
Evolution Management for Interconnected Ontologies

Michel Klein and Heiner Stuckenschmidt
Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV Amsterdam
{michel.klein, heiner}@cs.vu.nl

Abstract

Mappings between ontologies are easily harmed by
changes in the ontologies. In this paper we ex-
plain a mechanism to define modular ontologies
and mappings in a way that allows for local con-
tainment of terminological reasoning. We have also
developed a change detection and analysis method
that predicts the effect of changes on the concept
hierarchy. This method determines whether the
changes in one ontology affect the reasoning in-
side other ontologies or not. Together, these mech-
anisms allow ontologies to evolve without unpre-
dictable effects on other ontologies. In this paper,
we also apply these methods in a case study that is
undertaken in a EU IST project.

1 Motivation
When mappings are created between ontologies, it is essential
that the evolution of ontologies is managed, because a change
in one ontology could have extensive effects in other ontolo-
gies. This is especially important when ontologies are used
as basis for formal reasoning tasks.

To handle this problem, we have developed a mechanism
to define modular ontologies and mappings between them
that allows for local containment of terminological reason-
ing [10]. This modularization mechanism makes it possible
to perform subsumption reasoning within an ontology with-
out having to access other ontologies. We have also devel-
oped a change detection and analysis method that predicts the
effect of changes on the concept hierarchy. This method de-
termines whether the changes in one ontology affect the rea-
soning inside other ontologies or not. Together, these mech-
anisms allow ontologies to evolve without unpredictable ef-
fects on other ontologies.

In this paper, we will show how these methods work in
a realistic example. For this we use the case study that is
undertaken in the WonderWeb project1. We describe the case
study and explain the overall approach in the next paragraphs.
Section 2 defines the modularization approach in more detail,

1The WonderWeb project aims at developing scalable infras-
tructure for the semantic web. For more information, seehttp:
//wonderweb.semanticweb.org/ .

and shows how we use this to define mappings to the case
study ontology. In section 3, we explain the change analysis
mechanism and show the results for our example. Finally, in
section 4 we conclude with a discussion of open issues and
future work.

1.1 The WonderWeb Case Study
In the WonderWeb case study, an existing database schema in
the Human Resource (HR) domain is used as the basis for an
ontology. The first version of the ontology is created by a tool
that automatically converts a schema into an ontology[11]. In
the next phase, the quality of the ontology is improved by re-
lating this ontology to the foundational ontology DOLCE[5].
First, the HR ontology is aligned with the DOLCE ontology,
and in several successive steps the resulting ontology is fur-
ther refined. During this process, the ontology changes con-
tinuously, which causes problems when other ontologies refer
to definitions in the evolving ontology. Therefore, in our case
study, evolution management is important during the entire
life-cycle of the ontology development process.

Besides this DOLCE+HR ontology, we assume that we
have another ontology (we call it thelocal ontology) that uses
terms and definitions from the evolving DOLCE+HR ontol-
ogy (theexternal ontology). As an example, we define a very
simple ontology about employees (see Figure 1). Our exam-
ple ontology introduces the concept ‘FulltimeEmployee’ and
defines a superclass ‘Employee’ and two subclasses ‘Depart-
mentMember’ and ‘HeadOfDepartment’ using terms from
the DOLCE+HR ontology.

The specific problem in our case is that the changes in the
DOLCE+HR ontology could affect the reasoning in the lo-
cal ontology. We want to be able to predict whether or not
the reasoning in the local ontology is still valid for specific
changes in the external ontology.

Changes in DOLCE+HR
The evolution of the DOLCE+HR ontology consisted of sev-
eral steps, which are prescribed by the DOLCE methodology.
Each of these steps involves some typical changes.

In the aligning phase, the concepts and properties in the
HR ontology are connected to concepts and properties in the
DOLCE ontology via subsumption relations. For example,
the concept ‘Departments’ from the HR ontology is made a
subclass of ‘Social-Unit’ in DOLCE.



Employee

Fulltime
Employee

Department
Member

HeadOf
Department

DOLCE+HR ontology

Figure 1: A simple ontology (left) with some concepts
(dashed ovals) that are defined using terms from the
DOLCE+HR ontology (schematically representation by a
large oval).

