
Abstract
We think of match as an operator that takes two
graph-like structures (e.g., database schemas or
ontologies) and produces a mapping between ele-
ments of the two graphs that correspond semanti-
cally to each other. The goal of this paper is to
propose a new approach to matching, called se-
mantic matching. The contributions of this paper
are (i) a rational reconstruction of the major
matching problems and their articulation in terms
of the more generic problem of matching graphs;
(ii) the identification of semantic matching as a
new approach for performing generic matching;
and (iii) a proposal of implementing semantic
matching by testing propositional satisfiability.

1 Introduction
Due to the progress of information and communication
technologies the number of different information resources
is rapidly increasing, and the problem of semantic hetero-
geneity is becoming more and more severe, see for in-
stance [Washe et al., 2001], [Goh, 1997], [Giunchiglia and
Zaihrayeu, 2002]. One proposed solution is matching.
Match is an operator that takes two graph-like structures
(e.g., database schemas or ontologies) and produces a
mapping between elements of the two graphs that corre-
spond semantically to each other. So far, with the notice-
able exception of [Serafini et al, 2003], the key intuition
underlying all the approaches to matching has been to map
labels (of nodes) and to look for similarity (between la-
bels) using syntax driven techniques and syntactic similar-
ity measures; see for instance [Do and Rahm, 2002],
[Madhavan et al., 2001]. We say that all these approaches
are different variations of syntactic matching. In syntactic
matching semantics are not analyzed directly, but semantic
correspondences are searched for only on the basis of syn-
tactic features.

In this paper we propose a novel approach, called se-
mantic matching, with the following main features:
• We search for semantic correspondences by mapping

meanings (concepts), and not labels, as in syntactic
matching.

• We use semantic similarity relations between elements
(concepts) instead of syntactic similarity relations. In par-
ticular, we consider relations, which relate the extensions
of the concepts under consideration (for instance,
more/less general relations).

 The contributions of this paper are (i) a rational reconstruc-
tion of the major matching problems and their articulation in
terms of the more generic problem of matching graphs; (ii)
the identification of semantic matching as a new approach for
performing generic matching; and (iii) a proposal of using a
decider for propositional satisfiability (SAT) as a possible
way of implementing semantic matching. The algorithm pro-
posed works only on Directed Acyclic Graphs (DAG’s) and
is-a links. It is important to notice that SAT deciders are cor-
rect and complete decision procedures for propositional lo-
gics. Using SAT allows us to find only and all possible map-
pings between elements. This is another major advantage
over syntactic matching approaches, which are based on heu-
ristics. The SAT-based algorithm discussed in this paper is a
minor modification/extension of the work described in [Seraf-
ini et al, 2003].

The rest of the paper is organized as follows. Section 2
defines the notion of matching and discusses the essence
of semantic matching. Section 3 provides guidelines to the
implementation of semantic matching. Section 4 overviews
the related work. Section 5 reports some conclusions.

2 Matching
We assume that all the data and conceptual models (e.g., rela-
tional db schemas, OODB and XML schemas, concept hier-
archies and ontologies) can be represented as graphs, see for a
detailed discussion [Giunchiglia and Shvaiko, 2003]. There-
fore, the problem of matching heterogeneous and autonomous
information resources can be decomposed in two steps:

1. extract graphs from the data or conceptual models,
2. match the resulting graphs.
Notice that this allows for the statement and solution of

a more generic matching problem, very much along the
lines of what done in Cupid [Madhavan et al., 2001], and
COMA [Do and Rahm, 2002].

Semantic Matching

Fausto Giunchiglia and Pavel Shvaiko

DIT – Dept. of Information and Communication Technology
University of Trento, 38050 Povo, Trento, Italy

{fausto, pavel}@dit.unitn.it

Semantic Matching
• R is computed between

concepts at nodes
• R={set-theoretic relations,

e.g.,=, ∩ , ⊥ , ⊆, ⊇}

Matching

Syntactic Matching
• R is computed

between labels at
nodes

• R=[0,1]

Let us define the notion of matching graphs more pre-
cisely. Mapping element is a 4-tuple < mID, Ni

1, Nj
2, R >,

i=1...h; j=1..k; where mID is a unique identifier of the
given mapping element; Ni

1 is the i-th node of the first
graph, h is the number of nodes in the first graph; Nj

2 is the
j-th node of the second graph, k is the number of nodes in
the second graph; and R specifies a similarity relation of
the given nodes. A Mapping is a set of mapping elements.
Matching is the process of discovering mappings between
two graphs through the application of a matching algo-
rithm. There exist two approaches to graph matching,
namely exact matching and inexact or approximate match-
ing. For obvious reasons we are interested in inexact
matching.

