
An algorithm for semantic coordination

P. Bouquet2,3, L. Serafini3, S. Zanobini2 and M. Benerecetti1,

1Dept. of Physical Sciences 2Dept. of Information and Communication Technology 3ITC-IRST – Istituto per la Ricerca
University of Naples University of Trento Scientifica e Tecnologica

Via Cinthia – 80126 Napoli (Italy) Via Sommarive, 10 – 38050 Trento (Italy) Via Sommarive, 14 – 38050 Trento (Italy)

bene@na.infn.it, bouquet@dit.unitn.it, serafini@itc.it, zanobini@dit.unitn.it

Abstract

The problem of finding an agreement on the meaning of het-
erogeneous semantic models is one of the key issues in the de-
velopment of the Semantic Web. In this paper, we propose
(i) a general algorithm which implements a new approach,
called CTXMATCH, for discovering (semantic) relationships
across distinct and autonomous generic structures and (ii) a
specific algorithm specializing the algorithm to the discover-
ing of mappings across hierarchical classifications. This ap-
proach shifts the problem of semantic coordination from the
problem of computing linguistic and/or structural similarities
between semantic-based structures (what most other proposed
approaches do), to the problem of deducing relations between
sets of logical formulas that represent the meaning of concepts
belonging to different structures.

1 Introduction

The approach to semantic coordination we proposed in [6, 7]
is based on the intuition that there is a huge conceptual differ-
ence between coordinating abstract structures (e.g., arbitrary
labelled graphs) and coordinating structures labeled with ex-
pressions of a language spoken by the community of their users.
The latter ones give us the chance to exploit the complex degree
of semantic coordination implicit in the way a community uses
the language from which the labels are taken.

We believe that at least three distinct levels of semantic
knowledge are needed in order to semantically coordinate
structures labelled with natural language:
• Lexical knowledge: knowledge about the words used in the
labels. For example, the fact that the word ‘image’ can be used
to mean a picture or a personal facade;
• Domain knowledge: knowledge about the relation between
senses of labels in the real world or in a specific domain. For
example, the fact that Florence is both a city of Italy and of
Tuscany;
• Structural knowledge: knowledge deriving from the way
the labels are arranged in a given structure. For example, the
fact that the node MOUNTAIN in Figure 1.a can be used to clas-
sify images of mountains, and not books.

In [6, 7] we deeply motivate this choice. To summarize these
motivations, consider the hierarchical classifications (hereafter
HC) in Figure 1 used to classify images in two multi-media
repositories. We want to discover the semantic relation between
the nodes labelled MOUNTAIN in the two HCs in Figure 1.a, and
between the two nodes FLORENCE in Figure 1.b. Human reason-
ers understand almost immediately that the relation between the
first pair of nodes is “less general than” (after all, the images
that one would classify as ’images of mountains in Tuscany’
are a subset of the images one would classify under ’images of
mountains in Italy’), while that the relation between the sec-
ond pair of nodes is “equivalent” (in fact, the images that one
would classify as ’images of Florence in Tuscany’ are the same
as the images that one would classify under ’images of Flo-
rence in Italy’). Notice that the two relations are different, even
though the two pairs of HCs are structurally equivalent. Using
the three semantic levels mentioned above, we can account for
this difference. Consider the mapping between the two nodes
MOUNTAIN. Linguistic knowledge tells us that the sense of the
two labels is the same. Domain knowledge tells us, among
other things, that Tuscany is a region of Italy. Finally, struc-
tural knowledge tells us that the intended meaning of the two
nodes MOUNTAIN refers to images of mountains of Tuscany (left
HC), and images of Italian mountains (right HC) respectively.
All these facts together allow us to conclude that one node is
less general than the other one. We can use a similar reasoning
for the two nodes FLORENCE. But, exploiting domain knowl-
edge, we can add the fact that Florence is both in Tuscany and
in Italy (such a relation doesn’t hold between mountains and
Italy or Tuscany in the first example). This further piece of
knowledge allows us to conclude that, despite structural equiv-
alence, the relation is different.

