
SCL: A LOGIC STANDARD FOR SEMANTIC
INTEGRATION

CHRISTOPHER MENZEL AND PATRICK HAYES

The Knowledge Interchange Format (KIF) [2] is an ASCII-
based framework for use in exchanging of declarative
knowledge among disparate computer systems. KIF has
been widely used in the fields of knowledge engineer-
ing and artificial intelligence. Due to its growing impor-
tance, there arose a renewed push to make KIF an offi-
cial international standard. A central motivation behind
KIF standardization is the wide variation in quality, style,
and content — of logic-based frameworks being used for
knowledge representation. Variations of all three types, of
course, hinder the possibility of semantic integration. A
well-crafted logic standard for the representation of declar-
ative knowledge would impose some greatly needed syn-
tactic and semantic uniformity on the current somewhat
chaotic situation, uniformity that would in turn greatly en-
hance the capacity for semantic integration.

For all its potential advantages, however, the idea of a
logic standard is problematic for at least two reasons:

• Standardization of a single syntax forces comformant
users to write their logic in a form that is likely to be, at
the least, unfamiliar, and, at worst, may in fact not be
optimal for their representational needs. Call this the
uniformityproblem

• The standard might involve constructs that are neither
needed nor desired for one’s representational purposes.
Call this theexcess baggageproblems.

KIF in fact seems particularly vulnerable to objections
along these lines. Its LISP-like syntax is not universally
held in high esteem. Moreover, it includes a variety of
constructs that researchers find quirky and unnecessary,
notably:

• Variable polyadicity — predicate constants and func-
tion symbols have not fixed arity, but can take any num-
ber of arguments;

• Pseudo-higher-order constructs — bound variables can
occur in predicate position in atomic formulas.

• Type-freedom — predicates can occur as arguments to
other predicates; semantically speaking, properties and
relations are “first-class” objects that can be referred to
and quantified over like any other individuals.

• Non-first-order expressiveness — KIF includes "sequence
variables", the presence of which raises its expressive
power beyond first-order to that of a weak infinitary
logic.

To add to the confusion, KIF has lacked a rigorous model
theory for its distinctive constructs.

Nevertheless, the idea of standardization is still a good
one — widespread conformance to such a standard would
go a long way toward enabling semantic integration be-
tween diverse knowledge bases. Moreover, something on
the order of KIF’s full first-order expressive power, at the
least, is still needed, especially for the metalinguistic con-
structs that are inevitably needed to enable semantic in-
tegration. Finally, though superfluous in some context,
KIF’s additional constructs prove useful and convenient
in others.

The solution sketched in this brief technical paper —
the Simplified Common Logic (SCL) framework1 — ad-
dresses the uniformity problem by defining a purely ab-
stract syntax that specifies only the underlying structure
that a conformant language must exhibit, leaving the con-
crete specifics of any given manifestation to the discretion
of the user. SCL addresses the excess baggage problem
by defining the grammatical framework flexibly enough to
allow users to pick and choose from a variety of syntactic
constructs depending on their representational needs and
preferences. Finally, a rigorous general model theory is
provided that yields definitions of denotation and truth for
any given SCL language.2

1. LEXICONS

An SCL language is based upon an initial stock of primi-
tive syntactic entities. Specifically, an SCLlexiconλ will
consist of the following sets:

• A countable setPConcalled thepredicate constantsof
λ. This set will include a distinguished predicateId.
(Predicate constants will also be referred to simply as
predicates.)

• A countable setIConcalled theindividual constantsof
λ.

• A countable setFnSymcalled thefunction symbolsof
λ.

• A denumerable setGVar called thegeneral variables
of λ;

• A set SVar called thesequence variablesof λ. SVar
will be either empty or denumerable.

If SVaris empty, thenλ is known as afirst-order lexicon.

1SCL is part of the Common Logic Standard effort; see [1]. The
present paper is a distillation of some of the current SCL working docu-
ment [4].

2We have recently been made aware of the language HiLog [3],
which purportedly is syntactically and semantically quite similar to SCL
(without sequence variables) . We have not had the time yet to study the
framework full, so we will have to report on the similarities and differ-
ences in a further paper.