We classify matching into syntactic and semantic
matching depending on how matching elements are com-
puted and on the kind of similarity relation R used.
• In syntactic matching the key intuition is to map labels (of

nodes) and to look for the similarity using syntax driven
techniques and syntactic similarity measures. Thus, in the
case of syntactic matching, mapping elements are com-
puted as 4-tuples < mID, Li

1, Lj
2, R >, where Li

1 is the label
at the i-th node of the first graph; Lj

2 is the label at the j-th
node of the second graph; and R specifies a similarity re-
lation in the form of a coefficient, which measures the
similarity between the labels of the given nodes. Typical
examples of R are coefficients in [0,1], for instance, simi-
larity coefficients [Madhavan et al., 2001]. Similarity co-
efficients usually measure the closeness between the two
elements linguistically and structurally. For instance,
based on linguistic analysis, the similarity coefficient be-
tween elements "telephone" and "phone" from the two
hypothetical schemas could be 0,7.

• As from its name, in semantic matching the key intuition
is to map meanings (concepts). Thus, in the case of se-
mantic matching, mapping elements are computed as 4-
tuples < mID, Ci

1, Cj
2, R >, where Ci

1 is the concept of the
i-th node of the first graph; Cj

2 is the concept of the j-th
node of the second graph; and R specifies a similarity re-
lation in the form of a semantic relation between the ex-
tensions of concepts at the given nodes. Possible R’s be-
tween nodes are equality (=), overlapping (∩), mismatch
(⊥), or more general/specific (⊆, ⊇).

These ideas are schematically represented in Figure 1. It
is important to notice that all past approaches to matching
we are aware of, with the exception of [Serafini et al,
2003], are based on syntactic matching.

Fig.1. Matching problems

Let us consider some examples, which make the conse-
quences of the observation described above clearer. For
any example we also report the results produced by the
state of the art matcher, Cupid [Madhavan et al., 2001],
which exploits very sophisticated syntactic matching tech-
niques. Notationally, A stands for the label at a node; CA
stands for the concept denoted by A; Ci stands for the con-
cept at the node i (in the following we sometimes confuse
concepts with their extensions), numbers in circles are the
unique identifiers of the nodes under consideration. In or-
der to keep track of the graph we refer to we index nodes,
labels, concepts and their extensions with the graph num-
ber (which is “1” for the graph on the left and “2” for the
graph on the right). Thus we have, for instance, A1, 51, CA1,
C51.
Analysis of siblings. Let us consider Figure 2. Structurally
the graphs shown in Figure 2 differ in the order of sib-
lings. Suppose that we want to match node 51 with node
22.

Fig.2. Analysis of siblings. Case 1

Cupid finds the similarity coefficient between labels at
the given nodes, which equals to 0,8. This is because
A1=A2, C1=C2 and we have the same structures on both
sides. . A semantic matching approach compares concepts
CA1 ∩ CC1 with CA1 ∩ CC1 and produces C51 = C22.
Analysis of ancestors. Let us consider Figure 3. Suppose
that we want to match nodes 51 and 12.

Fig.3. Analysis of ancestors. Case 1

Cupid does not find a similarity coefficient between the
nodes under consideration, due to the significant differ-
ences in structure of the given graphs. In semantic match-
ing, the concept denoted by the label at node 51 is CC1,
while the concept at node 51 is C51= CA1 ∩ CC1. The concept
at the node 12 is C12 = CC2. By comparing the concepts de-
noted by the labels at nodes 51 and 12 we have that, being
identical, they denote the same concept, namely CC1=CC2.
Thus, the concept at node 51 is a subset of the concept at
node 12, namely C51 ⊆ C12.