2 CTXMATCH: the general algorithm

The general framework described in Section 1 can be used for
discovering relations between any structures labelled with nat-
ural language. In this section, we introduce the structure and
purpose independent part of the algorithm, namely the steps
that do not depend on the use nor on the type of structure.
This generic algorithm must be obviously enriched with spe-

1

less than
IMAGES IMAGES

ITALYTUSCANY

LUCCA FLORENCELUCCA FLORENCE

equivalent

less than
IMAGES

MOUNTAIN

IMAGES

TUSCANY

BEACH MOUNTAIN BEACH

ITALY

less than

(a) (b)

Figure 1: Coordinating HCs

cific structure and purpose dependent functions, i.e. with differ-
ent functions for each particular type and use of the structures
we want to match. In Section 3 we present the specific func-
tions we use to match Hierarchical Classifications, i.e., tree-like
structures used for classifying documents.

To make things clearer, imagine the following scenario: an
agent A (the seeker) has a set of documents organized into a
tree–structure. To collect new documents, he can send a query
to a provider (an agent B). In our approach, the agent can for-
mulate the query using his own structure: for example, imagine
that seeker A uses the structure on the right-hand side of Fig-
ure 1.b to classify his documents. Then, he can select node
FLORENCE to formulate the query ‘Images of Florence in Italy’.
Furthermore, imagine that the provider employs the left-hand
structure in Figure 1.b. After receiving the query, he has the
following tasks: (i) to interpret the query he receives, (ii) to
find semantic relations holding between the query and his struc-
tures, and (iii) to return relevant documents (if any). In partic-
ular, in this paper we focus on the tasks (i) and (ii).

The algorithm needs two inputs:
query Q: A seeker sends a query composed by a node fl in
a structure FS. It means simply that the seeker wants to find
nodes semantically related to the node fl in FS;
context C: The context is composed by the three elements of
the local knowledge, namely a structure LS, a lexicon LL and
an ontology LO. The context is the target of the query1.

The main goal of the algorithm CTXMATCH is to find the
semantic relations between node f l in the query Q and all the
nodes belonging to the local structure LS in the context C. For
the sake of simplicity, in this paper we focus on the procedure
for matching the node f l in the query with a single nodes ll in
the context C. Therefore, for this simplified version of CTX-
MATCH, we add a third element in the input: a label ll of the
structure LS. The output of the algorithm will simply be the
semantic relation holding between the two nodes.

The algorithm also employs a data–type ‘concept’ 〈φ,α〉,
constituted by a pair of logical formulas, where φ approximat-
ing the individual concept represented by a node of a structure
and α expressing the relations between the current individual
concept and other individual concepts in the structures (local
relevant axioms). E.g., the formulas associated with the node
labeled FLORENCE in rightmost structure in Figure 1.b will ap-

1We call context the ensemble of the three levels of knowledge because they
express the local representation that an agent has of a portion of the world.

proximate the statements ‘images of Florence in Italy’ (the in-
dividual concept) and ‘Florence is in Italy’ (the local relevant
axiom).

Algorithm 1 CTXMATCH(Q,C,ll)
. query Q = 〈 f l,FS〉 where f l is the foreign term

FS is the foreign structure

. context C = 〈LS,LL,LO〉 where LS is the local structure
LL is the local lexicon
LO is the local onltology

. label ll is the label of the local node to be matched

VarDeclarations
context QC;
concept 〈φ,α〉,〈ψ,β〉; . concepts are pairs of formulas
relation R;

1 QC←〈FS,LL,LO〉;
. QC represents the virtual query context

2 〈φ,α〉← BUILD–CXT–MEANING(f l,QC);
3 〈ψ,β〉← BUILD–CXT–MEANING(ll,C);

. compute the concepts expressed by label ll and f l
4 R← SEMANTIC–COMPARISON(〈φ,α〉,〈ψ,β〉,LO);

. R represents the semantic relation between the two concepts
5 return R;

In line 1, CTXMATCH first builds the ‘virtual’ query–context
QC. The reason of it is that we want the query Q to be locally
interpreted within the local lexicon and ontology. An important
consequence is that the relation returned by the algorithm is
directional: it expresses the relation holding between the two
nodes from the provider’s point of view. Indeed, the seeker
could have different lexicon and ontology and could calculate
different relation for the same nodes.

Then, line 2 builds a concept, i.e. a pair of logical for-
mulas, approximating the meaning of the node f l in the vir-
tual context QC. Line 3 similarly builds the concept for the
node ll in the local context C. Finally, line 4 computes the se-
mantic relation between the two concepts. The following two
subsections describes in more detail this two top-level oper-
ations, implemented by the functions BUILD–CTX–MEANING

and SEMANTIC–COMPARISON.