The refinement step involves a large number of changes.
Some property restrictions are added, and some additional
concepts and properties are created to define the HR concepts
more precisely. For example, the concept ‘Administrative-
Unit’ is introduced as a new subclass of ‘Social-Unit’, and
the concept ‘Departments’ is made a subclass of it. Also,
the range of the property ‘email’ is restricted from ‘Abstract-
Region’ to its new subclass ‘Email’.

In the next step, a number of concepts and properties are
renamed to names that better reflect their meaning. For ex-
ample, ‘Departments’ is renamed to ‘Department’ (singular),
and the two different variants of the relation ‘managerid’ are
renamed to ‘employeemanager’ and ‘departmentmanager’.

In the final step, the tidying-up step, all properties and con-
cepts that are not necessary anymore are removed and trans-
formed into property restrictions. For example, the prop-
erty ‘employeeemail’ is deleted and replaced by an existen-
tial restriction in the class ‘Employee’ on the property ‘ab-
stractlocation’ to the class ‘Email’.

1.2 Approach for Ontology Mappings and Change
Management

The main design ideas behind our approach are the following.
A detailed description with examples will be given in the next
sections.

View-Based Mappings: We adopt the approach of view-
based information integration. In particular, ontology
modules are connected by conjunctive queries. This way
of connecting modules is more expressive than simple
one-to-one mappings between concept names but less
expressive than the logical language used to describe
concepts. We decide to sacrifice a higher expressiveness
for the sake of conceptual simplicity and desirable se-
mantic properties such as independence of the ontology
langauge used.

Compilation of Implied Knowledge: In order to make lo-
cal reasoning independent from other modules, we use
a knowledge compilation approach. The idea is to com-
pute the result of each mapping query off-line and add
the result as an axiom to the ontology module using the

result. During reasoning, these axioms replace the query
thus enabling local reasoning.

Change Detection and Automatic Update:Once a query
has been compiled, the correctness of reasoning can only
be guaranteed as long as the concept hierarchy of the
queried ontology module does not change. In order to
decide whether the compiled axiom is still valid, we pro-
pose a change detection mechanism that is based on a
taxonomy of ontological changes and their impact of the
concept hierarchy.

2 Modular Ontologies
We will now explain the modularization mechanism and the
compilation of implied subsumption relations in more detail.
In Section 2.3, we show how we use these mechanisms in the
case study.

In order to get a general notion of ontological knowledge,
we define the general structure of an ontological module and
its instantiation independent of a concrete language.

Definition 1 (Ontology Module) A module is a tripleM =
〈C,R,O〉 whereC is a set of concept definitions,R is a set of
relation definitions andO is a set of object definitions. Fur-
ther, we define the signature of a module〈C,R,O〉 to be a
triple 〈CN ,RN ,ON〉, whereCN is the set of all names of
concepts defined inC,RN the set of all relation names inR
andON the set of all object names occurring inO.

2.1 Internal and External Definitions

We divide the set of concepts in a module into internally de-
fined conceptsCI and externally defined conceptsCE result-
ing into the following definition ofC:

C = CI ∪ CE , CI ∩ CE = ∅

Internally defined concepts are specified by using class ex-
pressions in the spirit of description logics[1]. We do not
require a particular logic to be used.

Definition 2 (Internal Concept Definition) An internal
concept definition is an axiom of one of the following forms

C v D,C ≡ D

whereC ∈ CN and D is a class expression of the form
f(t1, · · · , tn) where the termsti are either class names or
class expressions andf is an n-ary class building operator.

Besides the standard way of defining concepts, we consider
externally defined concepts that are assumed to be equivalent
to the result of a query posed to another module in the modu-
lar ontology. This way of connecting modules is very much in
spirit of view-based information integration which is a stan-
dard technique in the area of database systems[6].

Definition 3 (External Concept Definition) An external
concept definition is an axiom of the formC ≡ M : Q
where M is a module and Q is an ontology-based query over
the signature of M.



A modular ontology is now simply defined as a set of mod-
ules that are connected by external concept definitions. In
particular we require that all external definitions are contained
in the modular system. Queries over ontological knowledge
are defined as conjunctive queries, where the conjuncts are
predicates that correspond to classes and relations of an on-
tology. Furthermore, variables in a query may only be instan-
tiated by constants that correspond to objects in that ontology.

