
Mediating Knowledge between Application Components

Monica Crubézy, Zachary Pincus and Mark A. Musen
Stanford University, CA 94305, USA

crubezy@smi.stanford.edu

Abstract
In such contexts as the Semantic Web,
the components of an application increas-
ingly rely on ontological models and content
knowledge developed and maintained by in-
dependent contributors. These components
also are designed to be building blocks of
various applications. We advocate the use
of a mediating component that defines and
processes the knowledge transformations re-
quired to enable application components to
exchange, and inter-operate on, knowledge
and data. We present our approach and as-
sociated tools to support developers (1) in
defining mapping relations between the on-
tologies involved in their application and (2)
in running a mapping interpreter to mediate
content knowledge and data among the cor-
responding ontology-based components.

1 Interoperation of Application
Components

As a multi-contributor environment, the World-Wide
Web fosters the formation of applications that in-
volve multiple, distributed components. In light
of the Semantic-Web approach, ontologies—models
that define the concepts, properties and relations of
a domain of discourse—are the communication in-
terface (if not the backbone) of these components
meant to be assembled in various applications. In-
creasingly, however, such ontology-based application
components are contributed independently and hence
cannot be expected to adhere to shared models nor to
integrate with one another gracefully. Instead, differ-
ent components impose different semantic, structural
and syntactic views and expectations on knowledge
and data, expressed by means of independent ontolo-
gies. For example in a travel-planning application, a
flight-booking component would conceive travel time
as the exact day and time of a flight (e.g., “Out-
bound on 05-01-2003 at 14h25min”), whereas a car-
reservation component might only need the approxi-
mate rental period (e.g., “From Monday May 1st 2003
early evening to Sunday May 7th mid-morning plus
or minus 1 day”). Such conceptual and representa-
tional mismatches need to be resolved at the ontolog-
ical level in order to enable application components

to exchange, and to interoperate on, a common set of
data and knowledge elements.

Our solution centers around the design of a
mediating component—one that isolates and pro-
cesses the knowledge needed for configuring differ-
ent knowledge-based components to work together
in a particular application. This middle component
encodes declarative mapping relations that express
rules to resolve mismatches between the concepts and
properties defined in the ontologies of two applica-
tion components. The mediating component inter-
prets mapping relations to transform knowledge and
data from one component into knowledge and data
expected by another component. We have developed
associated tools for creating and processing mapping
relations between any two ontologies, based on the
Protégé1 knowledge-modeling environment.

Our approach offers the advantages of maintain-
ing the integrity of the original independent applica-
tion components (hence increasing the reusability of
the components in different knowledge systems) while
localizing and making explicit the knowledge trans-
formations involved in adapting the components to
work together (hence reducing the effort needed to
encode and modify the transformation operations).
It is important to note that our solution accounts
for ontology-level alignment operations as well as for
content-level transformation operations. While the
former is the focus of much of the current ontology-
management research, the latter is more traditionally
found in database integration approaches.

2 Ontology-based Mediation of
Knowledge

Our approach to mediating knowledge and data be-
tween application components centers around the def-
inition of a set of mapping relations that both bridge
gaps between different components’ ontologies and
transform instance knowledge and data from one
component’s ontology to another. First, our solution
introduces a generic ontology of the kinds of map-
ping relations that can be defined between the ontolo-
gies of any two application components. Instantiated
mapping relations represent the correspondence links

1http://protege.stanford.edu

1



Figure 1: Our generic ontology of mapping relations. Each instance-mapping relation connects one or more
source classes to one target class, and expresses how one instance of the target class is computed from each instance
of the source class. Actual transformations of data and knowledge are specified in an associated set of slot-mapping
relations that each defines the rules for computing the value of one slot of the target instance, possibly from the
values of the source instance’s slots. Types of slot mappings span the scope of operations that source knowledge
can undergo to fit the format and semantics specified by the target ontology: from simple slot-value renaming to
lexical expressions, to functional transformations. Recursive slot mappings are used for calculating instance-valued
target slots, through a dependent instance mapping only processed in that context (on-demand flag). Finally, an
instance mapping can be conditional upon properties of instances being mapped (condition slot), thus allowing for
one-to-many instance-level mapping relations, and can be propagated to instances of subclasses of the source class
(apply-to-subclass-instances? flag).

and transformation rules between the concepts and
property values of the two components’ underlying
ontologies. Second, our approach includes a mapping
interpreter that processes a set of mapping relations
defined for two ontologies and migrates instantiated
contents from one ontology to the other. Our ap-
proach is based on earlier work in our group that
was aimed at studying the composition of knowledge
systems from reusable domain knowledge bases and
problem-solving methods [3, 4, 1].

