
��������	
��������

�������	�
����
�����������������
���������������
��������
��
��

��������	�
���������
����
�����
��������������

���������

����������������

��	��������	���	����	������������	�������������

������������� �

�!��"�#�	���$�	"�����%�������	��

 �
���&���'���������	�('���"�#$
�	��)	*��$�"���������+*�����	�"�,�-��	��-��."��

/�����0�	���*-�	."�#�����������1�
�

��2	�������	�3�������/��*�"�4�������	��������*����3���	��"��

#�	���$�	�5	�$���������6���	���
���657� "�#�	���$�	"�6���%�������	���

8�9�����	�('��"��9'	*��$:;�*�9	��

�
���*��	�����*����2	��������	�2	����*��"��

���	�
��������	�5	�$������"������-*�
�"�53��

�*�����	;�	����9��*9��*

�
.�<�-�2	�������	�3������"��

4����5	�$���������6���	���
�"�4���"�6���%�������	���

89�-��"�
9=9�9�9��*-�	:;�*����9	��

�
1�,�����*	
�(�	��*��>.3"���		�$��"�/����	��

������;�.�9���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������
���?��!�����������	��$��*����������-���������������*�����9�

�����	
�����������������$�����	������������*������9�@���*-�������	������������

���������$��*�����A*��������������	�-������������
�����	���9�

��������
�

������	�

��������������������������������������
�������������������������������
����������

��������������������		�����
���	���������������
������	������������
�������������	�
�
����
���
�

������	�������� ��������������
����������������
���		��� ������������������������������

��
��� �������� ��������� ��� ����

�� ����	����� ��� �		������� ����� ������ ��� �����!� ��� ��� ����!�

����	��!� �����	��� �� ���	�������� ������� ��� �
�	����	� �����!�
������� �� �������!� �� �����

�������������
���

 	����	��������������"����
�������������

������������	������������
�������������������

��� ���� 	������� ��� �����	� ������� �����	������
�� ����� ������ ����	�� �	��������� �����
���
��

��������� #����
��� ��� ��	�� �����	�����
�� ��� $ %� ��� ��������� ���������� ���� &'$%� ���

����� ���������� ��� ��

� ��� ���� (�)*� ���� (�����
� +����� ������"�� ��� ����	��������

��������������������

+����� ���������� ��� ��������!� ���������� �������!� ���� ��������� ���������� ���
���� ��� ����

������	�� ��� �� �
������ ��� ���� ����!� 	��	�����
� ����
�!� ���� ��������� ��������� ,
����	�
�

��������������
��������
�����	����
�����	��������������������������
����������*�	��
�����

*������	� -���� ��� ����	�
�!� ����� 	����� ����������!� ����
�����!� ����� ����������!� ���� �����
����������
��
����������������

.��� � $/00� ��"����� ���� ��������� ��� 	��1��	����� ����� ���� 22��� ,%� �����������
�

,������	�� ��� $�������� ���� $��������� ���� ��
�� ��� 3���� 4!� 2500!� ��� #��������!� ����

6����
������������
������������		�������� $�57����$��������57�����- 88-9 *�05���"��������

9% (�2505��.�����"��������������� ��	����� �����������
� ����� ��� ����	���� ���������!�

���	�����������
����������������������������

�������
�����������������������	�����	���������

������	� ���� ��������� ���������� .��� ��"����� ��������� ��������� ����	��� ��� ������	� ����

�����������������������	��������������	�������"�!������	����������	��������������������

������� ����
� ����
�� ���:�� ��������� ������� ���� ����� 	���������� ��� ���
����� ���������

���������� ��������� .���� $�00���"����� �������� 	������ ���� ��

������ ;��������������<�

�����������	�=�

� ��������������������
��������

o �����	����������������

o ����������������

o ���������������
��

� �������:������	�$�����������������

o ���������	��	�����
����������������
��

� ���������������

o ��������
����

o �����������
����

o ��������	��������������������������
���

� ����������������"��

o ���������������������������������	��������

o ���
����������������"��

o �	�
���
���������������	���������

�

.��� � $�00� ��	�������� ��	
���� ���� �		������ 	������������ ����� ���� ��������� ��� ����

��"������

�

.����������������$�������������>8�������+�	���������������� ���������=�?����	� ����������
&�����"� �� .����������� 	���
���	�� 	���������@� ���	������ +�	�������� *������ ;+*<�

����
��������������� ��������$���������*�������; $*<��.���������������������� $*�����+*�

���	�����
���� 	���
���	�� ��� ����� ��� 	������ �������!� ���	�����
���!� ���
����� �
�	"�� ����

	�������������� ���� ������������������� 	���
������������	������ ����������!�������
��������

�����	�����������������	�����������������	�������"�� ����	����������������������	������

��������	������������A.������������+*!���	����������������
������
�	"�!����
������������
�����

��������������
����������������������������������
�������	����������������������

�

,�
�"�������� ������� �������"������
��� >.��������&�����"� ��� ��������&�	�����*��	�����
.�����@�����������������������������������	����������	�����
�������.������������	���������

�������	�� ��� ���������
� .������ ���������� .��� ����� �������� ��������� �������!� ��	
������

i

������
���������	�����������������������!������"������	��������	�����.��������������	������

.�����������
���	����	������
����������
����������������������������	����	����������������

��� ��������
� ��� ��	����� ���	�� ���.������ ���� ����� ����� ��� ��������
� ����� ��� ��������� ��	�����

���	�����.��������������

���������������
��������������
����
�

?���	���"�� ��� ���� ��� >+�����	���� ������� ���
����� ��������@� ������	�� �� ������
����	� ����
������
� �����
�������� ��� ���	�B��� ����� �

���� ��� ����� C�����
���� ��� �����	���� ������� ��

	�������� ���������� .���� ��
��� ��� 	������ ���� ������ ��� ���� ��������!� ������ ��� 	������!� �������

�������������
�������	��������������������������������	������.���������	��������������

����,����
�.�������
��

�

.�����������D���
�����������> ���
 ��������$��������@� �������� �� ���� ��� 22� ����������� �����������	�� ��� ������������ ��� ����

���
�	������ ������� ���� ����������� ��������� .����� �������� ����� ����� ����
����� ���) ?� ����

?) %������������
��������������������
��,����
�������

������������������	�

���# (�������"�����������	���
�������������������������

�

E������ ��� ���� ��� > �������� $��������� *������� ��
����� ����	�� ��� %����� ��� ���� ? &�
&�����"@�	�������������
����������	����� $*�	�������������������������������������
�����

�
�	"���������	�����������������	�������������������	��������������������? &�������"!�

���	�� ��
��� ��� ��������� ������� ������� �����
����� ���� ���� ��	�
������� ���� 	������� ��� ���������

�������� ���� �	��	��� ��� ����� ����� ������� ���
���� ��������� ������� ��������!� �	����	����

������"������
�����

�������
���������>'����,����� ���������FF����?)#=�&�������&��G@����*������������8�������

�� ���	������� ������ '���� ,����� ����������� .���� ���	���� ���� ����� ?)#� �������

���
������������	�������'����,���������������� ���	�����
������������� ��������������������

����� ��� �	���

�� �� ������� ������� �� ��������

�� �� ��������� ��������� ����� �����������

	��������	����

�

-�����
��
�"�� ��� ����"������������ ��� ����� �������� ��� ������"��������� �������������� �����

	������������� ����������"�����(,������������������
�����������������������������������

�

�

%�"�
��(�	�����"���

#������E������

%�	���
�H���
����

&������ ��
�

#�
	��$����

?����3���$������

�

� $�00�'���������,��������!�3����2500�

�

� �

ii

�

��������	�
��
� $�2500� ��� 	��
�	���������� ���� 22��� �����������
� ,������	�� ���$�������� ����$���������

;$.<�2500!�#��������!�.���6����
������

�

������������
�		���
%�"�
��(�	�����"���

#������E������

%�	���
�H���
����

&������ ��
�

#�
	��$����

?����3���$������

�

��
�����
�		���
(��
!����8��;#���������9������������.�	���
���!�����6����
����<�

E�����E���
�;.������,�

�������
��!���
���<�

8���*���	����;.������,�

�������
��!���
���<�

����'/E������;.������,�

�������
��!���
���<�

+�		����%�����;*9(*�!�9������������)�����!�*�����
���<�

.����E��
�"�;$�����9��������!�����
<�

�����
�E�����;)�������9�������I��$������!�?�����<�

iii

Table of Contents

John Hannon , Evgeny Knutov , Paul De Bra, Mykola Pechenizkiy, Kevin McCarthy
and Barry Smyth
Bridging Recommendation and Adaptation: Generic Adaptation Framework
Twittomender compliance casestudy 1

Fabian Abel, Ilknur Celik and Patrick Siehndel
Towards a Framework for Adaptive Faceted Search on Twitter. 11

Victor Grishchenko, Janus A. Pouwelse and Henk Sips
Referencing within evolving hypertext 23

Nadjet Zemirline, Yolaine Bourda and Chantal Reynaud
A set of adaptation patterns for expressing adaptive navigation
in Adaptive Hypermedia 35

Evgeny Knutov, Paul De Bra and Mykola Pechenizkiy
Adaptive Hypermedia Systems Analysis Approach by Means of the
GAF Framework 47

David Smits and Paul De Bra
Open Corpus Adaptation++ in GALE: Friend or Foe 53

iv

Bridging Recommendation and Adaptation: Generic
Adaptation Framework - Twittomender compliance

case-study.

John Hannon2, Evgeny Knutov1, Paul De Bra1,
Mykola Pechenizkiy1, Kevin McCarthy2, and Barry Smyth2

1 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, the Netherlands

e.knutov@tue.nl, debra@win.tue.nl, m.pechenizkiy@tue.nl
2 Clarity: Centre for Sensor Web Technologies,
School of Computer Science and Informatics,
University College Dublin, Dublin 4, Ireland

john.hannon@ucd.ie, kevin.mccarthy@ucd.ie, barry.smyth@ucd.ie

Abstract. In this paper we consider Recommender System (RS) modeling in
terms of Adaptive Hypermedia Systems (AHS) and investigate AHS and RS func-
tionality compliance in terms of common features, functionality, building blocks
and composition of the system. We bring up complementary aspects of adapta-
tion, personalization and recommendation in a context of a generic framework
which provides properties of information fusion and heterogeneity and could
serve as a reference model. We show major recommendation functionality in
terms of the reference structure and recommendation process by presenting a
conceptual generic ‘adaptation-recommendation’ sequence chart which overlays
and combines properties of adaptation and recommendations taking advantages
of both. In fact we show that RS if implemented on the web can be considered
as AHS, in this wise a generic framework should be capable of describing virtu-
ally any RS. In the case study we scrutinize the Twittomender3 RS. We decom-
pose the system in building blocks, outline and highlight its properties along with
the advantages and possible enhancements. We conclude by summarizing frame-
work advantages and AH recommendation compliant features as well as lessons
learned from this study.

1 Introduction

In recent years a lot of progress has been made in the field of recommender systems
(RS). New efficient models and algorithms have been developed [8]; heterogeneous
and hybrid systems are gaining wide use. Amongst those RS personalized search and
twitter are getting into place [4, 9].

Since its first emergence on the scene in early 2006, Twitter has grown from an early
microblogging engine into a real time web behemoth. In the early days some 300,000
tweets were produced by early adopters of the system per month, contrast this with
some 140 million tweets estimated to be produced per day in march 20114. With this

3 http://twittomender.ucd.ie/
4 C. Penner, #numbers, mar, 2011, http://blog.twitter.com/2011/03/numbers.html

1

obvious information increase, creating ways to use this information appropriately and
intelligently has become a hot topic for many researchers [7, 3]. In Twitter the main
producers of this content are the users themselves who have subscribed to the system.
Obviously, not all the information produced by each user is to everyone’s preference,
so finding the producers, the so-called “diamonds in the rough”, is an interesting re-
search challenge. And, with the Twittomender system we have chosen to frame this as
a recommender systems.