Definition 4 (Ontology-Based Queries)Let V be a set of
variables disjoint fromON then an ontology-based queryQ
over a moduleM = 〈C,R,O〉 is an expressions of the form
Q(X̄) ← q1i

∧ · · · ∧ qmi
whereqi are query terms of the

form x : c or (x, y) : r such thatx, y ∈ V ∪ ON , c ∈ CN
and r ∈ RN or are of the formx = o wherex ∈ V and
o ∈ ON 2.

The fact that all conjuncts relate to elements of the on-
tology allows us to determine the answer to ontology-based
queries in terms of instantiations of the query that are logical
consequences of the knowledge base.

2.2 Compilation and Local Reasoning
We now turn our attention to the issue of reasoning in modular
ontologies. For the sake of simplicity, we only consider the
interaction between two modules in order to clarify the ba-
sic principles. Furthermore, we assume that only one of the
two modules contains externally defined concepts in terms of
queries to the other module.

Implied Subsumption As mentioned in the introduction,
we are interested in the possibility of performing local rea-
soning. For the case of ontological reasoning, we focus on
the task of deriving implied subsumption relations between
concepts within a single module. For the case of internally
defined concepts, this can be done using well established rea-
soning methods[3]. Externally defined concepts, however,
cause problems: being defined in terms of a query to the other
module, a local reasoning procedure will often fail to recog-
nize an implied subsumption relation between these concepts.
Consequently, subsumption between externally defined con-
cepts requires reasoning in the external module as the follow-
ing theorem shows.

Theorem 1 (Implied Subsumption) Let E1 andE2 be two
concepts in moduleMi that are externally defined in module
Mj by queriesQ1 and Q2, thenE1 v E2 if Q1 v Q2 in
moduleMj .

The result presented above implies the necessity to de-
cide subsumption between conjunctive queries in order to
identify implied subsumption relations between externally
defined concepts. In order to decide subsumption between
queries, we translate them into internally defined concepts in
the module they refer to. A corresponding sound and com-
plete translation is described in[7]. Using the resulting con-
cept definition, to which we refer asquery concepts, we can

2Note that this may include data-type expressions as the type
itself is can be considered to be a class, the actual value an instance
of that class and the comparison operator a special relation.

decide subsumption between externally defined concepts by
local reasoning in the external ontology.

Compilation and Integrity We can avoid the need to per-
form reasoning in external modules each time we perform
reasoning in a local module using the idea of knowledge com-
pilation [2]. The idea of compilation is to perform the ex-
ternal reasoning once and add the derived subsumption re-
lations as axioms to the local module. These new axioms
can then be used for reasoning instead of the external defi-
nitions of concepts. If we want to use the compiled axioms
instead of external definitions, we have to make sure that this
will not invalidate the correctness of reasoning results. At the
time of applying the compilation this is guaranteed by theo-
rem 1, however, integrity cannot be guaranteed over the com-
plete life-cycle of the modular ontology. The problem is, that
changes to the external ontology module can invalidate the
compiled subsumption relationships. In this case, we have to
perform an update of the compiled knowledge.

2.3 Modularization and Local Reasoning in the
Case Study

If we now consider the problem statement from the case
study, we have a local ontology with a concept hierarchy that
is built up by the following explicitly stated subsumption re-
lations (see Figure 1 again):

FulltimeEmployee v Employee

DepartmentMember v FulltimeEmployee

HeadOfDepartment v FulltimeEmployee

This ontology introduces ’Full time employee’ as a new
concept, not present in the case study ontology. Conse-
quently, this concept is only defined in terms of its relation
to other concepts in the local ontology.

All other concepts are externally defined in terms of on-
tology based queries over the case study ontology. The first
external definition concerns the concept ’Employee’ that is
equivalent to the ’Employee’ concept in the case study ontol-
ogy. This can be defined by the following trivial view:

Employee ≡ HR : Employee(x)
Another concept that is externally defined is the ’Head of De-
partment’ concept. We define it to be the set of all instances
that are in the range of the ’department manager’ relation.
The definition of this view given below shows that our ap-
proach is flexible enough to define concepts in terms of rela-
tions.

HeadOfDepartment ≡
HR : ∃y[departmentManager(y, x)]

An example for a more complex external concept definition
is the concept ’department member’ which is defined using a
query that consists of three conjuncts, claiming that a depart-
ment is an employee that is in the hasmember relation with
a Department.

