
Semantic Integration through Invariants

Michael Grüninger
Manufacturing Systems Integration Division

National Institute of Standards and Technology
100 Bureau Drive

Gaithersburg, MD 20899-8260
gruning@cme.nist.gov

Joseph B. Kopena
Geometric and Intelligent Computing Laboratory

College of Engineering, Drexel University
3141 Chestnut St

Philadelphia, PA 19104
joe@plan.mcs.drexel.edu

Introduction
A semantics-preserving exchange of information re-
quires mappings between logically equivalent concepts
in each ontology. The challenge of semantic integra-
tion is therefore equivalent to the problem of generating
such mappings, determining that they are correct, and
providing a vehicle for executing the mappings, thus
translating terms from one ontology into another.

Current approaches to semantic integration ((5), (7))
emphasize the use of generic techniques that do not ex-
ploit the model-theoretic structures of the ontologies.
In this paper we will show how the classification of mod-
els within the PSL Ontology can serve as the basis for
generating semantic mappings between applications.

The Process Specification Language (PSL) ((2), (4),
(6)) has been designed to facilitate correct and complete
exchange of process information among manufacturing
systems1, such as scheduling, process modeling, pro-
cess planning, production planning, simulation, project
management, workflow, and business process reengi-
neering. PSL is intended to be used as a mediating
ontology that is independent of the applications’ on-
tologies and that is used as a neutral interchange ontol-
ogy ((1)). The semantic mappings between application
ontologies and PSL can be semi-automatically gener-
ated from invariants (properties of models preserved by
isomorphism). Since these invariants are also used to
characterize the definitional extensions within the PSL
Ontology, the semantic mappings can be verified prior
to integration.

PSL Ontology
The PSL Ontology is a set of theories in the language of
first-order logic. Theories that introduce new primitive
concepts are referred to as core theories, while theories
containing only conservative definitions are referred to
as definitional extensions2.
Copyright c© 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1PSL has been accepted as International Organisation of
Standardisation project ISO 18629; as of June 2003, part of
the work is under review as a Draft International Standard.

2The complete set of axioms for the PSL Ontology can be
found at http://www.mel.nist.gov/psl/psl-ontology/.

Core Theories

All core theories within the ontology are consistent ex-
tensions of PSL-Core (Tpsl core). The purpose of PSL-
Core is to axiomatize a set of intuitive semantic prim-
itives that is adequate for describing the fundamental
concepts of manufacturing processes. Specifically, PSL-
Core introduces four disjoint classes: activities, activity
occurrences, timepoints, and objects. Activities may
have zero or more occurrences, activity occurrences be-
gin and end at timepoints, and timepoints constitute a
linearly ordered set with endpoints at infinity. Objects
are simply those elements that are not activities, occur-
rences, or timepoints. Extensions to PSL-Core defining
the core theories include:

Occurrence Trees The occurrence trees that are ax-
iomatized in the core theory Tocctree are partially or-
dered sets of activity occurrences—for a given set of
activities, all discrete sequences of their occurrences are
branches of a tree. An occurrence tree contains all oc-
currences of all activities, not simply the set of occur-
rences of a particular (possibly complex) activity. As
each tree is discrete, every activity occurrence in the
tree has a unique successor occurrence of each activity.

There are constraints on which activities can possibly
occur in some domain. This intuition is the cornerstone
for characterizing the semantics of classes of activities
and process descriptions. Although occurrence trees
characterize all sequences of activity occurrences, not
all of these sequences will intuitively be physically pos-
sible within the domain. We will therefore want to con-
sider the subtrees of the occurrence trees that consist
only of possible sequences of activity occurrences; such
a subtree is referred to as a legal occurrence tree.