Let us complicate the example shown in Figure 3 by al-
lowing for an arbitrary distance between ancestors, see
Figure 4. The asterisk means that an arbitrary number of
nodes are allowed between nodes 12 and 52. Suppose that
we want to match nodes 51 and 52.

 A

 B C

is-ais-a

is-ais-a

 E D

1

43

5
2

A

 C B

is-a is-a

is-ais-a

 E D

1

43

5
2

A

C

is-a

 B

is-a

is-a is-a

 E D

1

2

4

3

5

A

 C
 B

is-a is-a

is-ais-a

 E D

1

43

2
5

Fig.4. Analysis of ancestors. Case 2
Cupid finds out that the similarity coefficient between

labels C1 and C2 is 0,86. This is because of the identity of
labels (A1=A2, C1=C2), and due to the fact that nodes 51
and 52 are leaves. Notice how Cupid treats very differently
the two situations represented here and in the example
above, even if, from a semantic point of view, they are
similar. Following semantic matching, the concept at node
51 is C51 = CA1 ∩CC1; while the concept at node 52 is C52 = CA2

∩*∩ CC2. Since we have that CA1= CA2 and CC1= CC2, then C52
⊆ C51.
Enriched analysis of siblings. Suppose that we want to
match nodes 21 and 22, see Figure 5.

Fig.5. Analysis of siblings. Case 2
Cupid without thesaurus doesn’t find a match; with the

use of thesaurus it finds out that the similarity coefficient
between nodes with labels Benelux1 and Belgium2 is 0,68.
This is mainly because of the entry in the thesaurus speci-
fying Belgium as a part of Benelux, and due to the fact that
the nodes with labels Benelux1 and Belgium2 are leaves.

Following semantic matching, both concepts CBenelux1 and
CBelgium2 are subsets of the concept CWorld1,2. Let us suppose
that an oracle, for instance WordNet, states that Benelux is
a name standing for Belgium, Netherlands and Luxem-
bourg. Therefore, we treat C21 in Figure 5 as CBenelux1 ∩ CNeth-

erlands1 ∩ CLuxembourg1 =CBelgium1. Thus, C21 = C22.

3 Implementing Semantic Matching
There are two levels of granularity while performing se-
mantic (and also syntactic matching) matching: element-
level and structure-level. Element-level matching tech-
niques compute mapping elements between individual la-
bels/concepts at nodes; structure-level techniques compute
mapping elements between subgraphs.

3.1 Element-level Semantic Matching
Element-level semantic techniques analyze individual la-
bels/concepts at nodes. At the element-level we can exploit
all the techniques discussed in the literature, see for instance
[Do and Rahm, 2002], [Melnik et al., 2002], [Rahm and
Bernstein, 2001]. The main difference here is that, instead of

a syntactic similarity measure, these techniques must be
modified to return a semantic relation R, as defined in Section
2. We distinguish between weak semantics and strong seman-
tics element-level techniques. Weak semantics techniques are
syntax driven techniques: examples are techniques, which
consider labels as strings, or analyze data types, or soundex
of schema elements. Let us consider some examples.
Analysis of strings. String analysis looks for common pre-
fixes or suffixes and calculates the distance between two
strings. For example, the fact that the string "phone" is a sub-
string of the string "telephone" can be used to infer that
"phone" and "telephone" are synonyms. Before analyzing
strings, a matcher could perform some preliminary parsing,
e.g., extract tokens, expand abbreviations, delete articles and
then match tokens. The analysis of strings discovers only
equality between concepts.
Analysis of data types. These techniques analyze the data
types of the elements to be compared and are usually per-
formed in combination with string analysis. For example, the
elements "phone" and "telephone" are supposed to have the
same data type, namely "string" and therefore can be found
equal. However, "phone" could also be specified as an "inte-
ger" data type. In this case a mismatch is found. As another
example the integer "Quantity" is found to be a subset of the
real "Qty". This kind of analysis can produce any kind of
semantic relation.
Analysis of soundex. These techniques analyze elements’
names from how they sound. For example, elements "for
you" and "4 U" are different in spelling, but similar in soun-
dex. This analysis can discover only equality between con-
cepts.