2 CHRISTOPHER MENZEL AND PATRICK HAYES

Con = PCon ∪ ICon is known as the set ofcon-
stantsof λ. Var = GVar ∪ SVar is known as the set of
variablesof λ. GVar andSVarshall be disjoint, andVar
shall be disjoint fromCon ∪ FnSym. Let PrimTrm =
ICon ∪ GVar . PrimTrm is known as the set ofprimitive
termsof λ.

Lexiconsλ also come with a functionarity that maps
each predicate constant and function symbol into the set
N∪ ω, whereN is the set of natural numbers andω is any
object not inN. For predicatesπ, arity will indicate the
number of argumentsπ will take. (This will of course be
expressed explicitly in the grammar below.) Ifarity(π) =
n ∈ N, thenπ is said to be ann-place predicate; otherwise
π is variably polyadic. Variably polyadic predicates will
be able to take any number of arguments. We letPConn

be the set ofn-place predicates, andPConω the set of
variably polyadic predicates. Because we will interpret
function symbols as functional relations, we will let the
arity of a function symbol correspond to the arity of the
relation it denotes rather than to the number of arguments
it takes. This will also enable the predicates of an SCL
lexicon to do double duty as function symbols — note that
there is no requirement thatPConandFnSymbe disjoint.
Accordingly, for function symbolsα, if arity(α) = n+1,
we say thatα is ann-place function symbol; otherwiseα
is variably polyadic. We stipulate thatarity(α) 6= 0, for
any function symbolα. We letFnSymn be the set ofn-
place function symbols, andFnSymω the set of variably
polyadic function symbols.

Over and above presence of sequence variables, SCL
lexicons differ from traditional first-order lexicons in three
important ways. First, SCL generalizes the notion of ar-
ity by allowing (though not requiring) variably polyadic
predicates and function symbols, i.e., predicate constants
and function symbols that can take arbitrarily many ar-
guments. Variably polyadicity is especially useful and
appropriate in SCL languages containing sequence vari-
ables.

Second, it is not required thatPCon, ICon, andFnSym
be pairwise disjoint. This reflects SCL’s goal of general-
ity. Many knowledge representation languages are “type-
free” to one extent or another; that is, they treat proper-
ties, propositions, classes, functions, and other so-called
“higher-order” entities as “first-class citizens” in their own
right, capable of being referred to and quantified over
along with individuals. Natural language itself reflects
this “dual role” that properties and their ilk can play in the
gerundive construction, whereby verb phrases expressing
properties and relations — e.g.,is a linguist— are trans-
formed into noun phrases —being a linguist. By allowing
predicate constants and function sybols simultaneously to
serve as individual constants, and by allowing variables to
serve as predicable terms, SCL provides a formal corre-
late to these constructions and thereby provides a rigorous

framework in which this common knowledge representa-
tion construction is fully sanctioned.

To illustrate SCL’s flexibility, we explicitly pick out
several important limiting cases of SCL languages that
are determined by minimally or maximally tweaking arity
and the degree of overlap among constants and function
symbols. Thus, say that an SCL lexiconλ is fully typedif
(PCon ∪ FnSym) ∩ ICon = ∅ (i.e., if there is no over-
lap between the predicates constants, function symbols,
and individual constants ofλ); arity-fixed if, for all pred-
icate constants and function symbolsκ, arity(κ) = n,
for somen ∈ N (i.e., if every predicate constant and
function symbol has a fixed arity); andtraditional first-
order (TFO) if λ is both fully-typed and arity-fixed. By
contrast, say thatλ is arity-free if, for all predicate con-
stants and function symbolsκ, arity(κ) = ω; type-freeif
PCon ∪ FnSym ⊆ ICon; andunconstrainedif λ is both
arity-free and type-free. In between the extremes of TFO
and unconstrained lexicons, of course, lie any number of
interesting intermediate possibilities.

2. GRAMMARS

2.1. Terms. Given an SCL lexiconλ, we define the no-
tion of a term class based onλ. Intuitively, a term is either
a primitive term (constant or variable) or the result of “ap-
plying” a function symbol to some nonempty sequence of
terms. Because we are defining an abstract syntax, we do
not want to specify the exact form that the application of a
function symbol to its arguments should take. Hence, we
simply specify the general constraints than any syntax of
application must satisfy; we do this in terms of a certain
type of syntactic function.

