
Translating Naive User Queries on the Semantic Web

Baoshi Yan, Robert MacGregor
Distributed Scalable Systems Division

Information Sciences Institute
University of Southern California

{baoshi,macgregor}@isi.edu

ABSTRACT
Query is an important way of information retrieval. One
type of queries is those to search engines, which are lists
of keywords without structures. Another type of queries is
those to databases or knowledge bases, which must conform
to the structure and terminology of the data source (e.g.,
SQL query to a database). In this paper, we deal with an-
other type of queries: naive user queries–queries in users’
own terms and structures. We envision that this type of
queries would be a common phenomenon on the future Se-
mantic Web. We propose an approach that, given a naive
user query, translates it into a list of queries conforming to
different data source schemas. The approach is based on
partial alignment between some data sources. An early pro-
totype showed that the result is promising.

1. INTRODUCTION
When people want to retrieve information, they usually

issue a query. The most used form is queries to search en-
gines, which is a combination of keywords. However, people
cannot specify semantic structure between these keywords.
This is more due to that search engines mostly deal with
natural language texts that are hard to extract semantic
structures from. On the other hand, databases and knowl-
edge bases have semantic structures, but they require queries
(e.g., a SQL query to a DB, or an ASK function to a KB)
to conform to their terminology and structures. On the fu-
ture Semantic Web[6], neither form of queries is sufficient.
Search-engine-style queries don’t impose restrictions on the
terms used, but don’t have semantic structure either, which
put them in a disadvantaged situation in a web of semantic
structures. Queries in DB or KB style have to conform to
the schema used by individual data sources. On the Seman-
tic Web, there’ll be numerous data sources with different
schemas. Requiring people to write different queries for in-
dividual data sources is a daunting task.

Thus we propose that it is necessary to deal with another
type of user queries: naive user queries–queries in users’ own
terms and semantic structures. Instead of letting informa-
tion seekers understand the schema used by an information
provider, we could shift the load to the information provider
to understand naive user queries.

Without losing generality, we represent a naive user query

.

as a list of triple patterns (s,p,o)1. Table 1 lists some exam-
ples. We represent data source schemas as RDFS schemas
[1](or ontologies). Equivalent queries can be written with
different terms, as can be seen from first two queries in the
table. Semantic structures between terms are binary rela-
tions: p is the kind of relationship between s and o. The
triple patterns roughly conform to RDF [3] data model ex-
cept that the terms here are users’ descriptions, not URI’s
(Universal Resource Identifiers). The triple patterns allow
people to specify semantic structures, and we think it keeps
simple enough so that ordinary users can write it. It is also
not hard to come up with a GUI to automatically add syntax
sugar with little user effort.

Such type of user queries might not conform to the schemas
of available data sources. In the rest of the paper, we discuss
an approach to translate such queries into equivalent ones
conforming to actual data source schemas.

2. PROBLEM FORMULATION
Translating naive user queries is difficult. This is because

people could use all kinds of terms and structures to rep-
resent the same thing. However, we have two observations
that would greatly ease the problem.

The first observation is that the variation of terms and
structures used for a concept is much less than the varia-
tion of data schemas and queries. The huge variations of
schemas or queries are mainly due to the combinatorial ex-
plosion of variations of terms and structures. For example,
“moviename” and “movietitle” are two terms to represent a
movie name; “rating” and “movierating” are two terms to
represent rating of a movie. Their combination could lead
to four data schemas. If we take into account that RDFS
schemas qualify each term with URI’s (so there might exist
“http://com1#moviename”, “http://com2#moviename”),
then the number of schemas is infinite.

In a class at the University of Southern California, stu-
dents are required to create a RDFS schema at their choices
as a Semantic Web assignment. Seven of them happened to
choose movie-related schemas. Table 2 shows parts of these
seven schemas, in which many term duplicates can be seen.

The second observation is that among the terms used to
represent the same concept, a few number of terms are used
more often than others. The 20-80 law seems to apply here,
which implies that a small number of terms will account for
most usages.