Discrete States The core theory Tdisc state intro-
duces the notion of fluents (state). Fluents are changed
only by the occurrence of activities, and fluents do
not change during the occurrence of primitive activi-
ties. In addition, activities have preconditions (fluents
that must hold before an occurrence) and effects (flu-

Core theories are indicated by a .th suffix and definitional
extensions by a .def suffix. As of June 2003, the ontology is
in version 2.0.



ents that always hold after an occurrence).
Subactivities The PSL Ontology uses the
subactivity relation to capture the basic intuitions for
the composition of activities. This relation is a discrete
partial ordering in which primitive activities are the
minimal elements.
Atomic Activities The core theory Tatomic axiom-
atizes intuitions about the concurrent aggregation of
primitive activities. This is represented by the occur-
rence of concurrent activities, rather than concurrent
activity occurrences.
Complex Activities The core theory Tcomplex char-
acterizes the relationship between the occurrence of a
complex activity and occurrences of its subactivities.
Occurrences of complex activities correspond to sets of
occurrences of subactivities; in particular, these sets are
subtrees of the occurrence trees. An activity tree con-
sists of all possible sequences of atomic subactivity oc-
currences beginning from a root subactivity occurrence.
In a sense, activity trees are a microcosm of an occur-
rence tree, in which we consider all of the ways in which
the world unfolds in the context of an occurrence of the
complex activity.

Definitional Extensions

Many ontologies are specified as taxonomies or class
hierarchies, yet few ever give any justification for their
classification scheme. If we consider ontologies of math-
ematical structures, we see that logicians classify mod-
els by using properties of models, known as invariants,
that are preserved by isomorphism. For some classes of
structures, such as vector spaces, invariants can be used
to classify the structures up to isomorphism; for exam-
ple, vector spaces can be classified up to isomorphism
by their dimension. For other classes of structures, such
as graphs, it is not possible to formulate a complete set
of invariants. However, even without a complete set,
invariants can still be used to provide a classification of
the models of a theory.

Following this methodology, the set of models for the
core theories of PSL are partitioned into equivalence
classes defined with respect to the set of invariants of
the models. Each equivalence class in the classification
of PSL models is axiomatized using a definitional exten-
sion of PSL. In particular, each definitional extension
in the PSL Ontology is associated with a unique invari-
ant; the different classes of activities or objects that are
defined in an extension correspond to different proper-
ties of the invariant. In this way, the terminology of the
PSL Ontology arises from the classification of the mod-
els of the core theories with respect to sets of invariants
and intuitively corresponds to classes of activities and
objects.

Many of the invariants with definitional extensions
in the PSL Ontology are related to the automorphism

groups3 for different substructures of the models. For
example, we can consider mappings that are permuta-
tions of activity occurrences that map the predecessor
of a legal occurrence of an activity a to other prede-
cessors of legal occurrences of a in an occurrence tree.
This set of mappings forms a group, which is referred
to as OP (a). Each invariant related to occurrence con-
straints is based on subgroups of this group.

The most prevalent class of occurrence constraints
is the case of Markovian activities, that is, activities
whose preconditions depend only on the state prior to
the occurrences; the class of Markovian activities is
defined in the definitional extension state precond.def
(see Figure 1). The invariant associated with this exten-
sion is the group4 PF (a), which is the maximal normal
subgroup of Aut(F) that is also a subgroup of OP (a). If
PF (a) = Aut(F), then these permutations preserve the
legal occurrences of an activity, and the activity’s pre-
conditions are strictly Markovian; this is axiomatized
by the markov precond class in Figure 1. If PF (a) is
only a subgroup of Aut(F), then there exist additional
nonmarkovian constraints on the legal occurrences of
the activity; this is axiomatized by the partial state
class in Figure 1. If PF (a) is the trivial identity group,
then there are no Markovian constraints on the legal
occurrences of the activity; this is axiomatized by the
rigid state class in Figure 1.

Additional relations are defined to capture the ac-
tion of the automorphism groups on the models. Two
activity occurrences o1, o2 are state equiv iff there ex-
ists a permutation in Aut(F) that maps o1 to o2; the
two activity occurrences are poss equiv iff there exists
a permutation in OP (a) that maps o1 to o2.

Translation Definitions

Translation definitions specify the mappings between
PSL and application ontologies. Such definitions have a
special syntactic form—they are biconditionals in which
the antecedent is a class in the application ontology and
the consequent is a formula that uses only the lexicon
of the PSL Ontology.

Translation definitions are generated using the orga-
nization of the definitional extensions, each of which
corresponds to a different invariant. Every class of ac-
tivity, activity occurrence, or fluent in an extension cor-
responds to a different value for the invariant. The con-
sequent of a translation definition is equivalent to the
list of invariant values for members of the application
ontology class.