2.1 Building the contextual meaning

This step has the task of building the concept expressed by a
generic node t in a generic context GC. Before analyzing the
corpus of the algorithm, it’s important to focus our attention
on the array of senses SynS. A synset (set of synonyms) is
a set of senses, i.e. of concepts, expressed by an expression

2

of the natural language2. For example the word ‘Florence’
has, in WORDNET, two senses (i.e. it may express two dif-
ferent concepts): ‘city of Tuscany’ and ‘town of South Caro-
line’. The array SynS records these senses, so that, for example,
SynS[Florence] is the synset containing the two senses above,
while SynS[Florence][0] is the first of the two senses.

Let us now look at the algorithm. Line 1 determines the
focus of a node t, i.e. the subgraph of the structure T useful to
extract the meaning of t. This step is performed essentially for
efficiency reasons, as it reduces as much as possible the node
space to take into account. Lines 2-3 associate to each node
within the focus the synsets found in the Lexicon. Consider
the Figure 1.b: the two synsets ‘city of Tuscany’ and ‘town of
South Caroline’ are associated to the label FLORENCE.

Lines 4-5 try to filter out unreasonable senses associated to
t. In our example, ‘town of S.C.’ is discarded since it is in-
compatible with the other labels in the focus of t (in fact, node
FLORENCE refers clearly to the city in Tuscany – see Algorithm
4).

Algorithm 2 BUILD–CTX–MEANING(GC,t)
. context GC = 〈T,L,O〉, where T is a structure

L is a lexicon
O is an onltology

. label t is a generic label

VarDeclaratrions
sense SynS[][] . array of senses
structure F
fomula α,η

1 F← DETERMINE–FOCUS(t,T);
. the focus F is a substructure of T

2 for each label e in F do
3 SynS[e]← EXTRACT–SYNSET(e,L);

. extracts the senses associated to each label in the structure F
4 for each label e in F do
5 SynS[e]← FILTER–SYNSET(F,O,SynS,e);

. unreasonable senses are discarded
6 δ← INDIVIDUAL–CONCEPT(t,SynS,F,O);
7 η← EXTRACT–LOCAL-AXIOMS(F,SynS,O);
8 return〈δ,η〉;

Finally, lines 6 and 7 build the two component of the concept
expressed by node t, computing the individual concept and the
local relevant axioms, as we explained in describing Algorithm
1.

2.2 Comparing the concepts

The main task when comparing two concepts is to find the
semantic relation holding between them. The algorithm em-
ploys the data–type ‘deductional–pair’: this is an array of pairs
〈relation, formula〉, where the formula expresses the condition
under which the semantic relation between the concepts holds.
E.g., the deductional–pair 〈≡,α→ β〉 means that if α→ β is
valid, then the relation holding between the two concepts is the
equivalence (≡).

Line 1 extracts global axioms, i.e. the relations holding
between individual concepts belonging to different structures.

2See for example [3] for the use of synsets in a Lexicon.

Consider, for example, the nodes ITALY AND TUSCANY in Fig-
ure 1.b: the global axioms express the fact that, for exam-
ple, ‘Tuscany is a region of Italy’. Line 2 builds the array
of deductional–pair. It’s important to note that the relations,
their number and the associated conditions depend on the type
of structure to match. In Section 3 we report the pairs rela-
tion/condition relevant for matching HCs. Lines 3–6 look for
the “correct” relation holding between two concepts. This is
done by checking the formulas in each deductional–pair, until
a valid one is found3. If a valid formula is found, the associated
relation is returned.

It’s important to observe that the problem of finding the se-
mantic relation between two nodes t ∈ T and t ′ ∈ T ′ is encoded
into a satisfiability problem involving both the formulas ex-
tracted in the previous phase, and some further global relevant
axioms. So, to prove whether the two nodes labeled FLORENCE
in Figure 1.b are equivalent, we check the logical equivalence
between the formulas approximating the statements ‘Images of
Florence in Tuscany’ and ‘Images of Florence in Italy’ (indi-
vidual concepts), given the formulas approximating the state-
ments ‘Florence is in Tuscany’ and ‘Florence is in Italy’ (local
axioms) and ‘Tuscany is a region of Italy’ (global axiom).