We adopt a frame-based modeling view of ontolo-
gies. Accordingly, a set of classes are organized in a
subsumption hierarchy to represent concepts in the
domain of interest, and have slots attached to them
to represent their properties. The values that slots
can take are restricted by facets, such as cardinality,
type and range. Classes are templates for individ-
ual instances, that have particular values for slots.
Here, we adopt the notion of a knowledge base as an
ontology populated with instances.

An Ontology of Mapping Relations

Mapping relations are defined between the ontologies
of two—a source and a target—application compo-
nents. Mapping relations hold the transformation
operations to be applied on the source component’s
knowledge so that the target component is given the
pieces and aspects of knowledge that it can operate
on. According to a set of custom mapping relations,
instances of the source component’s concepts that are
of interest to the target component are transformed

(by a mapping interpreter, see below) into instances
of corresponding target concepts, on which the tar-
get component is able to operate directly. Note that
source and target roles for application components
are dependent on the application’s knowledge flow
and are easily reversible.

It makes sense to categorize the types of map-
ping relations that can be expressed in any situation
that requires mapping knowledge from one ontology
to another. Such categorization allows us to concep-
tualize mapping relations in a better way and to de-
sign appropriate tool support for their definition and
interpretation (see Section 3). We hence designed a
small, generic mapping ontology that provides a struc-
ture for defining mapping relations between a source
and a target ontology, in terms of conceptual align-
ment, of instance migration and of slot value com-
putation. Figure 1 details the main aspects of our
mapping ontology. To configure two components to
work together in a system, a developer instantiates
our mapping ontology with the set of mapping rela-
tions that link the ontologies of the source and target
components. The developer thus creates a mapping
knowledge base that contains rules to compute the
target instances from source instance knowledge.

A mapping relation can be as simple as a one-to-
one renaming correspondence between a source class
and its slots, and a target class and its slots. In the
travel-planning example, the ontologies of the flight-
booking and car-reservation components might ex-
actly share the notion and representation format of

2



Figure 2: Knowledge transformation and mediation performed by the mapping interpreter.

a billing address. More complex instance-level map-
pings can express many-to-one, or many-to-many, ag-
gregation relations between source and target con-
cepts, as well as one-to-many concept-decomposition
relations. Slot-level mappings also can express ag-
gregation and decomposition operations, and include
lexical, numerical and functional transformations of
slot values. In the same example, the translation of
the notion of time from one component to the other
would involve several of those more complex opera-
tions, such as calculating a date interval from out-
bound and inbound flight dates, changing the date
encoding, deriving approximate moments of the day
from more precise flight times, etc.

Our mapping ontology provides the basis for ex-
pressing the adaptation knowledge needed to config-
ure two components to work in a certain application.
It is important to note that the core knowledge that
is needed to create target instances out of source
instances resides in the set of slot-level transforma-
tion operations attached to an instance-level mapping
relation—operations that change the format and res-
olution of the source slot values to compute the re-
quired values of target slots. Eventually, a software
component needs to operate on data structures that
are derived from the filled-in instances of its ontology.

A Mapping Interpreter

We have developed the mapping interpreter as a piece
of software associated with our mapping ontology
that performs mediation of knowledge and data inside
of a component-based application. As sketched on
Figure 2, the mapping interpreter processes a given
set of mapping relations between two ontologies—a
mapping knowledge base—on a set of instances of
the source ontology to produce a corresponding set
of instances of the target ontology.

Specifically, in its default mode of operation
the mapping interpreter cycles through all instance-
mapping relations defined in the mapping knowledge

base and creates one instance of the specified target
class for each instance of the specified source class
in a given instance mapping. The interpreter com-
putes and fills-in the target instance’s slot values ac-
cording to each slot-mapping relation associated with
the current instance mapping. A specific syntax that
can be used in slot-value mapping expressions and in
other mapping code such as conditions enables the
interpreter to have local access to the source (sub-
)instance’s slot values. The mapping interpreter is
also able to execute custom scripting and functional
procedures (in TCL and Python), that provides ad-
ditional mapping flexibility.