3An automorphism is a bijection from a structure to itself
that preserves the extensions of the relations and functions
in the structure. Intuitively, it is a symmetry in the struc-
ture.

4In this example, F is the structure isomorphic to the
extension of the prior relation. Aut(F) is the group of per-
mutations that map activity occurrences only to other ac-
tivity occurrences that agree on the set of fluents that hold
prior to them.



(∀o1, o2) state equiv(o1, o2) ≡ (1)

(∀f) (prior(f, o1) ≡ prior(f, o2))
(∀a, o1, o2) poss equiv(a, o1, o2) ≡ (2)

(poss(a, o1) ≡ poss(a, o2))
(∀a) markov precond(a) ≡ (3)

((∀o1, o2) state equiv(o1, o2) ⊃ poss equiv(a, o1, o2))
(∀a) partial state(a) ≡ (4)

(∃o1) ((∀o2) state equiv(o1, o2) ⊃ poss equiv(a, o1, o2))
∧(∃o3, o4) state equiv(o3, o4) ∧ ¬poss equiv(a, o3, o4)

(∀a) rigid state(a) ≡ (5)
(∀o1)(∃o2) state equiv(o1, o2) ∧ ¬poss equiv(a, o1, o2)

Figure 1: Classes of activities with state-based
preconditions (from the definitional extension
state precond.def).

For example, the concept of AtomicProcess in the
DAML-S Ontology ((3)) has the following translation
definition:

(∀a) AtomicProcess(a) ≡

primitive(a) ∧markov precond(a)

∧((markov effects(a) ∨ context free(a))

This methodology has been implemented in the PSL
project’s Twenty Questions mapping tool5. Each ques-
tion corresponds to an invariant, and each possible
value of the invariant is a possible answer to the ques-
tion. Any particular activity, activity occurrence, or
fluent will have a unique value for the invariant; how-
ever, if we are mapping a class of activities, occurrences,
or fluents from some application ontology, then differ-
ent members of the class may have different values for
the same invariant. In such a case, one would respond
to a question by supplying multiple answers.

For example, consider the question displayed in Fig-
ure 2. The invariant corresponding to this question is
PF (a), and the classes of activities corresponding to
values of this invariant are axiomatized in Figure 1. Se-
lecting the first answer would generate the translation
definition:

(∀a) myclass(a) ≡ markov precond(a)

Selecting the first two answers would give the transla-
tion definition:

(∀a)myclass(a) ≡ (markov precond(a)∨partial state(a))

In this latter case, some activities in myclass will have
markov preconditions while other activities will not.

5Available at http://ats.nist.gov/psl/twenty.html.

2. Constraints on Atomic Activity Occurrences
based on State

Are the constraints on the occurrence of the atomic
activity based only on the state prior to the activity
occurrence?

2 Any occurrence of the activity depends
only on fluents that hold prior to the ac-
tivity occurrence.

2 Some (but not all) occurrences of the activ-
ity depend only on fluents that hold prior
to the activity occurrence.

2 There is no relationship between occur-
rences of the activity and the fluents that
hold prior to occurrences of the activity.

Figure 2: One of the Twenty Questions, used to classify
activities with state-based preconditions.

When building translators, we are faced with the ad-
ditional challenge that almost no application has an ex-
plicitly axiomatized ontology. However, we take the
Ontological Stance ((4)), in which we model a software
application as if it were an inference system with an
axiomatized ontology, and use this ontology to predict
the set of sentences that the inference system decides
to be satisfiable. The Twenty Questions tool supports
this by allowing the application designer to specify the
intended semantics of her ontology by using the classes
in the PSL Ontology.

Process Information Exchange Profiles
In addition to providing mappings between an applica-
tion and PSL, we can also use the translation defini-
tions to directly specify the relationship between two
application ontologies. For example, suppose we have a
scenario in which two software agents, Alice and Bob,
need to exchange process information. Alice’s designer
specifies the semantic mapping (translation definitions)
between Alice’s ontology and the PSL ontology, and
Bob’s designer specifies the semantic mapping between
Bob’s ontology and the PSL ontology. When Alice and
Bob first interact, they use these previously specified
mappings to automatically generate the semantic map-
pings between each other’s ontologies. In this way, the
PSL Ontology mediates the mapping between the agent
ontologies.