Algorithm 3 SEMANTIC–COMPARISON(〈φ,α〉,〈ψ,β〉,O)
. concept 〈φ,α〉
. concept 〈ψ,β〉
. ontology O

VarDeclaratrions
formula γ
deductional-pair k[] . array of pairs 〈relation, f ormula〉

1 γ← EXTRACT–GLOBAL–AXIOMS(φ, ψ, O);
2 k← BUILD–DEDUCTIONAL–FORMULAS(〈φ,α〉,〈ψ,β〉,γ);
3 for each deductional-pair i in k
4 if SATISFIES(¬k[i]. f ormula) then
5 return k[i].relation;
6 else return Null;

The three functions above constitute the top-level algorithm,
i.e. the procedure followed to match generic structures labelled
with natural language. All remaining functions (see below) are
specific to the particular type of structures we need to match.

3 Semantic coordination of Hierarchi-
cal Classifications

Intuitively, a classification is a grouping of things into classes
or categories. When categories are arranged into a hierarchical
structure, we have a hierarchical classification. Prototypical ex-
amples of HCs are the web directories of many search engines,
for example the GoogleTM Directory, the Yahoo!TM Directory,
or the LooksmartTM web directory. In this section we show
how to apply the general approach described in the previous
section to the problem of coordinating HCs.

3Note that a formula φ is valid exatcly in the case its negation ¬φ is not
satisfiable.

3

The main algorithm is CTXMATCH, which is essentially the
version of CTXMATCH where the input context contains a HC.
It returns a relationship between the query node f l and the lo-
cal node ll. Due to space limitation, we limited the descriptiom
to the most relevant functions (see [6, 7] for a more detailed
description). In the version of the algorithm presented here, we
use WORDNET as a source of both lexical and domain knowl-
edge. WORDNET could be replaced by another combination of
a linguistic and domain knowledge resources4.

HC–specific functions for BUILD-CTX-MEANING

BUILD-CTX-MEANING first needs to compute the focus of the
label t and the synsets of each label in the structure. This
is done by the functions DETERMINE–FOCUS and EXTRACT–
SYNSET, respectively. We only give an intuitive description of
these two functions.

Given a node s belonging to a structure S, DETERMINE–
FOCUS has the task to reduce S to the minimal one without
loosing the capability of rebuilding the meaning associated to
the node s. For HC–CTXMATCH we define the focus F of a
structure S given a node s ∈ S as the smallest structure contain-
ing s and all its ancestors with their children.

EXTRACT–SYNSET associates to each node all the possible
linguistic interpretations (synsets) provided by the Lexicon. In
order to maximize the possibility of finding an entry into the
Lexicon, we use bot a postagger and a lemmatizator over the
labels.

The next function FILTER–SYNSET is applied to each node
t of the focus. Its goal is to eliminate those senses associated
to a node which seem to be incompatible with the meaning ex-
pressed by the node. To this end, it employs three heuristic
rules, which take into account domain information provided by
the ontology. This information concerns the relations between
the senses associated to the node t and the senses associated to
the other nodes in the focus.

Intuitively, the situation is as follows. Consider the node
FLORENCE in the rightmost structure of Figure 1.b. The function
EXTRACT–SYNSET associates to this node the two senses ‘town
in South Caroline’ (‘florence#1’) and ‘a city in central Italy’
(‘florence#2’). The structure also contains the node ITALY,
which is an ancestor of FLORENCE. This node has a sense
italy#3 (namely, ’Italy the european state’), for which the re-
lation ‘italy#3 hyperonym florence#2’ holds, meaning that
’Florence is in Italy’. Therefore, the sense ‘florence#1’ can
be discarded by exploiting knowledge about the sense of an an-
cestor node. We can then conclude that the term ‘Florence’
refers to the ’city in Italy’ and not to the ‘town in South Car-
oline’. The function ACCESS–ONTOLOGY allows us to dis-
cover relations between senses by traversing the ontology O

4It’s important to note that WORDNET is not a merged and shared structure,
namely a kind of average of the structures to be matched (as in the GAV and
LAV approaches). Indeed, it represents the result of linguistic mediation in
centuries of use by human speakers. Using WORDNET instead of merged and
shared structures, shifts the problem of sharing ‘view of the world’ to the more
natural problem of ‘sharing natural language’.

(the WORDNET relations are reported in the left-hand side of
Table 1).

