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Abstract

In industrial control, system failures can be highly dan-
gerous and expensive. To avoid them, much time and
money is spent in testing the systems, and this occurs
mostly manually. Model-based testing is a forthcoming
and promising technique to automate the testing process,
as it allows the automatic generation and execution of
test-cases. It assumes the system under test to be a black-
box, implying that the system is only accessible via inputs
and outputs. Thus, model-based testing can be ideally ap-
plied to function blocks. This paper presents our first steps
in applying model-based testing in industrial control, and
includes a case study on a simple motor controller.

1. Introduction

Controllers used in industrial settings often control
highly critical systems, and their failure can be expensive
due to loss of production and system damage. Therefore,
testing a controller is crucial before employing it in prac-
tise. Currently this is usually done manually, and hence
consumes a considerable amount of time and money.

One promising technique to automate the test pro-
cess is model-based testing. In model-based testing, the
test-cases are automatically driven from a formal model,
the specification. The execution of these test-cases is
commonly far more efficient and often of better quality
than manually-crafted test-cases. Contrary to simulation,
model-based testing requires no complex computation en-
vironment and the test-cases are derived from the specifi-
cation, independently of the underlying physical model of
the controlled plant. The advantages of this approach are
the direct interplay between the real implementation and
the specification – which allows for direct testing of speci-
fied behaviours, and the needlessness of calculating physi-
cal parameters. Another advantage of model-based testing
is the higher test coverage. This is due to the systematic
execution of test-cases independently of their likelihood
in a real physical environment. Therefore, this approach
is of high value for quality assurance of critical software.

In model-based testing, the system under test is con-
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Figure 1. Overview

sidered to be a black-box, meaning that it can only be
accessed and observed through its interfaces. A well-
known representative of this technique is the ioco frame-
work [16]. It defines formal correctness criteria allowing
the automatic generation of test-cases from the specifica-
tion, which is a formal model given as a labelled transition
system. It can be shown that the execution of such a de-
rived test-case does not yield false positives, such as test
failures, even though the implementation is correct.

In this paper the authors show how model-based testing
can be applied in industrial control, and present how errors
can be detected quickly. Figure 1 provides an overview of
our model-based testing approach. The starting point is
the specification, which is given as a Sequential Function
Chart (SFC ), and the implementation running on a run-
time server. First, the SFC is translated into a Labelled
Transition System (LTS ), which is then used by the test
tool to derive and execute the test-cases. The test tool then
executes the test by communicating with the implementa-
tion. The paper is structured as follows. The following
section gives an introduction to model-based testing and
its underlying theory. Afterwards, SFC as a specification
language is introduced. Section 4 shortly presents the AC-
PLT technologies, including the function block system iF-
BSpro. In Section 5 the approach is explained, including
a translation from SFC to LTS , which is needed for our
model-based testing. The penultimate section presents our
case-study on a simple motor controller. Finally the au-
thors conclude this paper and give an insight on ongoing
and future work.
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2. Model-Based Testing

Model-based testing is a widely used technique for au-
tomating the test process. Test-cases are automatically
driven from a formal model specifying the system under
test. These test-cases are then executed against the real
implementation. The Implementation Under Test (IUT )
is considered to be a black-box, and therefore its correct-
ness can only be verified by checking the response of the
system for given stimuli. In order to define a formal cor-
rectness criteria it is assumed that the IUT can be rep-
resented as a formal model. Based on this assumption,
referred to as test hypothesis, a testing theory is defined,
including an implementation relation and an algorithm for
automatic test-case derivation.

One well-known testing theory is the ioco framework
[16, 17] where the correct behaviour of an IUT is spec-
ified using an LTS with input and output actions. Test-
cases cast their verdicts following a formal correctness
criterion: the implementation relation ioco. The ioco re-
lation expresses that an implementation may only produce
outputs if those outputs are also produced by the specifi-
cation.