As groundwork for this definition, for any setM , let
Mω be the set of finite sequences of elements ofM , i.e.,
Mω =

⋃
n ∈ NMn, whereMn is the set of alln-tuples

of elements ofM . Given this, say thatT is a term class
for λ if T contains all of the primitive terms ofλ and is the
smallest class closed under a one-to-one operationApp —
called aterm generatorfor λ — such that

App :
⋃

n∈N{FnSymn×Tn∪ (FnSymω× (Tω ∪ (Tω×
SVar)))} −→ T .

That is, forτ1, ..., τn ∈ T , if α is ann-place function sym-
bol, thenApp(α, τ1, ..., τn) ∈ T , and if α is a variably
polyadic functional, then in addition for any sequence vari-
ableσ, App(α, τ1, ..., τn, σ) ∈ T ;

We say thatApp generatesthe corresponding term class
T . For any term generatorApp for λ, let FnTrm =
Range(App). FnTrm is the set offunction termsof λ
(relative toApp).

So, for example, ifa andb were among the constants
of a lexiconλ and f andg among its function symbols,
then any of the following might among the function terms

SCL: A LOGIC STANDARD FOR SEMANTIC INTEGRATION 3

produced by different generators:f(a,g(b),s) , (f a
(g b) s) , s[bg]af (somewhat perversely) and even
the XML’ish
<term>

<fnsym>f</fnsym>
<indcon>a</indcon>
<term>

<fnsym>g</fnsym>
<indcon>b</indcon>

</term>
<seqvar>s</seqvar>

</term>

2.2. Type-Freedom and Predicability. As hinted at
above, and as will be spelled out in more detail in the
model theory below, one of the important features of SCL
is that it allows for a “type-free” semantics in which prop-
erties and relations are treated as first-class individuals.
Languages with such a semantics will there be allowed to
refer to and quantify over such “reified” entities directly.
In particular, it is important to allow such languages to
quantify over them in their predicative roles. Syntacti-
cally speaking, this means that we must allow variables
to occur in predicate position in atomic formulas, e.g., in
KIF:
(forall (?x ?y ?F)

(impl (Symmetric ?F)
(impl (?F ?x ?y) (?F ?y ?x))))

However, because it is important that SCL encompass
more traditional first-order languages as well, type-free-
dom should be optional. Accordingly, whether or not vari-
ables (and other expressions, more generally) can occur in
predicative position along with predicate constants will be
specified in the grammar for a language, rather than be-
ing predetermined by the chosen lexicon. Consequently,
the setPredn of n-place predicables in an SCL grammar
is allowed to be either simply the setPConn ∪ Predω

(since variably polyadic predicates be predicated of any
finite number of arguments — hence, in particular ofn)
or the setPConn ∪ Predω ∪ GVar . A similar general-
ization that allows variables to occur in function position
in complex terms adds a certain elegance and convenience
at the cost of a great deal of semantic complexity, but the
gains are minimal for the purposes envisioned for SCL.

2.3. Formulas. In light of the above, we now do for for-
mulas what we did for terms. Letλ be an SCL lexicon,
and letTrmbe the term class forλ generated by some term
generatorApp. First, we need a class of basic formulas.
Let Holds be a one-to-one function on

⋃
n∈N{Predn ×

Tn ∪ (Predω × (Tω ∪ (Tω × SVar)))}. That is, given
ann-place predicable andn terms, or a variably polyadic
predicable,n terms and a sequence variable,Holds re-
turns a unique formula. Any such functionHolds is said
to be apredication operation forλ based onApp. As
with term generators, the outputs of different predication

functions might take very different forms. The only con-
straint is that distinct inputs always yield distinct outputs.
Given a term generator, the range of a predication opera-
tion Holds for λ is said to be the class ofatomic formulas
for λ generated byHolds.