Algorithm 4 FILTER–SYNSET(T,O,SynS, t)
. structure T
. ontology O
. sense SynS[][] array of senses for the labels in T
. label t

VarDeclaratrions
relation R1,R2,Rel1,Rel2 . initialized to Null
sense senset1,senset2,sensey

1 for each pair senset1 6= senset2 in SynS[t] do
2 for each ancestor y of t in T do
3 for each sensey in SynS[y] do
4 R1 ← ACCESS–ONTOLOGY(sensey,senset1,O);
5 if R1 = ‘hyperonymy’ then Rel1 ← ‘hyperonymy’;
6 R2 ← ACCESS–ONTOLOGY(sensey,senset2,O);
7 if R2 = ‘hyperonymy’ then Rel2 ← ‘hyperonymy’;
8 if (Rel1 = Null & Rel2 6= Null) then
9 remove senset1 from SynS[t];
10 Rel1←Rel2←Null;

11 for each pair senset1 6= senset2 in SynS[t] do
12 for each descendant y of t in T do
13 for each sensey in sense[y] do
14 R1 ← ACCESS–ONTOLOGY(sensey,senset2,O);
15 if R1 = ‘hyponymy’ then Rel1 ← ‘hyponymy’;
16 R2 ← ACCESS–ONTOLOGY(sensey,senset1,O);
17 if R2 = ‘hyponymy’ then Rel2 ← ‘hyponymy’;
18 if (Rel1 = Null & Rel2 6= Null) then
19 remove senset1 from SynS[t];
20 Rel1 = Rel2 = Null;

21 for each senset1 in SynS[t] do
22 for each sibling y of t in T do
23 for each sensey in SynS[y] do
24 R1 ← ACCESS–ONTOLOGY(senset1,sensey,O);
25 if R1 = ‘contradiction’ then Rel1← ‘contradiction’;
26 if (Rel1 6= Null) then remove senset1 from SynS[t];
27 return SynS[t];

Lines 1–10 applies this heuristic to a sense sn associated to
a node t. Formally, it discards sn if the following two condi-
tions are satisfed: (i) no relation is found between this sn and
any sense associated to some ancestor, and (ii) some relation is
found between a sense sm 6= sn and some sense associated with
an ancestor of t. Lines 11–20 do the same for descendants. Fi-
nally, lines 21–26 discard a sense if it is in ’contradiction’ with
some sense associated to a sibling of t.

The function INDIVIDUAL–CONCEPT builds a formula ap-
proximating the meaning expressed by a node t. This is done
by combining the linguistic interpretation (the synsets SynS as-
sociated to the nodes of the focus) with structural information
(T) and domain knowledge (O), in input to the function. A crit-
ical choice is the formal language used to describe the mean-
ing. Our implementation for HCs adopts propositional logic,
whose primitive terms are the synsets of WORDNET associated
to each node.

Lines 1–6 look for some ontological relation between the
senses of the siblings and, if anyone is found, the interpreta-
tion of the node is refined. For example, imagine we have a
node IMAGES with two children EUROPE and ITALY, and that
the functions EXTRACT–SYNSET and FILTER–SYNSET asso-
ciate to the nodes EUROPE and ITALY respectively the senses

4

WORDNET relation axiom

s#k synonym t#h s#k≡ t#h
s#k hyponym t#h s#k→ t#h
s#k hypernym t#h t#h→ s#k

s#k contradiction t#h ¬(t#k∧s#h)

Table 1: WORDNET relations and their axioms.

europe#3 and italy#1. Since there exists an ontological re-
lation ‘europe#3 hyperonym italy#1’ (Italy is in Europe) the
meaning associated to node EUROPE is not longer europe#3,
but it becomes europe#3 ∧¬ italy#1. In fact we imagine that
a user wants to classify under node EUROPE images of Europe,
and not images of Italy.

Algorithm 5 INDIVIDUAL–CONCEPT(t,SynS,T,O)
. label t
. sense SynS[][]
. structure T
. ontology O

VarDeclaratrions
formula η = Null

relation R = Null,Rel = Null
path P

1 for each SynS[t][i] in SynS[t][] do
2 for each sibling y of t in T do
3 for each SynS[y][k] in SynS[y][] do
4 R← ACCESS–ONTOLOGY(SynS[t][i],SynS[y][k],O);
5 if R = ‘hyperonymy’ then Rel← ‘hyperonymy’;
6 if (rel 6= Null) then replace SynS[t][i] in SynS[t][] with

‘SynS[t][i]∧¬SynS[y][k]’;
7 P← path from root to t in T ; . Path from root to node t.
8 η←

V

e∈P (
W

i SynS[e][i]);
9 return η;

Lines 7-8 compute the formula approximating the structural
meaning of the concept t. This formula is the conjunction of
the meanings associated to all of its ancestors (i.e., the path
P). The meaning of a node is taken to be disjunction of all
the (remaining) senses associated to the node. For example,
if you consider the node FLORENCE in the rightmost structure
of Figure 1.b, the function returns the formula (images#1 ∨
images#2) ∧ italy#3 ∧ florence#2, where (images#1 ∨
images#2) means that we are not able to discard anyone of
the senses.