There exist several tools for the derivation of ioco
test-cases, e.g. TorX [5], TGV [8] and AGEDIS TOOL
SET [1]. Based on the ioco-framework there is the
tioco-framework [12] for real-time behaviour, the sioco-
framework [11] for using data and the stioco-framework
[18] for real-time behaviour including data.

2.1 Model-based testing with JTorX
The test-tool JTorX [9] is a platform-independent tool

for model-based testing. It automatically derives test-
cases from a given specification using the ioco relation.
The specification can be provided in the Aldebaran for-
mat .aut or in GraphML. In order to communicate with the
implementation JTorX supports standard input and output
as well as the network protocol TCP/IP. JTorX requires
these inputs and outputs to have the same format as the
one given by the specification. Therefore it is common to
provide an adaptor that coordinates the different input and
output formats. The test-case generation in JTorX hap-
pens on-the-fly, meaning that test-case generation and ex-
ecution are done at the same time. Only the next steps
that are needed are computed and the information which
has already been traced is stored in a log file and can be
executed again if requested later.

3. SFC for Functional Description

In today’s automation environment, it is difficult for
users to accept a control system that is incompatible with
the IEC 61131-3 standard [7]. SFC is the only language
in the IEC 61131-3 for discrete processes, and its graph-
ical presentation makes the description of functionalities
simple, intuitive and easily understandable.

SFC follows the specification language GRAFCET
[6], which is based on Petri nets. As a powerful pro-
gramming language for the implementation of automation
functions, SFC is also suitable for function descriptions.
Sequential functions of any complexity can be precisely
described by simple graphical elements: steps and transi-
tions between steps. All SFC should begin with an ini-
tial step (marked with a double boundary line), and they
can either end with a final step or jump back to a previ-
ous step at the end of the chain. The former design is
normally used to describe chemical production processes,
which only need to be worked through once. In turn, the
later one can describe a permanently active state machine.

SFC makes the unification of languages for descrip-
tion and implementation possible. The designer can spec-
ify the required sequential function by drawing SFC .
Then, according to the used hardware and the specific run-
ning conditions, the SFC specification can be transformed
to a directly executable SFC implementation. This uni-
fied description language can greatly shorten the develop-
ment cycle of automation functionalities.

There are also cases of some execution systems that
do not support graphical SFC programming, or whose
implementation should not be programmed in SFC . For
instance, the function block for a single motor controller
discussed later in this paper is coded in most automation
systems by using a textual programming language. Nev-
ertheless, in these cases the internal execution progress
and state machines of the encapsulated function block can
also be intuitively and exactly described by using SFC .
In this way, the programming engineer can exactly under-
stand the requirements given by the designer with the help
of the SFC graphic; on the other hand, if an existing im-
plementation needs to be optimized, its SFC description
can help the engineer to understand the working principle
and to define solutions. In this paper we show how SFC
descriptions can also be used for automatic testing by de-
riving test-cases from them and automatically executing
these test-cases.

4. ACPLT Technologies

The ACPLT technologies [2] are reference models and
software implementations that target various application
areas within the field of process control engineering. This
section describes those ACPLT technologies which are
part of our model-based testing approach.

ACPLT/KS [3] is an open-source client/server commu-
nication system designed for decentralised control sys-
tems (DCS) and related applications. It uses object-
oriented meta-modelling, where the predefined elements
of the communication protocol (variables, domains, links,
etc.) are generic, and can be used to manipulate virtually
any concrete object model of a control system.

ACPLT/OV [13] is an open-source object management
and runtime environment, which permits the develop-
ment of object-oriented applications that can operate in
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real-time process control environments. An ACPLT/OV
application is hosted in a server which contains an ob-
ject model, and the server offers an ACPLT/KS interface
which permits remote clients to interact with the object
model contained in the server.

The iFBSpro function block system [14] is a com-
mercial engineering environment for developing applica-
tions using the model of Function Block Diagrams (FBD)
[7], and is based on ACPLT/KS and ACPLT/OV. iFBSpro
clients can communicate with iFBSpro servers with the
purpose of performing engineering and monitoring tasks.