Let At be the class of atomic formulas forλ based on
a predication operatorHolds. Say thatF is a formula
classfor λ, relative toHolds, if it is the smallest class that
includesAt and is closed under a setOp — known as a
formula generatorfor λ based onHolds — of operations
Id , Neg, Conj, Disj, Cond, Bicond, EQ, UQ that satisfy
the following conditions:

• Each operation is one-to-one;
• The ranges of the operations are pairwise disjoint, and

disjoint fromTrm
• Id : Trm × Trm −→ F
• Neg : F −→ F
• Conj : F ∗ −→ F
• Disj : F ∗ −→ F
• Cond : F × F −→ F
• Bi : F × F −→ F
• EQ : (GVar∪(GVar×(PCon1∪PConω)))∗×F −→
F

• UQ : (GVar∪(GVar×(PCon1∪PConω)))∗×F −→
F

Let Fla be range of the operations inOp. We say thatFla
is the formula classgenerated by Op.

As with terms, depending on one’s choice of term gen-
erator, predication operation, and generator set, SCL lan-
guages can come in many different concrete forms. So,
for example, the standard, first-order “logical form” of
’Every boy kissed a girl’ in terms of our abstract syntax is

UQ(ν1, Cond(Holds(π1, ν1), EQ(ν2, Conj(Holds(π2,
ν2), Holds(π3, ν1, ν2))))),

whereπ1, π2, andπ3, are “slots” for the predicates con-
stants of the appropriate arity chosen from any particular
lexicon to represent boyhood, girlhood, and kissing, and
ν1 andν2 represent some choice of variables. In one SCL
language, this form might be realized by its familiar intro-
ductory text-book form:

(∀x)(Boy(x) → (∃y)(Girl(y) ∧Kissed(x, y))).

A conceptual graph interchange form (CGIF) implemen-
tation has a rather different appearance:

[@every*x][If:(Boy ?x)[Then:[*y](Girl ?y)(Kissed ?x ?y)]].

As does a KIF-like implementation:
(forall (?x ?y)

(impl (Boy ?x))
(exists (?y)

(and (Girl ?y)
(Kissed ?x ?y))))

not to mention the following XML’ish monstrosity:

4 CHRISTOPHER MENZEL AND PATRICK HAYES

<formula>
<forall>

<var>x</var>
<formula>

<implies>
<formula>

<atom>
<con>Boy</con>
<var>x</var>

</atom>
</formula>
<formula>

<exists>
<var>y</var>
<formula>

<and>
<formula>

<atom>
<con>Girl</con>
<var>x</var>

</atom>
</formula>
<formula>

<atom>
<con>Kissed</con>
<var>x</var>
<var>y</var>

</atom>
</formula>

</and>
</formula>

</exists>
</formula>

</implies>
</forall>

</formula>

It is important to observe that, because the operations
in a generator set for a formula classFla for λ are all one-
to-one and disjoint in their ranges, every element ofFla
will have exactly one “decomposition” under the inverses
of those operations, and that all such decompositions are
finite. Let ϕ ∈ Fla. An objectε in the decomposition
of ϕ is anatomof ϕ just in caseε is an element of the
lexiconλ. ψ is asubformulaof ϕ if ψ ∈ Fla andψ is in
the decomposition ofϕ.

2.4. Languages.LetApp be a term generator forλ, where
Trm is the set generated byApp, and letHolds be based
uponApp. Let Op be a formula generator forλ based on
Holds, and letL be the formula class generated byOp.
We define any such setL to be anSCL languagefor the
SCL lexiconλ, and we say thatλ underliesL . Trm is said
to be the set oftermsof L . If λ andλ’ are SCL lexicons
with the same sets of constants and function symbols, and
L andL ’ are SCL languages forλ andλ’, respectively,

thenL andL ’ are said to beequivalent. If λ is a first-
order lexicon, then a language forλ is said to be afirst-
orderSCL language. In particular, on ths definition, every
familiar first-order language turns out to be an instance of
an SCL language whose underlying lexicon is traditional
first-order (i.e., “TFO” — see the end of Section 1 above).
We therefore call any such language aTFO language.