1Although syntax doesn’t affect our discussion, we use
RDQL-alike [2] syntax for convenience.

Naive User Query Meanings

1 select ?2 where (?1, moviename, “The Ring”)(?1, director, ?2) Find the director of the movie “The Ring”
2 select ?2 where (?1, title, “The Ring”)(?1, directorname, ?2) Find the director of the movie “The Ring”
3 select ?2 where (?1, type, ThrillerMovie) (?1, name, ?2) Find all the thriller movies in the data source

Table 1: Some Naive User Query Examples

The above two observations led us to believe that, if we
could accumulate a number of variations of terms and struc-
tures, we might be able to translate a great deal of naive user
queries by matching their combinations against the given
query. This belief is further strengthened by the fact that
naive user queries tend to be short and simple.

Although it is possible that terms accumulated in one do-
main might help translating naive queries in other domains,
we’ll focus on only one domain in this paper. We are trying
to solve the following kind of problems.

Problem Formulation:

Data A list of data schemas in the same domain, and some
alignments between some properties and classes in some
schemas (i.e., partial alignments).

For the examples in this paper, we use the seven movie
schemas. Among the properties and classes specified in Ta-
ble 2, we aligned the properties and classes in Schema 1
with those in Schema 6, and those in Schema 4 with those
in Schema 5. This is all the alignment information we use
throughout the paper.

Input Any given naive user query.
In the examples described in this paper, the given naive

query is (?1, name, ”The Ring”) (?1, moviedirector, ?3) (?1,
type, ThrillerMovie).

Output Translations of the given user query into each indi-
vidual schema.

Goal The goal is to find as much correct translations as pos-
sible. We can use concepts of precision and recall from infor-
mation retrieval as metrics. Precision measures the percent-
age of correct translations among all the generated transla-
tions. Recall measures how many correct translations are
generated by the algorithm out of all possible correct trans-
lations.

We’ll talk about how we handle this problem in the next
section.

3. APPROACH
We start with two not-so-satisfactory approaches we’ve

tried and then introduce our adopted approach. For il-
lustration purpose, let’s assume we are given a user query
(?1, name,′′ TheRing′′)(?1, moviedirector, ?2) and try to trans-
late it into the movie schemas we have.

The first approach is to build a global schema. Just think
of each column in the Table 2 as defining a concept in the
global schema, with all the cells in the column as possible
labels of the concept. Translation with this global schema is
easy. However, constructing and maintaining such a global
schema is difficult. Also, it is hard to represent complex
alignments (e.g., one’s parent whose gender is female is one’s
mother) in the global schema.

Another approach we tried without constructing a global
schema is to map the problem into a path searching prob-
lem. The idea is to construct a graph G(V, E) with V being
the node set representing all the classes and properties from
all schemas, and E = E1

⋃
E2 where E1 = {(v1, v2)|v1 ≈

v2}, E2 = {(v1, v2)|v1 and v2 belong to the same schema}.
v1 ≈ v2 means that there exist some kind of alignment be-
tween node v1 and v2. Given such a graph, we could look up
the node (or a set of nodes) v1 with label “name” and the
node v2 with label “moviedirector”, and then we compute
the paths [18] between v1 and v2. The intuition here is that
if there’s no path between v1 and v2 then there’s no schema
that would contain a translation of the query. After some
post-processing on the resulted paths we could infer possi-
ble translations of the original query into different schemas.
The problem with this approach is still the difficulty of rep-
resenting complex alignments.

The approach we finally used is based on query rewriting.
The intuition is to rewrite the original query based on avail-
able alignments. Then we check resulted translations to pick
out those making sense. The algorithm works as following:

Decomposition Step: Decompose the original query into
individual triple patterns t1, t2....

Query Rewriting Step: For each triple pattern t = (s, p, o),
find all possible rewritings of it according to the following
rules. Repeat this step until no more new rewritings are
produced.