Strong semantics techniques exploit, at the element-
level, the semantics of labels. These techniques are based
on the use of tools, which explicitly codify semantic in-
formation, e.g. thesauruses [Madhavan et al., 2001],
WordNet or combinations of them [Castano et al., 2000].
Notice that these techniques are also used in syntactic
matching. In this latter case, however, the semantic infor-
mation is lost before moving to structure-level matching
and approximately codified in syntactic relations.
Precompiled thesaurus. A precompiled thesaurus usually
stores entries with synonym and hypernym relations. For ex-
ample, the elements "e-mail" and "email" are treated as syno-
nyms from the thesaurus look up: syn key - "e-mail:email =
syn". Precompiled thesauruses (most of them) identify
equivalence and more general/specific relations. In some
cases domain ontologies are used as precompiled thesauruses
[Mena et al., 1996].
WordNet. WordNet is an electronic lexical database for Eng-
lish (and other languages), where various senses (namely,
possible meanings of a word or expression) of words are put
together into sets of synonyms (synsets). Synsets in turn are
organized as hierarchy. Following [Serafini et al, 2003] we
can define the semantic relations in terms of senses. Equality:
one concept is equal to another if there is at least one sense of
the first concept, which is a synonym of the second. Overlap-
ping: one concept is overlapped with the other if there are

 A

 C
 B

is-a is-a

is-a is-a

 E D

1

4 3

2
5 *

A

is-a

 C

is-a

is-a is-a

 E D

1′

2

…

3

5

is-a

World

Luxembourg

is-a is-a

Netherlands

Benelux
2

3

4

1

Belgium

World

is-a

1

2

 B DC

is-a
is-a

A

is-a

4 3 2

1

 B D C

is-a
is-a

F

is-a

4 3 2

1

 B DC

is-a
is-a

G

is-a

4 3 2

1

some senses in common. Mismatch: two concepts are mis-
matched if they have no sense in common. More general /
specific: One concept is more general than the other iff there
exists at least one sense of the first concept that has a sense of
the other as a hyponym or as a meronym. One concept is less
general than the other iff there exists at least one sense of the
first concept that has a sense of the other concept as a hy-
pernym or as a holonym. For example, according to Word-
Net, the concept "hat" is a holonym for the concept "brim",
which means that "brim" is less general than "hat".

3.2 Structure-level Semantic Matching
The approach we propose is to translate the matching
problem, namely the two graphs and our mapping queries
into a propositional formula and then to check it for its
validity. By mapping query we mean here the pair of
nodes that we think will match and the semantic relation
between them. In the following we show how, limited to
the case of DAG’s and is-a hierarchies, we can check va-
lidity by using propositional satisfiability (SAT) decider.
Notice that SAT deciders are correct and complete deci-
sion procedures for propositional satisfiability and there-
fore will exhaustively check for all possible mappings.
Being complete, they automatically implement all the ex-
amples described in the previous section, and more. This is
another advantage over syntactic matching, whose existing
implementations are based only on heuristics.

Our SAT based approach to semantic matching incorpo-
rates six steps. We describe below its intended behavior by
running these six steps on the example shown in Figure 3
and by matching nodes 51 and 12 (steps 2-5 are taken from
[Serafini et al, 2003]).
1. Extract the two graphs. Notice that during this step, in

the case of DB, XML or OODB schemas, it is necessary to
extract useful semantic information, for instance in the
form of ontologies. There are various techniques for doing
this, see for instance [Davis and Aiken, 2000], [Mena et
al., 1996]. The result is the graph in Figure 3.

2. Compute element-level semantic matching. For each
node, compute semantic relations holding among all the
concepts denoted by labels at nodes under consideration.
In this case CA1 has no semantic relation with CC2 while we
have that CC1 = CC2.

3. Compute concepts at nodes. Starting from the root of the
graph, attach to each node the concepts of all the nodes
above it. Thus, we attach C11 = CA1 to node 11; C51 = CA1∩CC1
to node 51; C12 = CC2 to node 12 in the is-a hierarchy. As it
turns out we have that C51 ⊆ C12.