3. INTERPRETATIONS

Let λ be an SCL lexicon. AnSCL interpretationI for
λ is a 4-tuple〈I,R, ext , V 〉 satisfying the following con-
ditions. First,I andR are nonempty sets. Intuitively,I
represents the set ofindividuals of I , and will serve as
the range of the quantifiers and its members will serve as
the denotations of terms.R is the set of relations3 whose
members serve as possible denotations of predicate con-
stants. To allow for type-freedom, there is no requirement
that I andR be disjoint; indeed any degree of overlap,
from partial to complete, is allowed. Those relations that
are also members ofI are said to bereified. Intuitively,
reified relations are relations that can also be thought of
as individuals. Accordingly, they can also be the values of
individual constants and individual variables.
R is itself the union of countable setsRω, R1, R2,

R3, All are possibly empty with the exception ofR2,
which contains a distinguished elementId , intended to
serve as the identity relation. Intuitively,Rω is the set
of variably polyadic relations, and eachRn the set ofn-
place relations. Accordingly,ext is a corresponding ex-
tension function fromR into Pow(Iω) subject to the con-
straint that, for any natural numbern > 0, if r ∈ Rn, then
ext(r) ⊆ In; in particular,ext(Id) = {〈a, a〉 : a ∈ I}.

Intuitively, of courseext(r) represents the extension of
r. For elementsr of Rω, if ext(r) is a total (extensional)
function onIω, then we say thatr is afunctiononIω. For
n + 1-place relationsr, if ext(r) is a total (extensional)
function onIn, then we also say thatr is a function on
In, or ann-place function.

Finally, V is a “denotation” function that assigns ap-
propriate values to the constants and function symbols of
L . Specifically,

• If κ is an individual constant, thenV (κ) ∈ I;
• If π is a predicate constant, thenV (π) ∈ Rarity(κ).
• If α is a function symbol, thenV (α) is a function on
Iarity(α).

Note, importantly, that it is not required thatI andR
be disjoint. This is the semantic correlate of the type-
freedom permitted (though not required) in SCL languages.
Specifically, an SCL languageL can allow a primitive
term κ to do double duty as both a predicate constant

3It is possible to model of the members ofR extensionally as sets,
though this will in general require non-well-founded set theory, since a
relation, qua individual, can be in its own extension.

SCL: A LOGIC STANDARD FOR SEMANTIC INTEGRATION 5

and an individual constant. Consequently, the denotation
functionV in any interpretationI of L must by definition
mapκ, qua predicate constant, to an element ofR; it must
also mapκ, qua individual constant, qua individual con-
stant, to an element ofI. Consequently, to satisfy these
constraints,I , V (κ) will have to be in bothI andR, i.e.,
it will have to be both a relation and an individual. And
this is just what the semantics allows. In a similar fash-
ion, predicate constants can do double duty as function
symbols.

A question might arise about interpretation in
which only some members ofR are members ofI. In
fact, it is likely that in the most common intended inter-
pretations overlap will either be nonexistent or complete.
However, there is a reasonably natural idea correspond-
ing to partial overlap, namely, that some predicates indi-
cate real properties of things and others are just convenient
ways of categorizing things. For example, in an biological
ontology, “is an arm” may not be thought of as a genuine
property of anything, but only a convenient way of clas-
sifying things that play a certain functional role in a bio-
logical organism. By contrast "is a cell" might be thought
of as indicating a genuine biological property of a thing
that one might wish to include the genuine inventory of
one’s ontology. Partial overlap provides a natural way of
preserving this distinction.

4. DENOTATIONS AND TRUTH

Given the notion of an interpretation for a lexiconλ, we
can now define what it is for a formula of an SCL language
L based onλ to betrue in an interpretation.