Exact Name Matching: if p is a local name2, find all
properties whose local names match. If p is already a prop-
erty name, find all properties with the same local name.
For each matched property name pi, produce a rewriting
ti = (s, pi, o). If p is a type predicate name, it indicates that
o is a class name. Do the same thing to find out all classes
with the same local name. For each matched class name Cj ,
produce a rewriting tj = (s, p, Cj).

Approximate Name Matching: if p is a local name, we
also find all properties whose local name will match p af-
ter some manipulations. The manipulations are on local
names of a property and its domain classes (i.e., the classes
it adheres to). For example, if a property’s local name is
“movieName” and its domain class’ local name is “Movie”,
then it matches the p of ”name”. If its local name is “name”,
then it matches “movieName”, ”hasName”, and “hasMovieN-
ame”. If p is a property name, we produce several variations
of its local name and look for other properties with the same
local name as those variations. We are not afraid of produc-
ing meaningless local names, because there won’t be prop-
erties matching the meaningless names anyway. Note that
some other approximate name matching techniques could

2In RDFS, a property is normally represented as a URI such
as http://movie.org#movieName. The part after # is so-
called local name.

also be used, such as the one based on edit distance [11]. As
previous, we’ll produce some new rewritings.

Description Matching: if p is a long string, it would
be desirable to compare p with property descriptions. We
haven’t implemented this yet.

Alignment: We represent alignments as query rewriting
rules. For example, the alignment between “movieName” in
Schema 1 and “title” in Schema 3 is represented as (?1, S1 :
movieName, ?2) ↔ (?1, S3 : title, ?2). The “ThrillerMovie”
class in S1 is aligned to the “Movie” class in Schema 5 with
a “movieGenre” property of value “Thriller”: (?1, type, S1 :
ThrillerMovie) ↔ (?1, type, S5 : Movie)(?1, S5 : movieGenre,
′′Thriller′′). Triple patterns matching either side of an
alignment rule would result in a rewriting based on the other
side of the rule.

Inference: For a query on a class, its subclasses also matchthe
query, i.e., for each C1 that is a subclass of C2 we have
(?1, type, C2) → (?1, type, C1). Here → is not logical in-
ference; it represents translation direction. For example, a
“ThrillerMovie” matches a query looking for a “Movie”. We
expect that other kinds of inference rules could also be used.

As an example, Table 3 shows a sample series of rewritings
starting with triple pattern
(?1, name,′′ TheRings′′).

Pruning Step 1: As a result of the last step, we’ll have a
list of rewritings for each individual triple pattern in the
original query. Note that because of the use of alignment
and inference rules, a rewriting for an original triple pat-
tern might contain more than one triple pattern. Thus a
rewriting might contain properties and classes from differ-
ent schemas. Such rewriting doesn’t make sense in the final
answer, thus is removed. We’ll illustrate this with examples
in Table 4 later.

Pruning Step 2: For each schema used in the rewritings,
we check whether all the original triple patterns have rewrit-
ings in that schema. If the answer is no and partial transla-
tion is not allowed, we could prune all the rewritings in that
schema. We’ll illustrate this with examples in Table 5 later.

Checking Step: Now for each schema left, for each original
triple pattern we pick a rewriting of it in the schema. The
picked rewritings form a possible translation of the original
user query in the schema. We check the semantic structure
of translation against that of the schema; the translation is
removed if semantic structures don’t match. We’ll illustrate
this with examples in Table 5 later.

The checking step is crucial. In the query rewriting step
we try to come up with as many translations as possible,
and the checking step ensures that wrong translations are
actually removed and final answers make sense.

Let’s illustrate our approach with one experiment. The
data we used and the query we faced are those mentioned
in the “Problem Formulation” of Section 2.

Table 4 shows that the rewriting (?1, S4 : movieDirector, ?3)
(?3, S5 : personName, ??3) for input query pattern
(?1, moviedirector, ?3) is pruned in this step, which is be-
cause the rewriting contains information from both Schema
4 and Schema 5. Thus the rewriting doesn’t make sense as
a part of the final translation.