In the very closely related field of Adaptive Hypermedia (AH) many things have
changed since one of the first reference models models AHAM as well: new terms, def-
initions and models have been introduced and, new adjacent areas (such as the afore-
mentioned RS, personalized web search) have been investigated, new prototypes de-
veloped. Most of these AH models, including the emerging and discussed in the paper
GAF model focus on a layered architecture and discuss the adaptation of the content
and navigation to the user properties as well as recommending the links to follow based
on the user preferences and knowledge, thus bringing the fields of AH and Recommen-
dation closer together. In fact we show that a web-based RS can be treated as AHS
and therefore expressed in terms of a generic AH framework, which we backup by the
conducted case-study of the Twittomender system.

In the paper we focus on describing RS functionality and Twittomender [4] in par-
ticular in terms of AH systems, in order to show complimentary features of RS and
layers of a generic AH framework (GAF) which aims to develop a new reference
model for the adaptive hypermedia research field by considering new developments,
techniques and methodologies in the area of AH and adjacent fields (including but not
limited to RS) [5]. We show framework compliance (conformity in structure and par-
tial functionality overlay) with the Twittomender, a Twitter based recommender system.
Besides Twittomender is a very interesting example, covering topics such as personal-
ization, recommendation, search and collaborative web experience which means that
we can bring and fit all these features together in the framework. As a result we also
achieve an evaluation of how generic the GAF framework could be on the one hand and
whether the description of one particular RS fits in the framework, and helps to evaluate
the real system on the other.

2 Overview of RS compliance with a generic AHS: system building
blocks

The main goal of the GAF framework is to provide a reference architecture of AHS,
to describe essential and optional elements of an adaptive system, define the criteria to
distinguish between these elements, describe their functionality and interaction. Here
we define a modular structure (framework) that can be used to describe and develop ap-
plications that satisfy different adaptation and recommendation needs. This framework
has a layered structure where layers match the original classification of AH methods
and techniques and provide the per layer functionality separation 1. Using this classi-
fication we describe recommendation functionality within the same adaptation system
layers depending on the requirements of the application and thus contribute to the sys-
tem extensibility and heterogeneity. We show the correspondence of AHS modeling

2

(in particular GAF layers) and recommender approaches. We will first summarize the
applicability of GAF with respect to different types of RS and then walk through the
framework layers and functionality to show the compliance.

��������	�

��������	�

��	�����	�

���	������	�

��������	
����

��������������	�

����	
����

�������������	�

��	�	���������	�

������	�����	����������

����	�������

�����	�������

����

�����

��	�����

�����
������	

����������	�
��
��
����	�
�������������������

����	�	�
����
�����

����

Fig. 1. GAF building blocks

Considering RS we would like to mention the major types of RS and give a brief
insight on the GAF structure and functionality related to recommendations:

– Collaborative Filtering (CF) is usually based on a User Model (UM) and a Group
model (GM) as known also in AHS (we assume here both user-to-user and item-to-
item aspects of CF). The recommendations are generated based on a comparison of
user profiles from the GM and UM. In this case a Recommender UM is represented
by a vector of items and corresponding ratings, which essentially can be turned into
a set of interesting items or concepts (for this user) and associated attributes with
corresponding rating values [6]. Those values are updated as the user interacts with
the systems, browses through items, rates them, and receives recommendations. In
general Collaborative Filtering allows to deal with different types of objects where
essentially only ratings matter which is made possible by separating ratings and
item set within the GAF Domain, User and Resource models.

– Content-based RS recommend an item to a user based upon a description of the
item - feature database (e. g. using words in a text as the textual feature or book
genres as library properties) and a user profile (UM). Having learned features of
these items (which can be expressed in the Resource Model (RM)) rated by the user,
the RS infers new recommendation suggestions. As well as collaborative filtering
content-based recommenders can also handle different types of objects as long as
there is a common feature space.

– In Knowledge-based Recommendation systems a domain expert knows which types
of recommended items should be assigned to which types of users. In fact this is in

3

line with current state of the art in AHS (i. e. there is a domain expert who needs to
author UM, DM and Adaptation Rules mapping these two). It combines content-
based filtering performed on the features of the concerned dataset with the explicit
user query which is used to make inferences about needs and preferences of the the
user. Thus it is possible to relate how a particular item meets user needs and thus to
do the reasoning about further possible recommendations.

– Hybrid type Recommender systems are the most commonly used type. They em-
ploy different approaches (simultaneously) to achieve better results, both combin-
ing techniques from collaborative, content-based and knowledge-based methods
and providing different type of hybridization: mixed, weighted, cascade, etc. Our
AHS framework allows us to combine both advantages of content and collabora-
tive filtering, having all necessary building blocks available (e. g. user and group
models, rankings mechanisms, reasoning engine) and will also help to handle het-
erogeneous data sources.

3 Twittomender recommender overview

The Twittomender system’s main function involves syncing a users account and pro-
ducing followee recommendations through a range of collaborative and content-based
strategies. However for this to work efficiently, users must be active on Twitter, i.e. they
must follow a number of other users, must have some followers themselves and must
have produced some content (through tweets). Although this functionality is great for
Twitter users who wish to increase the number of appropriate user streams they follow,
it does not perform satisfactorily for new Twitter users. These users have not produced
much content through tweets, nor are they following or being followed by enough users
for collaborative or content-based followee recommendation techniques to perform as
expected. For this reason we also provide a search capability to Twittomender, which
allows users to explicitly type search queries. For our collaborative and content-based
strategies we evaluate 9 different profiling and recommendation strategies based on the
different sources of profile information, in isolation and in combination. To begin with
we implemented 4 content-based strategies that rely on the content of tweets as follows:

1. (S1) users are represented by their own tweets
(tweets(UT));

2. (S2) users are represented by the tweets of their followees (f olloweestweets(UT));
3. (S3) users are represented by the tweets of their followers (f ollowerstweets(UT));
4. (S4) a hybrid strategy in which users are represented by the combination of tweets

from tweets(UT),
f olloweestweets(UT), and f ollowerstweet(UT);

In addition we implemented 3 collaborative style strategies, in the sense that we view a
user profile as a simple set of user ids.