4. Construct the propositional formula, representing the
matching problem. In this step we translate all the seman-
tic relations computed in step 2 into propositional formu-
las. This is done according to the following transition
rules:

Subset translates into implication; equality into equiva-
lence; disjointness into the negation of conjunction. In the
case of Figure 3 we have that CC1 ≡ CC2 is an axiom. Fur-
thermore, since we want to prove that C51 ⊆ C12, our goal is
to prove that ((CA1 ∧ CC1) → CC2). Thus, our target formula is
((CC1 ≡ CC2) → (CA1 ∧ CC1) → CC2)).

5. Run SAT. In order to prove that ((CC1 ≡ CC2) → (CA1 ∧ CC1)

→ CC2)) is valid, we prove that its negation is unsatisfi-
abile, namely that a SAT solver run on the following for-
mula ((CC1 ≡ CC2) ∧¬ (CA1 ∧ CC1) → CC2)) fails. A quick
analysis shows that SAT will return FALSE.

6. Iterations. Iterations are performed re-running SAT. We
need iterations, for instance, when matching results are not
good enough, for instance no matching is found or a form
of matching is found, which is too weak, and so on1. The
idea is to exploit the results obtained during the previous
run of SAT to tune the matching and improve the quality
of the final outcome. Let us consider Figure 6.

Fig.6. Not good enough answer
Suppose that we have found out that C21 ∩ C22 ≠ ∅, and

that we want to improve this result. Suppose that an oracle
tells us that CA1 = CF2 ∪ CG2. In this case the graph on the
left in Figure 6 can be transformed into the two graphs in
Figure 7.

Fig.7. Extraction of additional semantic information
After this additional analysis we can infer that C21 = C22.

As a particular interesting case, consider the following
situation, see Figure 7.1

1 [Giunchiglia and Zaihrayeu, 2002] provides a long discussion

about the importance of dealing with the notion of "good enough
answer" in information coordination in peer-to-peer systems.

CA1 ⊇ CA2 ⇒ CA2 → CA1

CA1 ⊆ CA2 ⇒ CA1 → CA2

CA1 = CA2 ⇒ CA1 ≡ CA2

CA1 ⊥ CA2 ⇒ ¬(CA1 ∧ CA2)

is-a
is-a

A

 B

is-a

D C 4 2 3

1

F

is-ais-a

C B 2 3

1

=

Tilburg Amsterdam

Benelux

is-a is-a

1

2 3 4

is-a

Brussels

=
TilburgAmsterdam

Holland

is-a is-a

1

2 3 4

is-a

Brussels TilburgAmsterdam

Belgium

Brussels

is-ais-a

1

2 3 4

is-a

Tilburg Amsterdam

Benelux

is-a is-a

1

2 3 4

is-a

Brussels

=
Tilburg Amsterdam

Holland

is-a is-a

1

2 3

Belgium

Brussels

1

4

is-a

is-a is-a

Florence

Images

is-a

Toscany

1

2

is-a

Asia 3

5

mountains
4

is-a is-a

Florence

Images

is-a

 Italy

1

2

is-a

Asia 3

5

mountains
4

Fig.7.1. Extraction of additional semantic information. Example
In this case the concept Brussels in the graph on the left

(after the sign “=”) becomes inconsistent (empty intersec-
tion) and can be omitted; and the same for the concepts at
nodes Amsterdam and Tilburg in the graph on the right.
The resulting situation is as follows:

Fig.7.2. Extraction of additional semantic information. Example
Another motivation for multiple iterations is to use the

result of a previous match in order to speed up the search
of new matches. Consider the following example.

Fig.8. Iterations
Having found that C21 ⊆ C22, we can automatically infer

that C51 ⊆ C52, without rerunning SAT, for obvious reasons,
and the same for C41 and C42. As a particular case consider
the following situation:

Fig. 8.1. Iterations. Example
Our algorithm allows us to find that C51 ⊆ C52, while, be-

ing Tuscany in Italy we actually have C51 = C52. This is an
acceptable result as long as we are not looking for the
strongest possible relation holding between two nodes.