Some additional apparatus will be useful in defining
truth for quantified formulas (i.e., formulas in the range
of EQ andUQ). First, given an interpretationI , define a
variable assignmentfor I to be a function that maps in-
dividual variables intoI and sequence variables intoIω.
To define the semantics of quantification, what we need
is the notion of a variable assignmentv′ that is exactly
like a given assignmentv except that it might not agree
with v on what to assign to some finite set of individual
variables. The idea is straightforward, but the presence of
restricted quantifiers forces us to proceed with some care.
Let I = 〈I,R, ext , V 〉 be an interpretation forL , and let
v be a variable assignment forI . In our syntax, a quanti-
fier can bind an entire sequence consisting of (individual)
variables and variable/predicate pairs. So letχ1, ..., χn be
such a sequence, and say that a variable assignmentv′ for
I is a[χ1, ..., χn]-variant of v iff

• if χi is a variable / predicate-constant pair〈ν, κ〉 and
V (κ) is a relation, thenv′(ν) is in the extension of
V (κ); and

• v′(ν) = v(ν), if ν is distinct from all the variables in
the sequenceχ1, ..., χn and all of the variables occur-
ring in variable/constant pairs in the sequence.

So letL be an SCL language for a lexiconλ, whereApp
generates the setTrm of terms of L , and let I =
〈I,R, ext , V 〉 be an interpretation forL . Given I and a
variable assignmentv, letVv beV ∪v. GivenI and a vari-
able assignmentv, the denotations of the function terms
of L in I are completely determined byVv. This can be
expressed in terms of a unique extensionV #

v of V such
that, for any termτ ∈ Trm:

• If τ is an individual constant, thenV #
v (τ) = V (τ).

• If τ is a variable, thenV #
v (τ) = v(τ).

• If τ is a function termApp(α, τ1, ..., τn), then:
– If τn is a sequence variable andv(τn) =
〈e1, ..., em〉, thenV #

v (τ) =
V (α)(V #

v (τ1), ..., V #
v (τn−1), e1, ..., em).

– If τn is not a sequence variable, thenV #
v (τ) =

V #(α)(V #
v (τ1), ..., V #

v (τn));
GivenV , we define satisfaction for the formulas ofL

by a variable assignmentv for our interpretationI as fol-
lows. Letϕ ∈ L :

• If ϕ = Holds(κ, τ1, ..., τn), then:
– If τn is a sequence variable andv(τn) =
〈e1, ..., em〉, thenv satisfiesϕ iff V (κ) ∈ Rarity(κ)

and〈V #
v (τ1), ..., V #

v (τn−1), e1, ..., em〉 ∈
ext(V (κ)).

– If τn is not a sequence variable, thenv satisfiesϕ iff
V (κ) is a relation and〈V #

v (τ1), ..., V #
v (τn)〉

∈ ext(V (κ)).
• If ϕ = Id(τ, τ ′), thenv satisfiesϕ iff V #

v (τ) = V #
v (τ ′).

• If ϕ = Neg(ψ), thenv satisfiesϕ iff ψ is not true inI .
• If ϕ = Disj(ψ1, ...ψn), thenv satisfiesϕ iff v satisfies
ψi for somei, 1 ≤ i ≤ n.

• If ϕ = Conj(ψ1, ...ψn), thenv satisfiesϕ iff v satisfies
ψi for eachi, 1 ≤ i ≤ n.

• If ϕ = Cond(ψ,ψ′), thenv satisfiesϕ iff v does not
satisfyψ or v satisfiesψ′.

• If ϕ = Bi(ψ,ψ′), thenϕ v satisfiesϕ iff iff v either
satisfies bothψ andψ′ or satisfies neither.

• If ϕ = EQ(χ1, ..., χn, ψ), thenv satisfiesϕ iff some
[χ1, ..., χn]-variant ofv satisfiesψ.

• If ϕ = UQ(χ1, ..., χn, ψ), thenv satisfiesϕ iff every
[χ1, ..., χn]-variant ofv satisfiesψ.

Finally, then, a formulaϕ is true in I iff every variable
assignment forI satisfiesϕ.

Note that, on this semantics, free individual variables
are implicitly universally quantified; that is, ifϕ is a for-
mula containing a free individual variableν, thenϕ is true
in I iff UQ(ν, ϕ) is true in I . We do not have a similar
metatheorem for formulas with free sequence variables
because sequence variables are not explicitly quantified.
It should be clear, however, that the above definition of

6 CHRISTOPHER MENZEL AND PATRICK HAYES

truth treats free sequence variables as if they were uni-
versally quantified as well: a formulaϕ containing a free
sequence variableσ will be true in an interpretationI iff
every variable assignmentv satisfiesϕ, and hence iff ev-
ery [σ]-variant of every variable assignment satisfiesϕ.