5. (S5) users are represented by the IDs of their followees (f ollowee(UT));
6. (S6) users are represented by the IDs of their followers (f ollower(UT));
7. (S7) a hybrid strategy in which users are represented by the combination f ollowee(UT)

and f ollower(UT);

4

Additional 2 strategies are:

8. (S8) the scoring function is based on a combination of content and collaborative
strategies S1 and S6;

9. (S9) the scoring function for this strategy is based on the position of the user in
each of the recommendation lists so that users that are frequently present in high
positions are preferred;

Fig. 2. Twittomender architecture

4 Recommender System and AHS: Twittomender Study

Considering diverse aspects of the system and its functionality we decompose it in a
a way that forms an overlay of a generic model of an adaptive system, explains the
functionality of the system using terms and definitions from adjacent recommender
systems research area, and foremost brings a custom system to a common denominator
by means of the GAF reference model.

Fig. 3 presents a picture of Twittomender and the Generic Adaptation Process (GAP) se-
quence chart compliance. Here the GAP process chart is constructed by coupling the
layers of a general purpose AHS as described in [5]. Recommendation steps are as-
signed to a single layer or a transition in the system. Though we have faced certain is-
sues distinguishing parts of the Recommendation Engine functionality, in particular the
filtering and ranking mechanisms (in this respect Application Model (AM) and Adap-
tation Model/Engine (AE) can be treated accordingly) we could align Twittomender
functionality with GAF terms and identify gaps and possible extensions. On the one
hand the mapping proves the genericity of the GAF framework, and on the other hand
it opens new horizons to facilitate and generalize recommendation aspects, bringing

5

adaptive techniques into place, extend information fusion and heterogeneity possibili-
ties [2] of such a systems encapsulating features of both Recommender and Adaptive
Systems.

Further we summarize compliant and complementary Twittomender features and
the reference structure of GAF and explain the building blocks and interactions pre-
sented in Fig. 3. Of particular interest here are the remarks regarding AHS functionality
(shown in GAF terms) that can be used to extend Twittomender, but also a few instances
where Twittomender functionality suggests further extensions to the GAF model.

– Users start system interaction by choosing whether to get recommendations directly
by logging in with their Twitter profile or by entering a search query they are inter-
ested in. This refers to a Goal Model of GAF. Internally goal is represented by the
immediate query input by the user or constructed from the indexed content of the
users tweets when he or she log-ins into the system.

– Twittomender Profiler serves both as a UM (User Model), by associating each user
with the corresponding group of followers and followees, and at the same time as
user information mediator which requests tweet content information from Twitter
services and provides this information to Lucene indexer which forms the index of
user tweets and such forms the domain model to be used in recommendations.

– The Group Model refers to maintaining a collaborative user profile is already pro-
vided by Twitter services. It clusters results by location or user age group and gen-
der, and uses it to rank and recommend results for a particular user or mediate user
models associated with different groups. To some extent Twitter services provide
this possibility by maintaining the groups of followers, followees of any given user.

– Domain Model (DM) of the Twittomender is represented by the index which is
stored by the Lucene (backend).

– Context models (both user and usage models) are not considered.
– Application Model is represented by the Twittomender framework. Mainly it serves

to query terms from the Lucene and retrieve corresponding ranked lists of users and
related tweets. Twittomender framework also provides interfaces to the Presentation
Model (PM).

– Adaptation Model as described in a generic Recommender system use-case is rep-
resented by indexing and actual querying solution, Lucene. Its Information Re-
trieval module provides querying interfaces to Twittomender and return recommen-
dation lists upon querying (both User Terms and search Terms as indicated in the
Goal Model. The actual index is stored in DM providing flexibility of the system
and at the same time decoupling Lucene as a stand-alone Query/Retrieval mecha-
nism.

– Presentation Model generates ranked list of users recommended to follow and cor-
responding cloud of indexed terms that are relevant to the user activity in Twitter.

5 Advantages of GAF in Recommendations

Based on our Twittomender case-study we were able to define the following GAF ad-
vantages which can be used to improve and extend the system functionality:

6

���	
����

 �!���	
����

����	
����

�������	
����

��������	
����

�����������	
����

����	
����

����������	
����

"�����������	
����

������	�����	����������

����	������� �����	�������

��
���
��
	�
��
��
��

��
��
��
��
��
	�
��
	

�
�#
��
���
�

�
��
��
�$
�	
��
��
�	
�%
	

��
��
��
	�
��
��

��
���
�!
��
��
�

&�
��
��
	

��
��
��
���
�

'
��
��
	�
��
!
�(

�
��
�	�
��
!
�

��
��
��
��
��
	�
��
	

��
��
���
�	
�
�
�
	

�
���
	�
��
��
!
	

��
��
�	
��
��
(

��
��
�)
��
�	
��
��
	

��
��$
���
	��
��

�
�	

���
��

��
�

��
�	

��
��

��
���

	�
��

�

��
���

	�
��

���
�

	�
��

��
��

�
		

�

�
�	

���
�

	�
 �

�	
!

��
	�

	
��

��
�	

��
�

�
	

��
���

�
"�

��
#

�
��

�
 �

�"
$�

	�
��

��
�%

��&
'�

�
��

	�
�"

�	
��

�(

��
���

)�
��

��%
	�

 ��
�	

��
�

'$
�	

���
�

		
��

(

�
*

+�
,

%	
���

&
�

��
	�

-$
�	

	
��

�	
�	

�

��
		

��
��

�
�	

�
�

 ��
�	

��
�

��
	�

	
��

���
!

.
	�

��
�

	
�	

��
�

�	
��

'�
�

�
��

��
	�

��
�

�
��

��
		

��
(

��
���

��
	

�	
��

��
�

��	
�

�
�	

��+
	�

��
��

�
��

.
	�

��
�

	
��

���
�

-$
�	

�
�/

��
#	

�

�
�	

�

��
	�

	
��

��
.

	�
��

�
	

��
���

�
��

�
�

+	
��

��
��	

�$
��0

���
�

.
	�

��	
%�

�
��

 �
� �

��
.

	�
��

�
	

��
���

�
�'.

(

��
���

��
��

.
	�

��+
��

��
	�

�	
�

��
���

	�
��

��

�
�	

��
�

 �
��

��
��

�
+	

�%
��

	�
.