The mapping interpreter is written in Java and
can be included in any component-based application.
The mapping interpreter has a complete API for ac-
cessing its representation of a knowledge base (i.e., an
ontology with instances). The mapping interpreter
currently handles knowledge bases in the form of
Protégé knowledge bases, Java collections of objects
organized as in a frame-based knowledge base, and
knowledge bases accessible from an OKBC 2 server.
These formats can be extended with new ones.

3 Tool Support for Knowledge
Mapping

We have developed an initial tool—the Knowledge
Mapping Tool—to support an application developer
in configuring ontology-based components to work
together in a system, or simply to migrate knowl-
edge from one ontology to another. Our tool is
based on the Protégé knowledge-modeling environ-
ment. Ontologies have been at the heart of the
Protégé methodology and tools since very early ver-
sions of the system [2]; Protégé hence is suited to
provide the basis for the tool support that is nec-
essary for mapping ontologies of application compo-
nents. Protégé supports domain experts in modeling

2http://www.ai.sri.com/~okbc/

3



Figure 3: Main view of the Knowledge Mapping tool. The two left columns display, side-by-side, the source
and target knowledge bases (classes in the upper panels, slots or instances in the lower panels). A small “m” icon
next to a class name means that the class is part of a mapping relation with a class in the other ontology. At the
right, the mapping panel displays the mapping knowledge base: At the top, the mapping ontology (left) and existing
instances of mapping relations (right); below, the contents of the selected mapping relation instance, including its
set of slot-level mappings. Double-arrow buttons at the top of each knowledge bases synchronizes all three panels
according to the mappings defined for a selected class. For example, this screenshot shows the mapping relation
“constraint-lower,” from the “constraint” (source) class of the ribosome topology domain ontology and the “fix-
constraint” (target) class of the propose-and-revise method ontology, for which four slot-level mapping relations have
been defined to compute the values of the “condition,” “expression,” “the-name” and “fixesList” target slots. This
example mapping relation specifies how to transform the lower bound value for the location of a ribosomal object
into an actual distance-comparison expression and associated value-modification fixes to use when the expression is
violated (see [1]). Note the “Mapping operations” menu at the very top of the mapping panel, that enables developers
to create mapping relations from classes or slots selected in the source and target ontologies; to save the mapping
knowledge base; and to run the mapping interpreter.

Figure 4: Two particular slot-mapping relations, defined in the scope of the instance mapping shown in Fig-
ure 3. (1) Left, is a simple constant slot mapping that specifies that for each instance of the target “fix-constraint”
class created from an instance of the source “constraint” class, the value of the target slot “condition” should be
filled-in with the value ”t.” (2) Right, is a lexical slot mapping that specifies a comparison predicate as value for the
target “expression” slot involving the values of the source slots “lower-bound,” “obj1-xyz,” “obj2-xyz,” “obj1-name,”
and “obj2-name.” The ∗ < ... > ∗ notation is used to access the actual values of the source (sub)instances’ slots.

4



Figure 5: Side-by-side inspection of the resulting target instances and their corresponding source in-
stances. As a result of running the mapping interpreter, the target ontology is populated with instances that are
computed from the source ontology’s instances and filled according to the set of mapping relations defined for these
two ontologies. Note that instances of the target class can be the result of either instance mapping that has that
class as a target class. Highlighted mapped instances are shown on the right: The contents of the instance of the
source class “constraint” have been mapped partially to an instance of the target class “fix-constraint,” according to
the mapping relation shown in Figure 3. In particular, the value of the target slot “expression” contains the result
of the lexical expression involving several source slots, as defined by the slot mapping shown in Figure 4.

relevant knowledge in an ontology and in customiz-
ing an associated knowledge-entry tool. We extended
this native support of Protégé with a tool to help in
creating and processing mapping relations between
two ontologies. In particular, our mapping tool ac-
cesses knowledge bases from Protégé and reuses user
interface elements of the base environment to pro-
vide a familiar, yet customized, interaction with sys-
tem developers, as can be seen from our subsequent
screen shots (Figures 3, 4 and 5).