5. SCLAND TRADITIONAL FOL

We conclude with an important observation about the re-
lation between SCL and first order logic. Consider, the
following sentence from an unconstrained SCL language
L :

(∀x)(Px↔ ¬Qx) ∧ (∀xy)x = y

BecauseL is unconstrained, there is no distinction be-
tween predicate constants and individual constants. Hence,
all such terms denote individuals in the domain. Such lan-
guages are useful, recall, in contexts where properties and
relations are themselves considered “first-class citizens”
and hence are included the domain of individuals. By the
first conjunct in the above sentence, the individualsp and
q that ‘P ’ and ‘Q’ denote individuals must be distinct, as
they must differ in their extensions. By the second con-
junct, however, there is exactly one individual, and hence
p andq cannot be distinct. Therefore, the sentence is false
in all interpretations ofL .4

This might lead one to charge that SCL’s model the-
ory does violence to the logical properties of traditional
first-order logic. But it does not. The logical proper-
ties of the sentence above change only with respect to
SCL languages that incorporate features that extend tra-
ditional first-order languages. Considered as a sentence
of a TFO language (and many others midway between
TFO and unconstrained), the the sentence is satisfiable
relative to SCL’s model theory no less than it is in tra-
ditional “Tarskian” model theory. More generally, then:
The logical properties of TFO languages — those SCL
language with no sequence variables, no variably polyadic
predicates, no type-freedom, and no variables in predicate
position — areidenticalregardless of whether they are in-
terpreted according to the usual Tarskian semantics or ac-
cording to SCL semantics; a formula of such a language
will be true in all SCL interpretation iff it is true in all
Tarskian interpretations. (The proof of this is quite sim-
ple, as it is easy to transform one type of interpretation
into the other in a way that preserves truth.) Moreover, if
one is unhappy with the differences in logical properties

4We thank Ian Horrocks for the example, who came up with it to
illustrate his dissatisfaction with an earlier incarnation of SCL. In that
incarnation, there was no distinction between predicate and individual
constants in any SCL language, and hence the sentence above turned out
to be logically false. This pointed out an admittedly disturbing discon-
nect between the logical properties of SCL sentences relative to SCL’s
model theory and their logical properties relative to traditional Tarskian
model theory. Revisions since then have added flexibility to SCL that
undermines this objection.

that can arise in a less constrained SCL language, there is
a simple translation function that maps such a language to
a theory in TFO language that has exactly the same ex-
pressive power.5

SCL is thus in a very precise sense a “conservative”
extension of traditional first-order logic; it encompasses
traditional first-order logic in all its many guises, but al-
lows as well for the definition of much more powerful and
flexible comformant languages. SCL thereby provides el-
egant solutions to both the uniformity problem and the
excess baggage problem.

REFERENCES

[1] The Common Logic Working Group, “Common Logic Standard,”
URL = http://cl.tamu.edu .

[2] KIF Working Group, “Knowledge Interchange For-
mat: Draft proposed American National Stan-
dard (dpANS),” NCITS.T2/98-004, URL =
http://logic.stanford.edu/kif/dpans.html .

[3] Chen, W., M. Kifer, and D. S. Warren, “HiLog: A Foundation for
higher-order logic programming,”Journal of Logic Programming
15(3), February 1993, pp. 187–230.

[4] The Common Logic Working Group, “Ab-
stract Syntax and Semantics for SCL,” URL =
http://cl.tamu.edu/docs/scl/scl-latest.html .

DEPARTMENT OFPHILOSOPHY, TEXAS A&M U NIVERSITY, COL-
LEGE STATION , TX 77843-4237

E-mail address: cmenzel@tamu.edu

IHMC, UNIVERSITY OF WESTFLORIDA , PENSACOLA, FL 32501
E-mail address: phayes@ihmc.us

5Briefly, one introduces new predicatesHoldsn for all n and maps
every atomic sentence ‘P (t1, . . . , tn)’ of the non-TFO language in
which ‘P ’ is serves as both an individual and predicate constant into
the sentence ‘Holds(P, t1, . . . , tn)’.