Table 5 shows the result of Pruning Step 2 and Check-
ing Step. The first translation in the table is pruned be-
cause it doesn’t have a rewriting for the input triple pattern

(?1, type, ThrillerMovie). The third translation is pruned
because its rewriting (?1, S6 : Director, ?3)(?3, S6 : Title, ??3)
doesn’t match the semantic structure of Schema 6. In Schema
6 “S6:Title” is a property of the “S6:Movie” class and the
value of the “S6:Director” property is a string which cannot
have properties. Similarly, the fourth translation is pruned
because an “S5:Movie” cannot have an “S5:personName”
property.

The experiment turned out to be successful. It didn’t
contain erroneous translations, and found all correct trans-
lations. However, we have yet to prove that our approach
will work in real life. This is more due to that we lack real
data and real users to experiment with. Nevertheless, the
preliminary results with our current (very limited) data are
encouraging.

Another desirable feature of our approach is that the whole
architecture is extensible. Different kinds of knowledge,
from exact name matching to inference rules, can be uti-
lized in the query rewriting step. The ability to incorporate
inference rules is especially important for the Semantic Web.

4. EVALUATION
The ideal evaluation of our approach would be to test it

with a number of real user queries, and to measure the per-
formance with metrics like precision and recall as described
in Section 2. It would also be helpful to adjust the num-
ber of alignments in the knowledge base and to see how the
precision and recall change accordingly. However, collecting
a large number of real user queries is difficult. Instead, for
evaluation purpose, we searched for other movie schemas on
the web, and use them construct naive user queries.

To search for movie schemas on the web, we picked a
few keywords from current movie schemas and submitted
them to Google. The HTML pages returned by Google of-
ten contain structured information that is like a schema.
For example, below is a segment from the web page at
http://www.moviepublicity.com/ppvvod/.

Director:Jim Isaac

Starring:Kane Hodder, Lexa Doig

Rating:R

Genre:Action/Horror

Run Time:91 minutes 30 seconds

Box Office: \$12,610,731

We gathered 17 movie schemas from the web in this way.
For each schema we constructed a big query that involved
all concepts in the schema. Note that some concepts like
“Box Office” are not present in the 7 schemas. Thus we
define “recall” on subqueries rather than on the whole big
query. We define “recall” as the percentage of found trans-
lations out of all possible translations of subqueries. We
define “precision” as the percentage of correct translations
out of all translations of subqueries. The experiment showed
a recall of 64% for all subquries. For the subquries seman-
tically on the properties we have aligned (those in Table 2),
it showed a recall of 72%. This result is already promis-
ing given that we’ve only aligned two pairs of schemas out
of only 7 schemas. The experiment showed a precision of
100%. We attributed the high precision to the small knowl-
edge base and the semantic correctness of the alignments.
Given such a knowledge base, the algorithm either translates
a subquery correctly or rejects it. We envision that with the
size of knowledge base grows, the precision will decline and

SOME CLASSES IN DIFFERENT SCHEMAS

S1 [Movie] [ThrillerMovie](subclass of [Movie]) [ComedyMovie](subclass of [Movie])
S2 [Movie]
S3 [VideoLibraryItem]
S4 [Movie] [ThrillerMovie](subclass of [Movie]) [ComedyMovie](subclass of [Movie])
S5 [Movie] [Movie]→movieGenre=”Thriller” [Movie]→movieGenre=”Comedy”
S6 [Movie] [Movie]→movieGenre→[Genre] [Movie] →movieGenre→[Genre]

→GenreName=”Thriller” →GenreName=”Comedy”
S7 [MovieInfo]

SOME PROPERTIES IN DIFFERENT SCHEMAS

S1 movieName directorName actor
S2 Name hasCrew→[Director]→PersonName
S3 Title Director Actor
S4 movieName movieDirector leadingActor→[Artist]→artistName
S5 movieName movieDirector→[Person]→personName movieActor→[Person]→personName
S6 Title Director MainActor
S7 movieName movieDirector