4 Related Work
From a technical point of view the matcher we have pro-
posed in this paper is a function Match-
NodesR(G1,G2,n1,n2,R) which takes two graphs, two nodes,
and a relation and returns a Yes/No answer. Most matchers
proposed in the literature are a function Match(G1,G2)
which takes two graphs and returns a set of mappings (n1,
n2, R). However, it is easy to see how we can build an
analogous function. The naive approach being to triple
loop on the nodes of the graphs and on the set of proposed
relations and, at each loop, call MatchNodesR.

At present, there exists a line of semi-automated schema
matching and ontology integration systems, see for in-
stance [Madhavan et al., 2001], [Do and Rahm, 2002], [Li
and Clifton, 2000], [Castano et al., 2000], [Arens et al.,
1996], [Mena et al., 1996], [Doan et al., 2002], etc. Most
of them implement syntactic matching. A good survey, up
to 2001, is provided in [Rahm and Bernstein, 2001]. The
classification given in this survey distinguishes between
individual implementations of match and combinations of
matchers. Individual matchers comprise instance- and
schema-level, element- and structure-level, linguistic- and
constrained-based matching techniques. Individual match-
ers can be used in different ways, e.g. simultaneously (hy-
brid matchers), see [Li and Clifton, 2000], [Castano et al.,
2000], [Madhavan et al., 2001] or in series (composite
matchers), see for instance [Doan et al., 2002], [Do and
Rahm, 2002].

The idea of generic (syntactic) matching was first pro-
posed by Phil Bernstein and implemented in Cupid system
[Madhavan et al., 2001]. Cupid implements a complicated
hybrid match algorithm comprising linguistic and struc-
tural schema matching techniques, and computes normal-
ized similarity coefficients with the assistance of a pre-
compiled thesaurus. COMA [Do and Rahm, 2002] is a ge-
neric schema matching tool, which implements more re-
cent composite generic matchers. With respect to Cupid,
the main innovation seems to be a more flexible architec-
ture.

A lot of state of the art syntactic matching techniques
exploiting weak semantic element-level matching tech-
niques have been implemented. For instance, in COMA,
schemas are internally encoded as DAG’s, where the ele-
ments are the paths, which are analyzed using string com-
parison techniques. Similar ideas are exploited in Similar-
ity Flooding (SF) [Melnik et al., 2002]. SF is a hybrid
matching algorithm based on the ideas of similarity propa-
gation. Schemas are presented as directed labeled graphs;
the algorithm manipulates them in an iterative fix-point
computation to produce mappings between the nodes of
the input graphs. The technique uses a syntactic string
comparison mechanism of the vertices’ names to obtain an
initial mapping, which is further refined within the fix-
point computation.

Some work has also been done in strong semantics ele-
ment-level matching. For example, [Castano et al., 2000]
utilizes a common thesaurus, while [Madhavan et al.,
2001] has a precompiled thesaurus. In MOMIS [Castano et
al., 2000] element-level matching using a common thesau-

 A

 C F

is-a is-a

is-a is-a

 E D

1

5 4

3 2

A

 C B

is-ais-a

is-a is-a

 E D

1

5 4

32

rus is carried out through a calculation of the name, struc-
tural and global affinity coefficients. The thesaurus pre-
sents a set of intensional and extensional relations, which
depict intra- and inter-schema knowledge about classes,
and attributes of the input schemas. All these systems im-
plement syntactic matching and, when moving from ele-
ment-level to structure-level matching, don’t exploit the
semantic information residing in the graph structure, and
just translate the element-level semantic information into
affinity levels.

As far as we know the only example where element-
level and a simplified version of structure- level strong
semantics matching have been applied is CTXmatch
[Serafini et al, 2003]. The main problem of CTXmatch is
that its rather limited in scope (it applies only to concept
hierarchies), and it is hard to see the general lessons be-
hind this work. This paper provides the basics for a better
understanding of the work on CTXmatch.

5 Conclusions and Future Work
In this paper we have stated and analyzed the major matching
problems e.g., matching database schemas, XML schemas,
conceptual hierarchies and ontologies and shown how all
these problems can be defined as a more generic problem of
matching graphs. We have identified semantic matching as a
new approach for performing generic matching, and dis-
cussed some of its key properties. Finally, we have identified
SAT as a possible way of implementing semantic matching,
and proposed an iterative semantic matching approach based
on SAT.