5. Approach

In order to use model-based testing, a formal descrip-
tion for the input and output behaviour in form of a transi-
tion system is needed. Therefore, the first step is to trans-
late the given SFC into an LTS . Afterwards, an adapter is
generated to enable the communication between the test-
tool JTorX and the iFBSpro runtime server.

5.1 SFC to LTS

For Model-based testing the parameters of interest of
an SFC are those that can be observed or changed from
outside. Both [10] and [4] present a semantic for SFC us-
ing timed automata (TA). The aim of these two papers is
to provide a formalism allowing formal verification of the
model, i.e. model-checking. The resulting models con-
sider more than just the observable input and output ac-
tions and are therefore not suitable for model-based test-
ing, for which a simpler model is sufficient.

In this paper only controllers with at least one incom-
ing and one outgoing variable are considered. The vector
I represents all incoming variables, set by external events,
from now on referred to as the environment. Outgoing
variables O are changed in every step by the controller it-
self and are observed by the environment. The main idea
of obtaining an LTS from a given SFC is that the transi-
tions of the SFC are inputs of the LTS , and that the action
steps of the SFC are outputs of the LTS . This means that
every input transition of the LTS consists of an vector I
containing the values of the input variables, and the output
transition contains the output vector O accordingly. Steps
are executed once per cycle and are repeated until at least
one of its following transitions is enabled. The enabled-
ness of a transition is checked at the end of each cycle.

Figure 2 shows a simple SFC . After starting, transi-
tion T01 is checked and in case it is true, Step01 is ex-
ecuted for as long as at least either T02 or T03 is true.
If both transitions are true, then T02 is executed since
its priority is higher. Depending on the previous choice
either Step02 or Step03 is executed. Figure 3 is the
corresponding LTS representing the input and output be-
haviour of the SFC . The input actions, marked with
a question mark, represent all concrete valuations of an
input-vector that satisfy the corresponding transition, e.g.
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Figure 2. Example SFC
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Figure 3. Example LTS

?¬T02 ∧ ¬T03 stands for the set of input-vector valu-
ations which satisfy neither T02 nor T03. The output
actions, marked with an exclamation mark, represent the
output-vectors that are observed after execution of a step.
In Figure 3 the first transition is the input ?T01, enabling
the first transition T01. In location l1 the systems then
runs for exactly one cycle and executes the action Start.
From location l2 three different input actions can happen.
These inputs set the variables of the transitions and are set
while the system under test is offline. The action ?T02
represents all possible variable settings that satisfy the
conditions in T02. Note that there can be more than one
transition from location l2 to l4, since there can be more
than one variable valuation that satisfies T02, and LTS
only allow concrete values and no variables. In Figure 2
transition T03 is only taken if T02 is not enabled. This is
translated into the input ?T03∧¬T02. If neither T02 nor
T03 is enabled, represented by the input ?¬T02 ∧ ¬T03,
Step01 is executed and the system returns to location l2.
If input ?T02 is taken, the system executes Step01 and
waits afterwards for transition T04 to hold. It cannot be
guaranteed that the values for a transition, if set during a
cycle, are set before the enabledness is checked. Hence,
the values for the transitions are always set exactly be-
tween two cycles, before executing the actual step. E.g. in
order to execute Step01 in Figure 2 exactly once either
T02 or T03 have to be set when the system is at Step01
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but has not executed the step yet. If neither T02 nor T03
are enabled, the system repeats Step01. This is repre-
sented by the loop in location l3 in Figure 3.

5.2 Communication between Test-Tool and Imple-
mentation

The name and the format of the inputs and outputs that
are provided and observed – respectively – by JTorX, are
given by the specification and therefore do not necessarily
conform with those that are used by the implementation
that is running in the runtime server. Also, JTorX does
not have a direct way of setting or getting variable values
of the tested system, but the iFBSpro server provides the
means to set and get these values exclusively through AC-
PLT/KS. Additionally, it has to be ensured that input vari-
ables are set at the right time on the server, and that JTorX
always receives the current variable values, i.e. JTorX and
the tested system have to be synchronised. The first prob-
lem can be solved by providing a file that maps the names
and formats of the used variables. The second and third
problems require an adaptor that sends and receives vari-
able values in between JTorX and the server, and which
also performs the required synchronisation by starting and
stopping the implementation running on the server.