S1 actress rating→[Rating]→ratingType
S2 genre
S3 Rating
S4 leadingActress→[Artist]→artistName movieRating
S5 movieMPAARating movieGenre
S6 MainActress MPAA movieGenre→[Genre]→GenreName
S7

Table 2: Seven Movie Schemas

Step# Rewriting Result Rewriting Operation Description
0 (?1,name,”The Ring”) Original Triple Pattern
1 (?1,S1:movieName,”The Ring”) localname matches URI (?1,name,?2)→(?1,S1:movieName,?2)
2 (?1,S6:Title,”The Ring”) Property Alignment (?1,S1:movieName,?2)↔(?1,S6:Title,?2)
3

Table 3: A Sample Series of Query Rewriting Steps

Pruning Step 1

(?1,name,”The Ring”) (?1,S6:Title,”The Ring”)
(?1,S5:personName,”The Ring”)
(?1,S5:movieName,”The Ring”)
.............

(?1,moviedirector,?3) (?1,S4:movieDirector,?3)(?3,S5:personName,??3)—————————————————————
(?1,S3:Director,?3)(?3,S2:Name,??3)———————————————–
(?1,S6:Director,?3)(?3,S6:Title,??3)
(?1,S6:Director,?3)
..............

(?1,type,ThrillerMovie) (?1,type,S6:Movie)(?1,S5:movieGenre,?2)(?2,S6:GenreName,”Thriller”)——————————————————————————————–
(?1,type,S6:Movie)(?1,S2:genre,?2)(?2,S6:GenreName,”Thriller”)———————————————————————————-
(?1,type,S6:Movie)(?1,S6:movieGenre,?2)(?2,S6:GenreName,”Thriller”)
(?1,type,S5:Movie)(?1,S5:movieGenre,”Thriller”)
(?1,type,S4:ThrillerMovie)
..............

Table 4: Pruning Step 1: Remove Rewritings Containing Different Schemas

Pruning Step 2 & Checking Step

(?1,name,”The Ring”) (?1,S3:Title,”The Ring”)
(?1,moviedirector,?3) (?1,S3:Director,?3)
(?1,type,ThrillerMovie) ()——-
(?1,name,”The Ring”) (?1,S6:Title,”The Ring”)
(?1,moviedirector,?3) (?1,S6:Director,?3)
(?1,type,ThrillerMovie) (?1,type,S6:Movie)(?1,S6:movieGenre,?2)(?2,S6:GenreName,”Thriller”)
(?1,name,”The Ring”) (?1,S6:Title,”The Ring”)
(?1,moviedirector,?3) (?1,S6:Director,?3)(?3,S6:Title,??3)—————————————-
(?1,type,ThrillerMovie) (?1,type,S6:Movie)(?1,S6:movieGenre,?2)(?2,S6:GenreName,”Thriller”)
(?1,name,”The Ring”) (?1,S5:personName,”The Ring”)———————————-
(?1,moviedirector,?3) (?1,S5:movieDirector,?3)—————————-
(?1,type,ThrillerMovie) (?1,type,S5:Movie)(?1,S5:movieGenre,”Thriller”)
................

Table 5: Pruning Step 2 and Checking Step: Pick Out Good Translations

the recall will increase. Note that our system does not guar-
antee 100% precision because we use a lot of guessing and
aligning. The alignment between two terms seldom means
these two terms are 100% equivalent.

5. APPLICATIONS AND FUTURE WORK
In this section, we discuss a couple of potential applica-

tions and extensions of our technique.
Information Search on the Semantic Web: The most nat-

ural application of our naive query translation technique will
be to help information search on the Semantic Web. On the
Semantic Web, we envision that numerous small schemas,
rather than a few big schemas everyone must follow, will be
created by people for their information management tasks.
It is almost impossible to align all the schemas. It is also
impossible for an information seeker to write all the different
queries for different schemas. Thus it is important that, with
a few alignments between a few schemas in the same domain,
a naive user query can be translated into these schemas as
well as others in the domain. The technique proposed in
this paper represents our effort toward this great challenge.