The set of translation definitions for all concepts in
a software application’s ontology is the profile for the
application. If the PSL Ontology has m invariants and
each invariant n values, then an application profile will
have the form:

(∀a) Conto
1 (a) ≡

(p11(a) ∨ ... ∨ p1n(a)) ∧ ... ∧ (pm1(a) ∨ ... ∨ pmn(a))

...



(∀a) Conto
k (a) ≡

(p11(a) ∨ ... ∨ p1n(a)) ∧ ... ∧ (pm1(a) ∨ ... ∨ pmn(a))

For example, we may have:

(∀a) Calice
1 (a) ≡ unconstrained(a)

∧(markov effects(a) ∨ context free(a))

(∀a) Cbob
1 (a) ≡

(unconstrained(a)∨markov precond(a))∧context free(a)

In general, we want to use PSL and the profiles to
determine the relationship between the application on-
tologies. The mapping for the above example would
be:

Tpsl |= (∀a)markov precond(a) ⊃ (Calice
1 (a) ⊃ Cbob

1 (a))

Tpsl |= (∀a)markov effects(a) ⊃ (Cbob
1 (a) ⊃ Calice

1 (a))

These mappings will in general take the form of:

(∀a) (p11(a)∨ ...∨ p1n(a))∧ ...∧ (pm1(a)∨ ...∨ pmn(a))

⊃ (Calice
i (a) ⊃ Cbob

j (a)))

The antecedents of these sentences can be considered to
be guard conditions that determine which activities can
be shared between Alice and Bob. This can either be
used to support direct exchange between Alice and Bob,
or simply as a comparison between the application on-
tologies for Alice and Bob. In the example, Alice can ex-
port any unconstrained activity description to Bob and
Bob can export any context free activity description
to Alice; however, Alice cannot export markov precond
activity descriptions to Bob and Bob cannot export any
markov effects activity descriptions to Alice.

Summary

In this paper we have described how the use of model-
theoretic invariants can be used to specify translation
definitions between application ontologies and PSL.
The sets of models for the core theories of PSL are par-
titioned into equivalence classes defined with respect to
the invariants of the models. Each equivalence class in
the classification of PSL models is axiomatized using
a definitional extension of PSL. The Twenty Questions
tool that is based on these invariants and definitional
extensions supports the semiautomatic generation of se-
mantic mappings between an application ontology and
the PSL Ontology. This approach can be generalized
to other ontologies by specifying the invariants for the
models of the axiomatizations. Future work in this
area includes developing software to generate mappings
based on profiles created with the Twenty Questions
tool and application to translation between PSL and
other ontologies (such as DAML-S) and translators for
existing process modelers and schedulers.

References
Ciocoiu, M., Gruninger M., and Nau, D. (2001) On-
tologies for integrating engineering applications, Jour-
nal of Computing and Information Science in Engi-
neering, 1:45-60.
Gruninger, M. (2003) A Guide to the Ontology of
the Process Specification Language”, in Handbook on
Ontologies in Information Systems, R. Studer and S.
Staab (eds.). Springer-Verlag.
McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic
Web Services, IEEE Intelligent Systems, Special Issue
on the Semantic Web. 16:46–53, March/April, 2001.
Menzel, C. and Gruninger, M. (2001) A formal founda-
tion for process modeling, Second International Con-
ference on Formal Ontologies in Information Systems,
Welty and Smith (eds), 256-269.
Noy, N. and Musen, M. (2000) PROMPT: Algorithm
and tool for automated ontology merging and align-
ment, Proceedings of AAAI-2000.
Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The
Essence of the Process Specification Language, Trans-
actions of the Society for Computer Simulation vol.16
no.4 (December 1999) pages 204-216.
Stuckenschmidt, H. and Visser, U. (2000) Semantic
Translation Based on Approximate Reclassification. In
Proceedings of the Seventh International Conference
on Knowledge Representation and Reasoning, Breck-
enridge, Colorado.