	1
$	

��

��
���

	�
��

��

.
	�

��	
%�

�
�

��
�$

��
�

 �
�

 �
��

��
�

���
	�

*
��
��
�	
#�
��
�

��
���

��
	

�	
��

��
��

	�
��

#
-$

�	
	

Fig. 3. Twittomender compliance with Generic Adaptation Framework

7

– Recommendation of resources of a different nature and type employs a separation
of domain and resource models. Considering conceptual representation irrespec-
tively of the resource type facilitates the usage of different information sources and
resource types, mostly dealing with their conceptual representation. Thus not only
different types of information resources (e. g. text, images, tweets, audio, video,
etc.) but also heterogeneous resources (e. g. news, archives, e-learning repositories,
online-shops, etc.) can be recommended within a single framework based on the
conceptual representation of a specific domain. On the other hand considering re-
source and domain (conceptual structure) models separately takes a step towards
solving the problem of the universal recommendations bridging the semantic gap.
In this respect we have concept space and feature space with rankings that serves
as a basis for transparent personalization irrespectively of the content type. This
is perfectly shown in Twittomender where we consider tweets as a content base
(resources) to provide user recommendations.

– User modeling — the GAF UM consists of entities (or essentially concepts if we
consider an overlay model) for which we store a number of attribute-value pairs. For
each of these entities there may be different attributes, representing various aspects
of user profile. It implies using both short- and long-term user preferences and
implements a great variety of user preferences such as users’ tastes, interests, needs.
In order to provide independence and flexibility of goals selection we distinguish
goal model, which essentially can be used to recommend certain goals to follow
based on the user preferences.

– Contextualization — as in AHS context awareness will help to decouple and make
AH and RS and applications less integrated with the environment. On the other
hand, considering a context model will allow the system to be sensitive and adapt
in many other ways, rather than following a certain number of fixed adaptation
rules or recommendation patterns [1]. Thus we devise a separate Context Model
which might be an overlay of DM (and UM correspondingly) and represent both
usage context (additional properties defining how a particular item/concept from
a domain model should be used, under which conditions) or user context (e. g.
certain items can be shown or recommended only in a particular context or each
item is augmented with the additional contextual explanation with helps to make
recommendation list more trustworthy).

6 Conclusions, Lessons Learned and Future Work

The coming years will bring more use-cases of how AHS can provide adaptation and
recommendation, what techniques will be introduced, and what research areas will in-
troduce new technologies in its evolution. So far a study of existing approaches in rec-
ommender systems was done to comply with the layered structure of adaptive informa-
tion systems, which has resulted in an overlay presented in Fig. 3 providing an overview
of a Twitter-based recommender systems and a corresponding overlay of AHS layers
and adaptation process.

In this paper we investigated a general-purpose AHS architecture , which brings us
new challenges to investigate the applicability of different recommendation approaches,

8

as well as new developments in adaptive information systems. However, as a result of
investigation now we can foresee some further developments and research strategies
of bringing recommendations to the field of AHS and thus try to come up with up-to-
date requirements for a modular composition of a GAF reference model which would
be able to serve as well as a start-up for the Recommender system development us-
ing heterogeneous information sources. At the same time case-study helped to identify
possible Twittomender improvements and extensions.

As part of future work we plan to make some further developments to Twittomender,
one avenue which we are exploring is a mechanism to focus on users individual per-
sonal traits. What topics do user’s talk about? What types of people do they follow? We
plan to extend the Twittomender platform to cluster similar users based on these traits.
This will allow Twitter users to quickly navigate to the types of people they would
normally tend to gravitate towards or conversely show them the topics they would be
clustered into e.g Sports, Technology, etc. As part of continued qualitative tests of Twit-
tomender, we plan to extend our user trials. One test that will be carried out against
Twitter’s own recommendation system, this trial will check users satisfaction with the
recommendation of both systems.

7 Acknowledgements

This work has been supported by the NWO GAF: Generic Adaptation Framework
project, by Science Foundation Ireland under grant 07/CE/I1147 and by Amdocs Inc..

References

1. G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. In Recommender
Systems Handbook, pages 217–253. Springer, 2011.

2. P. Brusilovsky, I. Cantador, Y. Koren, T. Kuflik, and M. Weimer. Workshop on information
heterogeneity and fusion in recommender systems (hetrec 2010). In X. Amatriain, M. Torrens,
P. Resnick, and M. Zanker, editors, RecSys, pages 375–376. ACM, 2010.

3. S. Garcia Esparza, M. P. O’Mahony, and B. Smyth. On the real-time web as a source of
recommendation knowledge. In Proceedings of the fourth ACM conference on Recommender
systems, RecSys ’10, pages 305–308, New York, NY, USA, 2010. ACM.

4. J. Hannon, M. Bennett, and B. Smyth. Recommending twitter users to follow using con-
tent and collaborative filtering approaches. In Proceedings of the fourth ACM conference on
Recommender systems, RecSys ’10, pages 199–206, New York, NY, USA, 2010. ACM.

5. E. Knutov, P. D. Bra, and M. Pechenizkiy. Generic adaptation framework: a process-oriented
perspective. J. Digit. Inf., 12(1), 2011.

6. Y. Koren and R. M. Bell. Advances in collaborative filtering. In Recommender Systems
Handbook, pages 145–186. Springer, 2011.

7. O. Phelan, K. McCarthy, and B. Smyth. Using twitter to recommend real-time topical news.
In Proceedings of the third ACM conference on Recommender systems, RecSys ’09, pages
385–388, New York, NY, USA, 2009. ACM.

8. F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook.
Springer, 2011.

9. J. Teevan, D. Ramage, and M. R. Morris. #twittersearch: a comparison of microblog search
and web search. In I. King, W. Nejdl, and H. Li, editors, WSDM, pages 35–44. ACM, 2011.

9

10

Towards a Framework for Adaptive Faceted
Search on Twitter

Ilknur Celik1, Fabian Abel1, Patrick Siehndel2

1 Web Information Systems, Delft University of Technology
{celik,abel}@tudelft.nl

2 L3S Research Center, Leibniz University Hannover, Germany
siehndel@l3s.de

Abstract. In the last few years, Twitter has become a powerful tool
for publishing and discussing information. Yet, content exploration in
Twitter requires substantial efforts and users often have to scan infor-
mation streams by hand. In this paper, we approach this problem by
means of faceted search. We propose strategies for inferring facets and
facet values on Twitter by enriching the semantics of individual Twit-
ter messages and present different methods, including personalized and
context-adaptive methods, for making faceted search on Twitter more
effective. We conduct a preliminary analysis that shows that semantic
enrichment of tweets is essential for faceted search on Twitter and that
there is essential need for adaptive faceted search on Twitter. Further-
more, we propose an evaluation methodology that allows us to automat-
ically evaluate the quality of adaptive faceted search on Twitter without
requiring expensive user studies.