In another project called “WebScripter” [19], we are de-
veloping a collaborative semantic annotation(CSA) tool for
ordinary users to create metadata, and an easy-to-use re-
port authoring tool for users to publish metadata as a user-
friendly report as well as to align metadata from different
schemas. With the grass-roots ontologies created by ordi-
nary users using CSA and grass-roots alignment obtained
from WebScripter, we hope that the technique we described
in this paper would facilitate information sharing among
WebScripter users.

Building Naive User Query Interface to an Existing Data
Source: If we regard a naive user query as a mini-schema
defined on-the-fly, it might be possible that, after accumu-
lating and aligning a number of user queries, a system could
interpret future naive user queries. Over time the system
learns more rewriting rules and more synonyms, so it can
produce increasingly robust and comprehensive response to
new queries. A such-enhanced data source would provide a
friendlier interface to information agents on the web.

Alignment-Carrying Information Agent: Other than en-
hancing a data source with a knowledge base of possible
naive queries, if we arm an information agent with some
alignment between some schemas of the domain of interest,

will the agent be able to recognize future schemas it sees in
the same domain, or at least, rewrite its task(a query) into
those of the schemas? This kind of knowledgeable agent, or
alignment-carrying agent, is likely to be more autonomous
in information retrieval.

In a summary, there are interesting applications of the
techniques we have developed. Exploring these applications,
meanwhile testing the technique and discovering its deficien-
cies are our plan for the future work.

6. RELATED WORK
The research most related to our work is schema matching

[17]. If we regard a naive user query as a mini-schema de-
fined on-the-fly, translating naive user queries can be viewed
as a special schema matching problem. However, there’re
significant differences between our work and schema match-
ing, in the problem to be solved and in the techniques used.

Data schemas tend to be larger, more complex and rather
static. Schema matching tries to make use of any help-
ful information such as name similarity, structure proxim-
ity [15], learning from data instances [9]. To further im-
prove mapping accuracy, integration of all kinds of tech-
niques into a single system is also used [8] [14]. Conse-
quently, schema matching techniques are usually complex
and time-consuming, and the matching process is generally
assumed to happen offline. In contrast, naive user queries
are normally short and dynamic. Timely response is also
required.

Our translation approach makes use of a knowledge base
of previous alignments. This distinguishes our work from
many schema matching algorithms [15][9] [14] that only con-
sider the two schemas at hand. The idea of reusing previous
alignments is stated in [17] and further developed in [8].
However, [8] is not as flexible as our approach. In order to
match S1 and S2 it requires the existence of S that has been
already matched with S1 and S2, which makes it unusable
for schemas unseen before. Alon Halevy [10] recently pro-
posed to use a corpus of schemas to help schema matching.
He also talked about the possibility of using such corpus to
enable queries in users’ own terminology. Our work goes one
step further to also consider queries in users’ own semantic
structures. Furthermore, our idea of reusing previous align-
ments of user queries to translate future queries has not
been seen in other’s work.

There has been recent work [12] [4] [7] on enabling keyword-
based search over relational databases. These systems try
to compute a join of different table tuples which contains
all the input keywords. Contrary to naive user queries, the
relations between keywords are unclear, and it is difficult to
specify what information users are looking for. As a result,
users need to check that the relations between keywords in
the returned tuples match user intents (For a set of key-
words, there can be different join chains). Another human
check is then required to extract the information users want
from the tuples. Thus keyword-based search is more appro-
priate as a human activity rather than part of an automated
computer program.

Natural language interface to databases provides another
kind of query interface. Despite recent progress [16] [20],
these systems remain difficult to implement. Natural lan-
guage queries and SQL queries are two extremes and naive
user queries are in the middle. We believe it is worthwhile to
investigate whether a naive user query interface is easier to
develop and performs better in terms of precision and recall.