The knowledge mapping tool allows application
developers to perform the non-trivial activity of cre-
ating mapping relations between the entities of two
ontologies. The tool provides a developer with an in-
tegrated and synchronized support for browsing and
managing all three (source, target and mapping) on-
tologies involved, instead of switching manually be-
tween multiple ontology-editing windows. The map-
ping tool supports a developer in browsing the source
classes and instances and the target classes side-by-
side, and in creating or visualizing their mapping re-
lations easily, as shown in Figure 3. A developer can
populate, browse and edit the corresponding map-
ping knowledge base—a custom set of instances of
the mapping ontology—that reflects the rules of me-
diating knowledge between the two ontologies.

The tool automatically creates a new mapping

knowledge base for the two ontologies, or loads an ex-
isting one if available. Concretely, the developer then
first creates a set of instance-level mapping relations
between pairs of concepts of the two ontologies—
relations that mean that for each instance of a source
concept, an instance of the target concept will be
created. For each instance-mapping relation between
a source class and a target class, the developer also
creates a set of slot-mapping relations—relations that
express the way to compute the values of each slot of
that target class, possibly from values of slots of that
source class. The mapping tool helps the developer
in making sure that all mappings are specified. The
developer then can save the mapping knowledge base.

The knowledge mapping tool finally incorporates
support to invoke the mapping interpreter on the
three knowledge bases involved. Based on the map-
ping relations defined for two particular ontologies,
the mapping interpreter computes a set of target in-
stances that it fills with knowledge transformed from
the source instances. After running the mapping in-
terpreter, the knowledge mapping tool enables devel-
opers to inspect the computed instances in the newly
populated target knowledge base (see Figure 5)—
these instances hold the actual knowledge on which
the target component will be able to operate directly.

5



4 Conclusion

We originally designed our solution for the task of
assembling reusable domain knowledge bases with
generic problem-solving methods into a working
knowledge system, where a method defines a domain-
independent ontology for its inputs and outputs, to
be mapped to specific domain knowledge [1]. Our
approach was key in assessing that PSMs and do-
main components could be reused in different applica-
tions. More generally, our generic mapping approach
and tools are now applied to mediating knowledge
and data between other kinds of knowledge-based
application components in a wide range of situa-
tions. Recent applications of our tools include a high-
performance architecture in which multiple public-
health data sources and multiple analysis programs
interact to perform syndrome-outbreak surveillance;
a system for query transformation and dispatch to
heterogeneous information sources; the migration of
protocols from several clinical guideline and biologi-
cal process formalisms to a generic workflow model.
Provided adjustments of our tools to new ontology-
modeling formalisms such as OWL 3, we are encour-
aged to believe that our approach will play a key role
in Semantic-Web technology, along with ontology-
management and database-integration solutions.

Acknowledgements

This research is based on seminal work by John Gen-
nari and John Park. Recent work was supported by
the Defence Advanced Research Projects Agency.

References

[1] M. Crubézy and M. A. Musen. Ontologies in Sup-
port of Problem Solving. In Staab, S. and Studer,
R., editor, Handbook on Ontologies in Informa-
tion Systems, International Handbooks on Infor-
mation Systems. Springer, In press. Also available
as SMI Report SMI-2003-0957.

[2] J. H. Gennari, M. A. Musen, R. W. Fergerson,
W. E. Grosso, M. Crubézy, H. Eriksson, N. F.
Noy, and S. W. Tu. The Evolution of Protégé:
An Environment for Knowledge-Based Systems
Development. International Journal of Human-
Computer Studies, 58(1):89–123, 2003.

[3] J.H. Gennari, S.W. Tu, T.E. Rothenfluh, and
M.A. Musen. Mapping Domains to Methods
in Support of Reuse. International Journal of
Human-Computer Studies, 41:399–424., 1994.

[4] J.Y. Park, J.H. Gennari, and M.A. Musen. Map-
pings for Reuse in Knowledge-Based Systems.
In Eleventh Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop (KAW’98),
Banff, Alberta, 1998.

3http://www.w3.org/2001/sw/WebOnt/

6