Key words: faceted search, twitter, semantic enrichment, adaptation

1 Introduction

With the growing information space on the Web and the increasing popularity of
Social Media, Social Web applications became part of daily activities as well as
the source of information for millions of people. The dynamic nature of the Web
and the diversity of the users along with the heavy information load demanded
some form of adaptation or personalization in many Web-based applications
in various domains. Nowadays, many Social Web applications are suffering from
similar information overload problems, where the users of these applications find
it difficult to read, find and follow the relevant and interesting information shared
by a large network of other users. Our research focuses on tackling information
overload in one of the most popular of these applications, Twitter.

Twitter is the most popular micro-blogging site and a growing Social Web
phenomenon that is attracting interest from different types of people all around
the world for a variety of different purposes, such as fast communication, work,
status updates, following news, sports, events, opinions, hot topics, and so on [1–
8]. With millions of Twitter messages (tweets) per day, highly active users are

11

2 Ilknur Celik, Fabian Abel, Patrick Siehndel

estimated to receive hundreds of tweets every day3. Due to the lack of any adap-
tive or personalized navigation support in Twitter, users may get lost, become
de-motivated and frustrated in this network of information overload [10]. Ac-
cessing required or interesting fresh content easily is vital in today’s information
age. Hence, there is a need for an effective personalized searching option from the
users’ point of view that would assist them in following the optimal path through
a series of facets to find the information they are looking for, while providing a
structured environment for relevant content exploring. Our research focuses on
investigating ways to enhance searching and browsing in microblogging sites like
Twitter by means of adaptive and personalized faceted search.

Searching and browsing are, indeed, somewhat limited in Twitter. For exam-
ple, one can search for tweets by a keyword or by a user in a timeline that would
return the most recent posts. So, if a user wants to see the different tweets about
a field of sports, and were to search for “sports” in Twitter, only the recent tweets
that contain the word “sports” would be listed to the user. Many tweets that
do not contain the search keyword, but are about different sport events, sport
games and sport news in general, would not be returned. Moreover, the Twitter
keyword search differs from the general Web search due to the restricted message
size of 140 characters in Twitter [9]. Traditional faceted search interfaces allow
users to search for items by specifying queries regarding different dimensions and
properties of the items (facets) [11]. For example, online stores such as eBay4 or
Amazon5 enable narrowing down their users’ search for products by specifying
constraints regarding facets such as the price, the category or the producer of a
product. In contrast, information on Twitter is rather unstructured and short,
which does not explicitly feature facets. This puts constrains on the size and the
number of keywords, as well as facets, that can be used as search parameters
without risking to filter out many relevant results. Hence, searching by more
than one topic (multiple facets), such as “sport events”, would return only those
recent tweets that contain both of these words and miss tweets like “Off to BNP
Paribas at Indian Wells”, which mentions the name and the location of a sport
event without necessarily including the keywords. In this paper, we introduce
an adaptive faceted search framework for Twitter and investigate how to ex-
tract facets from tweets, how to design appropriate faceted search strategies on
Twitter and how to evaluate such a framework. Our main contributions can be
summarized as follows.

Semantic Enrichment We present methods for enriching the semantics of
tweets by extracting facets (entities and topics) from tweets and related
external Web resources.

User and Context Modeling Given the semantically enriched tweets, we pro-
pose user and context modeling strategies that identify (current) interests of
a given Twitter user and allow for contextualizing the demands of this user.

3 http://techcrunch.com/2010/06/08/twitter-190-million-users/
4 http://ebay.com/
5 http://amazon.com/

12

eknutov
Rectangle

Towards a Framework for Adaptive Faceted Search on Twitter 3

Adaptive Faceted Search We introduce faceted search strategies for content
exploration on Twitter and propose methods that adapt to the interests and
context of a user.

Evaluation Framework We present an evaluation environment based on sim-
ulated users to evaluate different strategies in our adaptive faceted search
engine on Twitter.

2 Related Work and Our Motivation

The exponential growth of Twitter has attracted significant amount of research
from various perspectives and fields recently. In this section, we focus on the
related work that motivates and inspires our work, as well as relating our work
to the existing literature.

2.1 Content Exploration on Twitter
A prototype for topic-based browsing in Twitter was proposed after observing
how the users manage the incoming flood of updates [10]. This prototype inter-
face, called Eddi, visualizes a user’s Twitter feed using topic clusters constructed
via a topic identification algorithm without using any semantics or natural lan-
guage processing. This approach, however, does not find the relations between
the topics or perform any recommendation of related topics. While it provides
a means for browsing through a user’s own feed by topics, our ambition is to
infer relations between entities of all tweets in the network in order to adapt
the list of facets presented to contain the related entities of the tweet of interest
even outside of the user’s feed. The aim is to provide a means where not only
the users can easily reach to the information they are looking for by controlling
their search parameters as they move along, but can also browse the related
information about the current subject of interest by related people, countries,
cities, events, and other selected facets.

2.2 Semantic Enrichment of Tweets

The main problem in searching microblogging platforms is the size of the mes-
sages. For example, the Twitter messages, with 140 characters limit, are too
short to extract meaningful semantics on their own. Furthermore users tend to
use abbreviations and short-form for words to save space, as well as colloquial
expressions, which make it even harder to infer semantics from tweets. Rowe
et al. mapped tweets to conference talks and exploited metadata of the corre-
sponding research papers to enrich the semantics of tweets to better understand
the semantics of the tweets published in conferences [12]. We follow a similar
approach to this, except we try to enrich the tweets in general and not in a re-
stricted domain like scientific conferences. A study by Kwak et al. revealed that
the majority of the trending topics in Twitter are either headline or persistent
news, with 85% of all the posted tweets being related to news, claiming Twitter
is used more as a news media than a social network [4]. Consequently, we try to
map tweets to news articles on the Web over the same time period in order to
enrich them and to allow for extracting more entities to generate richer facets.