DepartmentMember ≡ HR : ∃y[Department(y) ∧
has member(y, x) ∧ Employee(x)]



Implied subsumption relations
If we now consider logical reasoning about these external def-
initions, we immediately see that the definition of Employee
subsumes the definition of DepartmentMember, as the former
occurs as part of the definition of the latter.

|= DepartmentMember v Employee (1)

At a first glance, there is no relation between the definition
of a Head of Department and the other two statements as it
does not use any of the concept- or relation names. However,
when we use the background knowledge provided by the ex-
ternal ontology we can derive some implied subsumption re-
lations. The reasoning is as follows. Because the range of the
departmentmanger is set to ’Department’ and the domain to
’Manager’, the definition of HeadofDepartment is equivalent
to:

∃y[Department(y) ∧ department manager(y, x) ∧
Manager(x)]

As we further know that Manager is a subclass of Employee
and departmentmanager is a sub-relation of hasmember, we
can derive the following subsumption relation between the
externally defined concepts:

|= HeadOfDepartment v Employee (2)

|= HeadOfDepartment v DepartmentMember(3)

When the relations 1–3 are added to the local ontology, it pos-
sible to do subsumption reasoning without having to access
the DOLCE+HR ontology anymore.

3 Change Detection and Analysis
The changes in the DOLCE+HR ontology could invalidate
the local reasoning. In principle, testing the integrity of the
mappings might be very costly as it requires reasoning within
the external ontology. In order to avoid this, we propose a
heuristic change detection procedure that analyzes changes
with respect to their impact on compiled subsumption rela-
tions, i.e. relations 1–3 from the previous section. This is
a three-steps procedure: 1) find out what the differences are
between two distinct versions of the ontology, 2) characterize
the effect of these changes on individual concepts, and 3) de-
termine the impact of changes of individual concepts on the
compiled subsumption relations. The next sections describe
these steps.

3.1 Finding Changes
To find changes in ontologies, we have developed a mecha-
nism and a tool to compare ontologies. This change detection
mechanism is described in[8]. The algorithm that we devel-
oped works for all ontology languages that can be represented
in the RDF data model[9], including RDF Schema and OWL.
For each changed definition, it produces a list of change op-
erations that are necessary to transform the old version into
the new version.

To standardize the description of changes, we have devel-
oped an ontology of all possible change operations for an

OWL-lite ontology. An actual description of a change be-
tween two versions of an ontology can be seen as an instan-
tiation of the ontology of change operations. The change on-
tology is extendable to other knowledge models. We have
chosen the OWL-Lite model because of its simplicity and the
central role of OWL in the WonderWeb project. A snapshot
of the change ontology can be found online.3

Apart from atomic change operations— like add range
restriction or delete subclass relation — our change ontology
also contains somecomplex change operations, which con-
sist of multiple atomic operations and/or incorporate some
additional knowledge. The complex changes are often more
useful to specify effects than the basic changes. For example,
for operations likeconcept moved down, or range restricted,
we can specify the effect more accurately than for the atomic
operationssubclass relation changed anddomain modified.

The case study ontology in our example is expressed in
OWL-Lite, which is based on RDF. Therefore, we can use
rule-based change detection mechanism. If we look at the
changes in the definition of ‘Departments’, we see that three
things happened:

• the comment is reformulated,

• the superclass is changed from ‘Social-Unit’ to
‘Administrative-Unit’, and

• there is a property restriction added for ‘temporary-
component-of’ to the class ‘Organization’.

This results in three change operations: 1)superclass
changed (from ‘Social Unit’ to ‘Administrative-Unit’, 2)
comment changed, and 3)property restriction added.

3.2 Characterizing Changes
Now we have detected the change operations that are required
to transform the old version of the ontology into the new ver-
sion, we look at the effect of the change operations on indi-
vidual concepts. Assuming thatC represents the concepts un-
der consideration before andC ′ the concept after the change
there are four ways in which the old versionC may relate to
the new versionC ′:

1. the meaning of concept is not changed:C ≡ C ′ (e.g.
because the change was in another part of the ontology,
or because it was only syntactical);

2. the meaning of a concept is changed in such a way that
concept becomes more general:C v C ′

3. the meaning of a concept is changed in such a way that
concept becomes more specific:C ′ v C

4. the meaning of a concept is changed in such a way that
there is no subsumption relationship betweenC andC ′.