The adaptor is written in Java and communicates via
standard input and output with JTorX while interacting
with the server through ACPLT/KS. Paths of the vari-
able locations on the iFBSpro server and it corresponding
names in JTorX are provided by a text file.

During testing, the implementation is initially online
but deactivated. Since the system has to obtain an initial
input in order to start, the adaptor first waits for a stimulus
from JTorX. This input is a string containing all variable
settings and is parsed by the adaptor to set the values of
the corresponding variables at the online server. After-
wards, a control variable is set so that the implementation
runs exactly for one cycle. When the program has stopped
the outputs are read and sent to JTorX which again sends
the new stimuli. The adaptor itself runs until it receives a
quit signal from JTorX. This can happen either when the
test-execution from JTorX is stopped manually or if JTorX
observes an incorrect output from the implementation.

6. Case Study

In order to evaluate the practical feasibility of our ap-
proach, an actual function block was specified, imple-
mented and tested. The results of this evaluation are pre-
sented in this section.

6.1 The simpleMotor Function Block
For our case study, we chose a simple function block

that controls an on/off motor. The function block has the
following inputs, which are all of Boolean type: Con in-
dicates that the motor should be switched on; Coff indi-
cates that the motor should be switched off; CACK indi-
cates that the user has acknowledged an error; and chk-

bOn indicates that the motor has confirmed that it has
switched itself on, known as check back. In turn, the
Boolean outputs of the function block are: ACT signals
the motor to switch on (true) or off (false); DriveOn in-
dicates that the motor is on; DriveOff indicates that the
motor is off; and ERR indicates that an error has occurred.

The intended behaviour of the function block may be
described as follows. The motor is initially switched off,
and the user may set Con to TRUE in order to start the
motor. The function block then sets ACT to TRUE in or-
der to switch the motor on, and waits for a confirmation
signal with the value TRUE from the motor on chkbOn.
If the confirmation signal arrives, the DriveOn indicator
is set to TRUE and the function block stays in this state
until the user sets Coff to TRUE in order to stop the mo-
tor. In this case, the function block sets ACT to FALSE in
order to switch the motor off, and waits for a confirmation
signal with the value FALSE from the motor on chkbOn.
When this occurs, the function block returns to its initial
state. In any case, an error state may be reached whenever
an unexpected confirmation signal from the motor is re-
ceived. In this case, the function block sets ERR to TRUE
and stays in this state until the user acknowledges the error
by setting CACK to TRUE, which clears the error indicator
and returns to the function block’s initial state.

The control logic for the function block described
above has been specified by means of the SFC that is de-
picted in Figure 4. Here, the steps DriveOff, ToOn,
DriveOn, ToOff and Error represent the different
states of the simpleMotor function block, and their
corresponding actions set the function block outputs to
the expected values. Furthermore, the transitions evalu-
ate the conditions for a step change which depend on the
function block inputs. Both actions and transitions were
formulated using the FBD language [7].

Based on the SFC specification, the simpleMotor
function block was implemented in iFBSpro using the
C language. In addition to this object class, five test
classes named simpleMotorTest1, . . . , simpleMo-
torTest5 were produced as exact copies of the original
class, but with manually introduced errors, and with the
purpose of validating the model-based testing approach.