13

eknutov
Rectangle

4 Ilknur Celik, Fabian Abel, Patrick Siehndel

2.3 User and Context Modeling for Adaptive Faceted Search in
Twitter

We also try to discover the relations between the extracted entities by studying
different strategies in order to determine relatedness relations between entities
such as persons related to an event and identify any temporal constraints on
such relations. These learnt relations between entities can be utilized to ease
the search by grouping together the related facets and recommending the most
relevant facets that the user is looking for. Marinho et al. proposed a method for
collabulary learning which takes a folksonomy and domain-expert ontology as
input and performs semantic mapping to generate an enriched folksonomy [13].
An algorithm based on frequent itemsets techniques is then applied to learn an
ontology over this enriched folksonomy. A similar approach exploited frequent
itemsets to learn association rules from tagging activities [14]. We study the co-
occurrence frequencies of entity pairs and compare these with other strategies
for tweets in combination with news articles to learn relations between these
entities.

In addition to adapting the facets to the current search, we aim at adapt-
ing the facet values to the current state of the users in order to personalize the
search and content exploration. Liu et al. analyzed content-based recommenders
for Google News and showed that interests in news topics such as technology,
politics, et cetera change over time [15]. They also predicted user interests and
showed that these user profiles in combination with recent trends on Google
News outperform collaborative filtering. Similarly, Chen et al. studied content
recommendation in Twitter and found out that both topic and relevance are im-
portant considerations [16]. They also observed that URLs extracted from the
user’s close social group is more successful than the most popular ones. Corre-
spondingly, we observe the users’ past activities to infer their recent interests
based on their recent tweets and re-tweets. In other words, we build a profile
of user interests in accordance with entities and topics, which is then used to
adapt ranking of the facet values. Re-arranging the facet values according to
user history and interests in line with the trendy topics can accelerate and thus
improve the searching experience.

3 Faceted Search on Twitter

On Twitter, facets describe properties of a Twitter message. For example, per-
sons that are mentioned in a tweet or events a tweet refers to. Oren et al. [11]
formulate the problem of faceted search in RDF terminology. Given an RDF
statement (subject, predicate, object), the faceted search engine interprets (i)
the subject as the actual resource that should be returned by the engine, (ii)
the predicate as the facet type and (iii) the object as the facet value (restriction
value). A faceted query (facet-value pair) that is sent to a faceted search engine
thus consists of a predicate and an object. We follow this problem formulation
proposed by Oren et al. [11] and interpret tweets as the actual resources the
faceted search engine should return. If a tweet (subject) mentions an entity then

14

eknutov
Rectangle

Towards a Framework for Adaptive Faceted Search on Twitter 5

!"##$%&'("$#)*'

+$,"-&,*'
./''0$1$#$#'1$-23$#,'4%5&6$#'7%124%'

8$--,'92%':5#'62,':4%,'6;<*==>55///'
?/ ''0$1$#$#'@A'B5'82%%2%>'C&4#&D'

849#2%E4F'G$-H$#'02>6&'I4JE''6;///'
K/ ''7,'0$1$#$#',L--'14L%>':5#M$#'

<#5:$,,25%4-'&$%%2,'<-4)$#'G2#E4'///'
N/ ''+5>$#'0$1$#$#'3,'O#%4"1'!-M%&'

K#1'+5"%1*'82MP-$15%'?Q.Q'R'6&///''
S/  0$1$#$#F'TU5E532J'4%1'+5112JE'

#$4J6'&62#1'#5"%1'6;<*==P2&/-)=:///'
V/  8$#$')5"',"#<#2,$1'96$%'

0$1$#$#'-5,&'&6$'W/C/'@<$%X*Y$,///'
Z/  02#,&'M4U5#'&5"#%4M$%&'4[$#'&6$'

@H'5<$%/'0$1$#$#'4%1'TU5E532J'///'
\/  865'&62%E,'&64&'+5>$#'0$1$#$#'2,''

B$%%2,'

!"#$%&'()
+""#)
,-./)*0")
1$--"'*)
2$"-3)

!"
1.
/
/
"'

4"
4)

56
1"
*)
73
8"

#)
56
1"
*)
96

%$
"#
)

0$1$#$#'

(a) Faceted search interface

Faceted Search Engine

Semantic Enrichment

facet extraction linkage

User and Context Modeling

profile generation relation learning

Adaptive Faceted Search

facet ranking query suggestion

!"#$%&'%()*%+,+)

!"#$%

-.#/,/0))
12/$3)

(b) Faceted search architecture

Fig. 1. Adaptive faceted search on Twitter: (a) example interface and (b) architecture
of the faceted search engine.

the type of the entity is considered as facet type (predicate) and the actual
identifier of the entity is considered as facet value (object). For example, given
a tweet t that refers to the tennis player “Federer”, the corresponding URI of
the entity (URIfederer) and the URI of the entity type (URIperson) are used to
describe the tweet by means of an RDF statement: (t, URIperson, URIfederer).

Figure 1(a) illustrates how we envision the corresponding faceted search in-
terface that allows users to formulate faceted queries. Given a list of facet val-
ues which are grouped around facet types such as locations, persons and events,
users can select facet-value pairs such as (URIevent, URIwimbeldon) to refine their
current query ((URIperson, URIfederer), (URIsportsgame, URItennis)). A faceted
query thus may consist of several facet-value pairs. Only those tweets that match
all facet-value constraints will be returned to the user. The ranking of the tweets
that match a faceted query is a research problem of its own and could be solved
by exploiting the popularity of tweets – e.g. measured via the number of re-
tweets or via the popularity of the user who published the tweet (cf. [17]). The
core challenge of the faceted search interface is to support the facet-value selec-
tion as good as possible. Hence, the facet-value pairs that are presented in the
faceted search interface (see left in Figure 1(a)) have to be ranked so that users
can quickly narrow down the search result lists until they find the tweets they
are interested in. Therefore, the facet ranking problem can be defined as follows.

Definition 1 (Facet Ranking Problem). Given the current query Fquery,
which is a set of facet-value pairs (predicate, object) ∈ Fquery, the hit list H
of resources that match the current query, a set of candidate facet-value pairs
(predicate, object) ∈ F and a user u, who is searching for a resource t via the
faceted search interface, the core challenge of the faceted search engine is to rank
the facet-value pairs F . Those pairs should appear at the top of the ranking that
restrict the hit list H so that u can retrieve t with the least possible effort.