We want to know what the effect of specific operations on
the interpretation of a concept is (i.e. whether it becomes
more general or more specific). As our goal is to determine
the integrity of mappings without having to do classification,
we describe what theoretically could happen to a concept as
result of a modification in the ontology. To do so, we have

3http://ontoview.org/changes/1/3/



determined the effect for all possible change operations that
we distinguish in the ‘finding changes’ phase.

Table 1 contains some examples of operations and their ef-
fect on the classification of concepts. The table only shows
a few examples, although our full ontology of change oper-
ations contains around 120 operations. This number is still
growing as we define new complex changes.

Operation Effect on C
1 Attach a slot to classC Specialized
2 Complex:Change the superclass of

classC to a class lower in the hier-
archy

Specialized

3 Complex: Restrict the range of a
slotS (effect specified for all classes
C that have a slot restriction with
S)

Specialized

4 Remove a superclass relation of a
classC

Generalized

5 Change the class definition ofC
from primitive to defined

Generalized

6 Add a class definitionA Unknown
7 Complex:Add a (not further speci-

fied) subclassA of C
No effect

Table 1: Some ontology change operations and their effect on
the classification of concepts in the hierarchy.

If we apply this to our example, we can only give a use-
ful characterization of the effect to some of the concepts.
For example, the concept ‘Departments’, underwent several
changes during the whole process: its superclass has changed
to a subclass of the original superclass (change 2 in Table 1)
but there are also some property restrictions removed. Both
changes have an opposite effect. As a result, we have to
characterize the effect of the change as “Unknown”. On the
contrary, the effect on the relation ‘departmentmanager’, is
clear: the relation is renamed from ‘managerid’ — which
has no conceptual effect — and the range is changed from
‘Employee’ to ‘Manager’. Because ‘Manager’ is a subclass
of ‘Employee’, this change makes it more specific (change 3
in Table 1).

3.3 Update Management

With the elements that we described in this section, we now
have a complete procedure to determine whether compiled
knowledge in other modules is still valid, and thus whether
the mappings are still usable. The complete procedure is as
follows:

1. create a list of concepts and relations that are part of the
“subsuming” query of any compiled axiom;

2. create another list of concepts and relations that are part
of the “subsumed” query of any compiled axiom;

3. achieve the modifications that are performed in the ex-
ternal ontology;

4. use the modifications to determine the effect on the in-
terpretation of the concepts and relations.

5. check whether there are concepts or relations in the first,
“subsuming”, list that became more specific, or concepts
or relations in the second, “subsumed”, list that became
more general, or concepts or relations in any of the lists
with an unknown effect; if not, the integrity of the map-
ping is preserved.

All the steps can be automated. The tool that we mentioned
in the previous section currently helps with steps 3 and 4. It
detects the changes between two versions and produces a list
op change operations.

We can now use this procedure to check whether the im-
plied subsumption relations in our case study are still valid.
For the sake of simplicity, we restrict us here to relation 3:

|= HeadOfDepartment v DepartmentMember

For this compiled axiom, the list of ’subsuming’ concepts and
relations would contain ‘Department’, ‘hasmember’, and
‘Employee’, while the list of subsumed concepts and relations
would be ‘Department’, ‘departmentmanager’, and ‘Man-
ager’.

We will now illustrate that the conclusions of the procedure
are correct by studying the impact of changes mentioned in
the problem statement.

Example 1: The Employee Concept The first change we
observed is the removal of properties from the Employee con-
cept. Our rules tell that this change makes the new version
more general compared to its old version:

Employee v Employee′

According to our procedure, this shouldn’t be a problem be-
cause Employee is in the ’subsuming list’.

When we analyze this change, we see that it has an im-
pact on the definition of the concept DepartmentMember as
it enlarges the set of objects allowed to take the first place
in the hasmember relation. This leads to a new definition
of DepartmentMember′ with DepartmentMember v
DepartmentMember′. As DepartmentMember was al-
ready more general than HeadOfDepartment and the Em-
ployee concept is not used in the definition of the latter the
implied subsumption relation indeed still holds.

Example 2: The departmentmanager Relation The sec-
ond example, we have to deal with a change affecting a re-
lation that is used in an external definition. The relation de-
partmentmanager is specialized by restricting its range to a
more specific concept making it a subrelation of its previous
version:

department manager w department manager′

Again, this is harmless according to our procedure, as depart-
mentmanager is in the ‘subsumed list’.

The analysis shows that this change has an impact on the
definition of the concept HeadOfDepartment as it restricts the
allowed objects to the more specific Class Manager. The new
definition HeadOfDepartment′ is more specific that the
old one:HeadOfDepartment′ v HeadOfDepartment.