Function EXTRACT–LOCAL–AXIOMS extracts the local rel-
evant axioms, i.e. the axioms relating concepts within a single
structure. The idea is to rephrase the ontological relations be-
tween senses into logical relations. Consider again the senses
florence#2 and italy#3 associated to the nodes FLORENCE
and ITALY in Figure 1.b. The ontological knowledge tells us
that ‘italy#3 hyperoym florence#2’. This can be expressed
by the axiom ‘florence#2→italy#3’. In HC-CTXMATCH,
local axioms are built by translating WORDNET relations into
formulas according to Table 1.

HC–specific functions for SEMANTIC–COMPARISON

The top–level function SEMANTIC–COMPARISON calculates
the semantic relation between the formulas approximating the

meaning of two nodes. In this section we describe the struc-
tural dependent functions called by this function: EXTRACT–
GLOBAL–AXIOMS and BUILD–DEDUCTIONAL–FORMULAS.

EXTRACT–GLOBAL–AXIOMS works exactly as EXTRACT–
LOCAL–AXIOMS. The only difference is that the axioms ex-
tracted express relations between concepts belonging to dif-
ferent structures. Consider for example that the two senses
tuscany#1 and italy#3 have been associated respectively to
nodes TUSCANY and ITALY in Figure 1.b. The ontological re-
lation is ‘italy#3 hyperonym tuscany#1’, which can be ex-
pressed as ‘tuscany#1 → italy#3’. The rules of translation
from WORDNET senses to axioms are the same as for the func-
tion EXTRACT–LOCAL–AXIOMS.

In our approach, the problem of finding the relation between
two nodes is encoded into a satisfiability problem. BUILD–
DEDUCTIONAL–FORMULAS defines the satisfiability problems
needed by defining (i) the set R of possible relations holding
between concepts and, for each such relation r ∈ R, (ii) the
formula which expresses the truth conditions for this relation.
Clearly, the set R of possible relations depends on the intended
use of the structures we want to map. For HC-CTXMATCH we
choose the following set–theoretical relations: ≡, ⊆, ⊇, ⊥ (⊥
means that the two concepts are disjoint).

Relation Formula

⊥ (α∧β∧ γ)→¬(φ→ ψ)〉

≡ (α∧β∧ γ)→ (φ≡ ψ)〉

⊆ (α∧β∧ γ)→ (φ→ ψ)〉

⊇ (α∧β∧ γ)→ (ψ→ φ)〉

Table 2: The satisfiability problems for concepts 〈φ,α〉 and
〈ψ,β〉, with global axioms γ.

Table 2 reports the pairs 〈relation,formula〉 representing the
satisfiability problems associated to each relation between con-
cepts we consider, given two concepts 〈φ,α〉, 〈ψ,β〉, and the
formula γ representing the global axioms. The result of this
function is simply an array k[] containing these pairs.

Consider the problem of checking whether FLORENCE in the
right-hand structure in Figure 1.b is, say, equivalent to the node
FLORENCE in the left-hand structure. Following are the concepts
and axioms exteacted by the two strcutures:

concept 1: image#1∧tuscany#1∧florence#2 (1)

local axiom 1: florence#2→ tuscany#1 (2)

concept 2: image#1∧italy#3∧florence#2 (3)

local axiom 2: florence#2→ italy#3 (4)

global axiom: tuscany#1→ italy#3 (5)

Checking equivalence then amounts to checking the follow-
ing logical consequence 2∧4∧5 |= (1≡ 3). By the properties
of propositional consequence, we can rephrase it as follows:
|= (2∧4∧5)→ (1≡ 3). It is easy to see that this latter formula
is valid. So we can conclude that the relation holding between
the two nodes FLORENCE is “equivalence”, which is the intuitive
one.

5

In particular, the function SATISFIES checks for the validity
of a formula. In our implementation a standard SAT–solver is
used for this task.