Our query rewriting approach resembles a lot to those
used in information integration systems [13] [5]. An infor-
mation integration system translates a query between its
global schema and local schemas. It assumes the existence
of alignments between global schema and all local schemas.
The query must be in one of the known schemas. In contrast,
our work is on translating naive user queries that might not
conform to any known schema. Our work is complementary
to information integration in this sense.

7. CONCLUSION
The contributions of this paper are two-fold. First, we

identified translating naive user queries as an important re-
search problem. Translating naive queries is the process of
translating queries in users’ own terms and structures into
those interpretable by data sources. Second, we proposed an
approach to this problem. The approach utilizes schemas of
different data sources and partial alignments between them
to rewrite naive user queries into data-source-interpretable
form. The approach is efficient and preliminary results were
encouraging. We then showed how our technique could
be an important component on the future Semantic Web.
We also discussed possible applications of our technique,
such as constructing naive-user-query translating interface
to data sources and building Alignment-Carrying Informa-
tion Agents on the current Web.

8. ACKNOWLEDGMENTS
The authors of the paper are supported by DARPA DAML

program funding for WebScripter under contract number
F30602-00-2-0576. We thank David Wilczynsky and Ellis
Horowitz for providing their students’ RDF Schemas. We
thank Martin Frank for helpful comments.

9. REFERENCES
[1] Rdf vocabulary description language 1.0: Rdf schema.

http://www.w3.org/TR/rdf-schema/.

[2] Rdql - rdf data query language.
http://www.hpl.hp.com/semweb/rdql.htm.

[3] Resource description framework (rdf) model and
syntax specification.

http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[4] S. Agrawal and S. C. G. Das. Dbxplorer: A system for
keyword-based search over relational databases. In the
18th International Conference on Data Engineering
(ICDE.02), 2002.

[5] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query
reformulation for dynamic information integration.
Journal of Intelligent Information Systems - Special
Issue on Intelligent Information Integration,
6(2/3):99–130, 1996.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

[7] G. Bhalotia, A. Hulgeri, C. Nakhe, and
S. Chakrabarti. Keyword searching and browsing in
databases using banks. In the 18th International
Conference on Data Engineering (ICDE.02), 2002.

[8] H. Do and E. Rahm. Coma - a system for flexible
combination of schema matching approaches, 2002.

[9] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map ontologies on the semantic web. In
The Eleventh International World Wide Web
Conference, 2002.

[10] A. Halevy, O. E. A. Doan, Z. Ives, and J. Madhavan.
Crossing the structure chasm. In the First Biennial
Conference on Innovative Data Systems Research
(CIDR), 2003.

[11] G. D. Hall, P. Approximate string matching.
Computing Survey, 12(4):381–402, 1980.

[12] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In the 28th
VLDB Conference, 2002.

[13] A. Y. Levy. Logic-based techniques in data
integration. In J. Minker, editor, Workshop on
Logic-Based Artificial Intelligence, Washington, DC,
June 14–16, 1999, College Park, Maryland, 1999.
Computer Science Department, University of
Maryland.

[14] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In The VLDB Journal,
pages 49–58, 2001.

[15] S. Melnik, H. Molina-Garcia, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm. In the
International Conference on Data Engineering
(ICDE), 2002.

[16] A. Popescu, O. Etzioni, and H. Kautz. Towards a
theory of natural language interfaces to databases. In
IUI, 2003.

[17] E. Rahm and P. Bernstein. On matching schemas
automatically. Technical report, Microsoft Research,
Redmon, WA, 2001. MSR-TR-2001-17.

[18] R. Tarjan. Fast algorithms for solving path problems.
Journal of the ACM, 3(28):591–642, 1981.

[19] B. Yan, M. Frank, P. Szekely, R. Neches, and
J. Lopez. Webscripter: Grass-roots ontology alignment
via end-user report authoring. In the Second
International Semantic Web Conference, Octor 2003.

[20] J. M. Zelle and R. J. Mooney. Learning to parse
database queries using inductive logic programming.
In the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), 1996.