As the old version was already more specific than the def-
inition of DepartmentMember and the departmentmanager
relation is not used in the definition of the latter the implied
subsumption is indeed still valid.

Example 3: The Department Concept The different
changes of the definition of the department concept left us
with no clear idea of the relation between the old and the new
version. In this specific case, however, we can still make as-
sertions about the impact on implied subsumption relations.
The reason is that the concept occurs in both definitions.
Moreover, it plays the same role, namely restricting the do-
main of the relation that connects an organizational unit with
the set of objects that make up the externally defined concept.
As a consequence, the changes have the same impact on both
definitions thus not invalidating the implied subsumption re-
lation. In summary, an implied subsumption relation is still
valid if the changed concept occurs in and plays the same role
in both definitions involved.

4 Discussion
In this paper we discussed the problem of ontology evolu-
tion in situations where mappings between ontologies ex-
isted. We presented two main contributions towards a better
understanding and management of dependencies in the light
of changes to an ontology.

• We presented a formal model for describing dependen-
cies between different ontologies. We proposed con-
junctive queries for defining concept using elements
from another ontology and presented a model-based se-
mantics in the spirit of distributed description logics
that provides us with a notion of logical consequence
across different ontologies. This clear semantic account
of dependence makes it possible to study the impact of
changes on a semantic level.

• We described a method for detecting changes in an on-
tology and for assessing their impact. The main feature
of this method is the derivation of conceptual changes
from purely syntactic criteria. These conceptual changes
in turn provide input for a semantical analysis of the ef-
fect on dependent ontologies, in particular on the valid-
ity of implied subsumption relations.

The effect analysis procedure that we have proposed uses
quite coarse-grained heuristics. As a result, it often concludes
that a validity of a subsumption relation cannot be guaranteed,
while it is in fact still valid. In order to be able to provide
more precise answers we will have to develop a more formal
characterization of changes like it has been done in the area of
schema evolution for database systems[4]. Based on such a
formal characterization, we have to investigate conditions un-
der which implied knowledge is still valid in a more generic
way.

References
[1] F. Baader, D. Calvanese, D. McGuiness, D. Nardi,

and P. Patel-Schneider, editors.The Description Logic

Handbook - Theory, Implementation and Applications.
Cambridge University Press, 2003.

[2] M. Cadoli and F. Donini. A survey on knowledge com-
pilation. AI Communications, 10(3-4):137–150, 1997.

[3] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Rea-
soning in description logics. In G. Brewka, editor,Prin-
ciples of Knowledge Representation, Studies in Logic,
Language and Information, pages 193–238. CSLI Pub-
lications, 1996.

[4] E. Franconi, F. Grandi, and F. Mandreoli. A sematic
approach to schema evolution and versioning in object-
oriented databases. InProceesing of CL 2000, volume
1861 ofLecture Notes in Artificial Intelligence, pages
1048–1062. Springer Verlag, 2000.

[5] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and
L. Schneider. Sweetening ontologies with DOLCE. In
13th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW02), volume
2473 ofLecture Notes in Computer Science, page 166
ff, Sigüenza, Spain, Oct. 1–4, 2002.

[6] A. Halevy. Answering queries using views: A survey.
The VLDB Journal, 10(4):270–294, 2001.

[7] I. Horrocks and S. Tessaris. A conjunctive query lan-
guage for description logic aboxes. InAAAI/IAAI, pages
399–404, 2000.

[8] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov.
Ontology versioning and change detection on the web.
In 13th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW02), num-
ber 2473 in LNCS, page 197 ff, Sigüenza, Spain, Oct. 1–
4, 2002.

[9] O. Lassila and R. R. Swick. Resource Description
Framework (RDF): Model and Syntax Specification.
Recommendation, World Wide Web Consortium, Feb.
1999. See http://www.w3.org/TR/REC-rdf-syntax/.

[10] H. Stuckenschmidt and M. Klein. Integrity and change
in modular ontologies. InProceedingso of the 18th In-
ternational Joint Conference on Artificial Intelligence,
Acapulco, Mexico, Aug. 2003.

[11] R. Volz, D. Oberle, S. Staab, and R. Studer. Ontolift pro-
totype. Deliverable D11, EU/IST Project WonderWeb,
2002.


