence in the results produced by 

this process is crucial. Decoy sets of proteins are generally used to 

analyze the selectivity of a forcefield to find near-native structures 

among a set of misfolded structures. Using a set containing decoys 

for 1400 proteins (Rajgaria, et al., 2006) we assessed the perfor-

mance of the PFF02 forcefield by calculating the PFF02 energy for 

two exemplary proteins, 1A1X consisting mainly of alpha helices 

and 1JRH chain I consisting of beta sheets to demonstrate this 

selectivity. Plotting the structures’ energies against their root mean 

square deviation (RMSD) of the atom positions to the correspond-

ing native structure we can measure the ability of our force field to 

find near native protein structures in a set of misfolded struc-

tures (Fig 3). For both proteins we find that the RMSD of the 

lowest energy structure is close to the best RMSD structure. Con-

sidering the high number of degrees of freedom that proteins pos-

sess, there is also a good correlation between PFF02 energy and 

RMSD with correlation coefficients of 0.70 and 0.66 for 1A1X and 

1JRH chain I respectively. This emphasizes the good selectivity of 

our force field. In 65% cases the lowest energy structure has a 

RMSD lower than 2.0 Å and this percentage increases to 94% for 

3.0 Å (Fig. 3, bottom plot). Noting that only 37% of the proteins 

possess a misfolded structure with a RMSD lower than 1.0 Å, this 

demonstrates the good selectivity of our forcefield. 

 

 

Fig 4: Top: overlay of the lowest energy model for T0537 and the corre-

sponding experimental structure; Bottom: four possible models for T0537 

based on different alignments (labeled by template protein).  

 

 

Fig 5: Top: overlay of the final result with the native conformation 

for the low homology target T0643; Bottom: Energy vs. RMSD plot.  

The black dot marks the best energy structure. A favorable energy 
was found for a structure with 4 Å 
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3.3 Performance of POEM@HOME for a high-

homology target of the CASP10 evaluation 

 

Sequence-profile alignment tools such as PSI-BLAST, 3DJury, 

PHYRE were used to search the 3D protein structural database 

PDB (the protein data bank) for homologous templates. At least 

one template is chosen with an alignment that covers more than 

70% of the target sequence with an E-Value of 1·10-3 or less. The 

E-value marks the probability that a found sequence was selected 

only by chance and not by apparent homology. This homologous 

template with high confidence alignment is then selected and a 

sequence alignment is generated using the clustalw program, 

which is used to obtain a three dimensional structure using the 

homology modeling protocol of the MOE program. However, if 

multiple templates were found with the required confidence levels, 

multiple structures with sufficient conformational variability were 

selected and modeled using MOE. One exemplary protein struc-

ture, where this modeling protocol was applied was T0537. We 

show the prediction of this protein due to the high homology to 

other proteins in the PDB database. Possible template structures for 

this model were 1K0E (pink), 3HW0 (red), 1RU4 (green) and 

1DBG (blue) as shown in Fig. 4 (bottom). An alignment was gen-

erated for all the four templates and the alignment between the 

target and 1K0E and 3HW0 resulted in an overall realistic global 

dimer-like fold, with a beta sheet core isolated circularly by helices 

as shown in Fig. 4 (top). On the other hand, 1DBG and 1RU4 

resulted in a completely different global fold, a beta-sheet-only 

tube. Energy relaxation for both all the models were done using 

POEM@HOME selected the 1DBG model as the best-energy 

model by a wide margin (~40 kcal/mol difference), which corre-

sponded to the correct global fold. Even though human inspection 

favored the 1DBG homology model, because the gene-family of 

T0537 and 1DBG matched, leaving us undecided which model to 

choose. The relative RMSD between the model submitted and 

experimental structure is around 3.5 Å. The aligned structures are 

shown below in Fig. 4 (top graphic). 

3.4 Performance of POEM@HOME for a low-

homology target of the CASP10 evaluation 

CASP target T0643 showed no apparent homology with known 

structures at the time of CASP. It is therefore an example for the 

application of our free-modeling protocol (the right branch in Fig. 

1). The Rosetta 3.1 software suite was used to generate 31,000 

structure proposals from a fragment database containing 16,000 

fragments of length three and 15,000 fragments of length nine. 

These predictions took roughly 12 hours on 40 cores of AMD 

Opteron processors 2376. The generated decoys were assembled in 

the default Rosetta 3.1 prediction protocol. Afterwards they were 

annealed from 300 K to 5 K on POEM@HOME in 200,000 step 

relaxation runs. The mainchain and sidechain dihedral angles are 

selected for moves in a ratio of 7:3 mainchain to sidechain. 

Figure 5, bottom plot, shows energies and RMSDs of all generated 

structural models for target T0643. The best energy structure fea-

tures an energy of −95 kcal/mol and a RMSD of 6 Å to the exper-

imental structure. Of the five submitted structures, the best struc-

ture in comparison to the native one has an RMSD of 4 Å with an 

energy of −85 kcal/mol. 

4 DISCUSSION 

Biophysics-based methods for protein structure prediction are 

significantly more demanding computationally than their counter-

parts using heuristic scoring functions. However, recent progress in 

the development in force fields and simulation methodology in-

creasingly places biophysics based modeling techniques for protein 

structure prediction within reach. In order to offer such services for 

a wide community of life-science researchers at low/no cost sub-

stantial computational resources to perform the required simula-

tions must be provided. In this investigation we reported the use of 

the world-wide distributed volunteer computation network, 

POEM@HOME, for protein structure prediction. We demonstrated 

that a decoy ranking procedure can be efficiently implemented on 

such a network for accurate protein structure prediction for select-

ed targets of the last CASP exercise as well as in a decoy ranking 

studies. The long turnaround time (compared to the computational 

cost of a single work unit) makes such networks not usable for all 

kinds of simulations. However, for the application at hand, such 

delays can be tolerated even for protocols which require several 

relaxation iterations. We therefore conclude that such computa-

tional networks, which are also used in Rosetta@home (Bonneau, 

et al., 2001) or Folding@home (Snow, et al., 2004), can make a 

significant contribution to provide low-cost approaches to protein 

structure prediction. Efforts to make our biophysics based schemes 

available to a wide community of users via a web-interface are 

presently underway. We also note in closing, that it is quite easy to 

use other backends, such as grid- or cloud-based resources, for this 

type of application. 
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