This is only very preliminary work, some of the main is-
sues we need to work on are: develop an efficient imple-
mentation of the system, do a thorough testing of the sys-
tem, also against the other state of the art matching sys-
tems, study how to take into account attributes and in-
stances, and so on.

Acknowledgments
Thanks to Luciano Serafini, Paolo Bouquet for many dis-
cussions on CTXmatch. Stefano Zanobini and Phil Bern-
stein have proposed very useful feedback on the semi-final
version of this paper. Also thanks to Michail Yatskevich
for his work on running SAT solvers on our matching
problems.

References
[Arens et al., 1996] Yigal Arens, Chun-Nan Hsu, and
Craig A. Knoblock. Query processing in the SIMS infor-
mation mediator. In Advanced Planning Technology.
AAAI Press, California, USA, 1996.
[Buneman, 1997] Peter Buneman. Semistructured data. In
Proc. of PODS, pages 117–121, 1997.
[Castano et al., 2000] Castano S., V. De Antonellis, S. De
Capitani di Vimercati. Global Viewing of Heterogeneous

Data Sources. IEEE Trans. on Knowledge and Data Engi-
neering, 2000
[Doan et al., 2002] A. Doan, J.Madhavan, P. Domingos,
and A. Halvey. Learning to map between ontologies on the
semantic web. In Proc. Of WWW-02, 11th International
WWW Conf., Hawaii 2002.
[Do and Rahm, 2002] Hong H. Do, Erhard Rahm. COMA
– A System for Flexible Combination of Schema Matching
Approach. VLDB Journal, pages 610-621, 2002
[Goh, 1997] Cheng Hian Goh. Representing and Reason-
ing about Semantic Conflicts in Heterogeneous Informa-
tion Sources. Phd, MIT, 1997.
[Giunchiglia and Shvaiko, 2003] Fausto Giunchiglia and
Pavel Shvaiko. Semantic Matching. Technical Report
#DIT-03-013. http://www.dit.unitn.it/~p2p/
[Giunchiglia and Zaihrayeu, 2002] Fausto Giunchiglia and
Ilya Zaihrayeu. Making peer databases interact - a vision
for an architecture supporting data coordination. Proceed-
ings of the Conference on Information Agents, Madrid,
September 2002.
[Li and Clifton, 2000] W. Li, C. Clifton: SEMINT: A tool for
identifying attribute correspondences in heterogeneous data-
bases using neural networks. Data & Knowledge Engineer-
ing, 33(1): 49-84, 2000.
[Davis and Aiken, 2000] Kathi Hogshead Davis, Peter H.
Aiken: Data reverse engineering: a historical survey,
WCRE’00, 2000.
[Madhavan et al., 2001] Jayant Madhavan, Philip A. Bern-
stein, and Erhard Rahm. Generic schema matching with
Cupid. VLDB Journal, pages 49-58, 2001
[Melnik et al., 2002] Melnik, S., H. Garcia-Molina, E.
Rahm: Similarity Flooding: A Versatile Graph Matching
Algorithm. ICDE, 2002.
[Mena et al., 1996] E. Mena, V. Kashyap, A. Sheth, and A.
Illarramendi. Observer: An approach for query processing
in global information systems based on interoperability
between pre-existing ontologies. In Proceedings 1st Inter-
national Conference on Cooperative Information Systems.
Brussels, 1996.
[Rahm and Bernstein, 2001] Erhard Rahm and Philip A.
Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4): 334-350, 2001.
[Serafini et al, 2003] Luciano Serafini, Paolo Bouquet,
Bernardo Magnini, and Stefano Zanobini. An Algorithm
for Matching Contextualized Schemas via SAT. In Proc.
of CONTEX 03, June 2003.
[Washe et al., 2001] H. Wache, T. Voegele, U. Visser, H.
Stuckenschmidt, G. Schuster, H. Neumann, and S. Hueb-
ner. Ontology-based integration of information - a survey
of existing approaches. In Proc. of IJCAI, August 2001.