4 Testing the algorithm

In this section, we report from [5] some results of the first tests
on CTXMATCH. The tests were performed on real HCs (i.e.,
pre-existing classifications used in real applications), and not
on ad hoc HCs.

Matching Google with Yahoo!. We evaluated CTXMATCH

over portions of GoogleTM and Yahoo!TM Directories looking
for overlapping domains. The test was performed on the two
sub-hierarchies ‘Architecture’ and ‘Medicine’ available in both
GoogleTM and Yahoo!TM. The results, measured in terms of
precision and recall, are reported in the following table:

Architecture Medicine
Relations Pre. Rec. Pre. Rec.

equivalence
≡
−→ .75 .08 .88 .09

less general than
⊆
−→ .84 .79 .86 .61

more general than
⊇
−→ .94 .38 .97 .35

We observe that the use of domain knowledge allowed
us to discover non trivial mappings. For example, an
inclusion mapping was found between Architecture
/History/Periods and Styles/Gothic/Gargoyles and
Architecture/History/ Medieval as a consequence of
the relation between Medieval and Gothic provided by
WORDNET. This kind of semantic mappings are very difficult
to find using a keyword–based approach.

Product Re-classification. The second test was in the do-
main of e–commerce. In the framework of a collaboration
with a worldwide telecommunication company, the matching
algorithm was applied to re-classify the HC of the ‘equipment
and accessories’ office (used to classify company suppliers)
into UNSPSC5 (version 5.0.2). We compare the results of the
re-classification using CTXMATCH and the baseline matching
process6:

Baseline Matching
classification classification

Total items 194 100% 194 100%
Rightly classified 75 39% 134 70%
Wrongly classified 91 50% 16 8%
Non classified 27 14% 42 22%

Given the 194 items re-classify, the baseline process found
1945 possible nodes, only 75 of which turned out to be correct.

5UNSPSC (Universal Standard Products and Services Classification) is an
open global coding system that classifies products and services. UNSPSC is
extensively used around the world for electronic catalogs, search engines, e–
procurement applications and accounting systems.

6The baseline has been performed by a simple keyword based matching
which worked according to the following rule: for each item description (made
up of one or more words) gives back the set of nodes, and their paths, which
maximize the occurrences of the item words.

The baseline, a simple string-based matching method, is able
to capture a certain number of re-classifications, but the per-
centage of error is quite high (50%) with respect to correctness
(39%). With CTXMATCH the percentage of success is signifi-
cantly higher (70%) and, even more relevant, the percentage of
error is minimal (8%).

5 Conclusions and related work

In this paper we presented a new approach to semantic coor-
dination in open and distributed environments. In particular
we define in detail (i) a top algorithm (called CTXMATCH) for
finding relations between structures labelled with natural lan-
guage, and (ii) an implementation for finding set–theoretical re-
lationships between nodes of hierarchical classifications (HC-
CTXMATCH).

In [6, 7] we compare CTXMATCH with other proposed
works, in particular with generic graph matching, CUPID [4],
MOMIS [1] and GLUE [2]. We refer to this paper for related
work.

References
[1] S. Bergamaschi, S. Castano, and M. Vincini. Semantic

integration of semistructured and structured data sources.
SIGMOD Record, 28(1):54–59, 1999.

[2] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map between ontologies on the semantic web.
In Proceedings of WWW-2002, Hawaii, 2002.

[3] Christiane Fellbaum, editor. WordNet: An Electronic Lexi-
cal Database. The MIT Press, Cambridge, US, 1998.

[4] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In The VLDB Journal¡, pages
49–58, 2001.

[5] B. M. Magnini, L. Serafini, A. Doná, L. Gatti, C. Girardi, ,
and M. Speranza. Large–scale evaluation of context match-
ing. Technical Report 0301–07, ITC–IRST, Trento, Italy,
2003.

[6] P. Bouquet B. Magnini, L. Serafini, and S. Zanobini. A
SAT–based algorithm for context matching. In Proc. of
the 4th International and Interdisciplinary COnference on
Modeling and Using Context (CONTEXT-03). Stanford
University (CA), June 23-25, 2003, volume 2680 of Lec-
ture Notes in Artificial Intelligence. Springer Verlag, 2003.

[7] P. Bouquet L. Serafini and S. Zanobini. Semantic coordina-
tion: a new approach and an application. In Proc. of the 2nd
International Semantic Web Conference (ISWO’03). Sani-
bel Islands, Florida, USA, October 2003.

6