6.2 Test Execution
The description of the behaviour of the simpleMo-

tor implementation is given as an SFC . Since JTorX re-
quires this to be given as an LTS , the first step is to derive
the LTS describing the input/output behaviour, from the
SFC description as presented in Section 5.1. For this case
study the derivation was done manually, but the authors
are working one an automatic translation from PLCopen
XML, an XML format for IEC 61131-3 languages [15],
to the Aldebaran format .aut, which is also based on
XML. The transition system generated from the sim-
pleMotor specification has 23 locations and 33 tran-
sitions. It is shown in Figure 5. Here one can see that
always the complete output vector is observed. Expres-
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Figure 4. SFC specification for the simpleMotor function block

sions like DriveOn-0 are the concrete labels standing for
the value of the corresponding variable like DriveOn be-
ing false. In the first phase the generated transition system
and the simpleMotor function block were used. The
system under test was executed for 100.000 steps which
took 190 minutes. Most of this time is due to the graph-
ical output of JTorX and it can be reduced to 15 minutes
if executed without the graphical output. The testing was
stopped manually. This means that since inputs and out-
puts alternate, the implementation received 50.000 inputs
and the same amount of outputs were observed and vali-
dated by JTorX. The test was stopped manually as it can
be assumed that due to the state space of the transition
system, there are practically no uncovered errors left.

In the second phase of the case-study the five ver-
sions named simpleMotorTest1, . . . , simpleMo-
torTest5 of the implementation were given. They were
tested without knowing which version had been manipu-
lated. All errors were found within an hour. There was no
false negative.

JTorX produces three different kinds of graphical out-
puts. The first one is the transition system of the specifica-
tion highlighting were JTorX stopped in case of an error.
The second one shows the traces that have been executed,
and the last one is a message sequence chart. In our case
study, the implementation is first started with input ?true,
leading to location 18 in Figure 5. The output !DriveOn-
0 Act-0 DriveOff-0 Err-0 is then observed. The next two
inputs enable neither transition T01 nor T12 and the con-
troller loops in the DriveOff state, represented with the
loop of location 17 and 19 in Figure 5. The fourth input
?chkb On-1 sets variable chkb On to true and, after ex-
ecuting step DriveOff one last time, leads to the Er-
ror step and location 3 in our LTS . After the input
?C Ack-1 the output !DriveOn-0 Act-0 DriveOff-1 Err-1
is observed but as shown in the LTS , output !DriveOn-0 -
Act-0 DriveOff-0 Err-1 is expected by JTorX. This then
leads to the termination of the test producing the verdict
fail.
case E r r o r :

/∗ E r r o r A c t i o n ∗ /
v ACT = FALSE ; v DriveOn = FALSE ; v ERR = TRUE;
/∗ T51 ∗ /

t r a n s i t i o n ( v CACK == TRUE, D r i v e O f f ) ;

The code above shows a part of the program code and
the error that was manually created. Every variable is set
correctly except for DriveOff, whose value is not set at
all and therefore leads to the error detected above.

In this case study the system under test only has P1 ac-
tion qualifier. It also works for P0 and N with the restric-
tion that variables are not allowed to be changed in every
loop, i.e. such as incrementing or decrementing a vari-
able. Since LTS work with concrete transition, changing
the variables in every loop leads to state space explosion
and therefore is not applicable in practice.

7. Perspective

This paper demonstrated an approach to apply auto-
matic test-case generation and execution in industrial con-
trol. It gave an introduction on model-based testing, SFC
as a specification language and ACPLT technologies, and
afterwards presented a translation from SFC to LTS ,
which is needed in order to apply model-based testing
by using the tool JTorX. The case-study presented proved
the applicability of this approach to real implementations.
The execution of the generated test-cases was both effi-
cient in execution time and effective in finding all errors
in the implementation. Nevertheless, the motor controller
used in the case-study is a small and restricted implemen-
tation. It has only Boolean variables, and has no timing
constraints. The problem with using variables other than
Booleans is the state space explosion that would occur if
the transition system of such an SFC was obtained. A
constraint like 0<x>10 in a transition of an SFC , where
x is a double precision floating point number with two
digits, already leads to 1000 transitions in the correspond-
ing LTS . In order to avoid such a state space explosion,
future research will be to use the same concepts as pre-
sented in this paper but using symbolic transition systems
rather then labelled transition systems. These transition
systems allow a notion of data and data dependent con-
trol flow based on first order logic formulas. Finally, the
authors also plan to extend our approach to allow timing
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Figure 5. simpleMotor LTS

constraints.
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