The effort, which u has to invest to narrow down the search result list H,
can be measured by click and scroll operations. Strategies for facet ranking are
discussed in Section 3.2.

15

eknutov
Rectangle

6 Ilknur Celik, Fabian Abel, Patrick Siehndel

3.1 Architecture for Adaptive Faceted Search on Twitter

Figure 1(b) illustrates the architecture of the engine that we propose for faceted
search on Twitter. The main components of the engine are the following.

Semantic Enrichment The semantic enrichment layer aims to extract facets
from tweets and generate RDF statements that describe the facet-value pairs
which are associated with a Twitter message. In particular, each tweet is pro-
cessed to identify entities (facet values) that are mentioned in the message. We
therefore make use of the OpenCalais API6, which allows for the extraction of
39 different types of entities (facet types) including persons, organizations, coun-
tries, cities and events. As Twitter messages are limited to 140 characters, the
extraction of entities from tweets is a non-trivial problem. Thus, we introduced a
set of strategies that link tweets with external Web resources (news articles) and
propagate the semantics extracted from these resources to the related tweets
in [18]. For example, given a tweet “This is great http://bit.ly/2fRds1t”, we
extract entities from the referenced resource (http://bit.ly/2fRds1t) and attach
the extracted entities to the tweet. In our analysis, we show that this semantic
enrichment allows us to significantly better prepare the tweets for faceted search
than enrichment which is merely based on tweets.

User and Context Modeling In order to adapt the facet ranking to the
people who are using the faceted search engine, we propose user modeling and
context modeling strategies. The user modeling strategies model the interests
of the users in certain facet values (entities and topics). We therefore exploit
the tweets that have been published (including re-tweets) by a user. In future
work, we also plan to consider click-through data from the faceted search en-
gine. Context modeling covers mining of new knowledge from the Twitter data.
We therefore propose relation learning strategies that exploit co-occurrence of
entities in Twitter messages to infer typed relationships between entities [19].

Adaptive Faceted Search Based on the semantically enriched tweets, the
learnt relationships between entities extracted from tweets and the user profiles
generated by the user modeling layer, the adaptive faceted search layer solves
the actual facet ranking problem. It provides methods that adapt the facet-
value pair ranking to the given context and user. Furthermore, it provides query
suggestions by exploiting the relations learnt from the Twitter messages. Given
the current facet query, which is a list of facet-value pairs where each value refers
to an entity, we can exploit relationships between entities in order to identify
entities that are related to those entities that occur in the current facet query.
We leave the analysis of such query suggestions for future work. Instead, we
focus on the facet ranking problem and propose different strategies for ranking
facet-value pairs in the next subsection.

6 http://www.opencalais.com/

16

eknutov
Rectangle

Towards a Framework for Adaptive Faceted Search on Twitter 7

3.2 Adaptive Faceted Search and Facet Ranking Strategies

Non-Personalized Facet Ranking A lightweight approach is to rank the
facet-value pairs (p, e) ∈ F based on their occurrence frequency in the current
hit list H, the set of tweets that match the current query (cf. Definition 1):

rankfrequency((p, e), H) = |H(p,e)| (1)

|H(p,e)| is the number of (remaining) tweets that contain the facet-value pair
(p, e) that can be applied to further filter the given hit list H. By ranking those
facets that appear in most of the tweets, rankfrequency minimizes the risk of
filtering out relevant tweets but might increase the effort a user has to invest to
narrow down search results.

Context-adaptive Facet Ranking The context-adaptive strategy exploits
relationships between entities (facet values) to produce the facet ranking. A
relationship is therefore defined as follows:

Definition 2 (Relationship). Given two entities e1 and e2, a relationship be-
tween these entities is described via a tuple rel(e1, e2, type, tstart, tend, w), where
type labels the relationship, tstart and tend specify the temporal validity of the
relationship and w ∈ [0..1] is a weighting score that allows for specifying the
strength of the relationship.

The higher the weighting score w the stronger the relationship between e1
and e2. We use co-occurrence frequency as weighting scheme. Hence, given the
enriched tweets, we count the number of tweets both entities (e1 and e2) are
associated with. The context-adaptive facet ranking strategy ranks the facet-
value pairs (p, e) ∈ F according to w(ei, e), where ei is a facet value that is
already part of the given query: (pi, ei) ∈ Fquery (cf. Definition 1):

rankrelation((p, e), Fquery) =
∑
i

w(ei, e)|(p, ei) ∈ Fquery (2)

Hence, the context-sensitive strategy can only be applied in situations where
the user has already made one selection, so that |Fquery| > 0.

Personalized Facet Ranking The personalized facet ranking strategy adapts
the facet ranking to a given user profile that is generated by the user modeling
layer depicted in Figure 1(b). User profiles conform to the following model and
specify a user’s interest into a specific facet value (entity).

Definition 3 (User Profile). The profile of a user u ∈ U is a set of weighted
entities where with respect to the given user u for an entity e ∈ E its weight
w(u, e) is computed by a certain function w.

P (u) = {(e, w(u, e))|e ∈ E, u ∈ U}
Here, E and U denote the set of entities and users respectively.

17

eknutov
Rectangle

8 Ilknur Celik, Fabian Abel, Patrick Siehndel

1 10 100 1000
number of facet values (entities)

1

10

100

1000

10000

100000

1x106

nu
m

be
r o

f t
w

ee
ts

 th
at

 re
la

te
 to

 x
 fa

ce
t v

al
ue

s

tweet-based
tweet-based + exploitation of news relations

2.833.23.43.6
11.21.41.61.82

(a) number of facet values per tweet

1 10
number of facet types

1

10

100

1000

10000

100000

1x106

nu
m

be
r o

f t
w

ee
ts

 th
at

 re
la

te
 to

 x
 fa

ce
t t

yp
es

tweet-based
tweet-based + exploitation of news relations

(b) number of facet types per tweet

Fig. 2. Impact of semantic enrichment on (a) the number of facet values per tweet and
(b) the number of distinct facet types per tweet.

Given the set of facet-value pairs (p, e) ∈ F (see Definition 1), the person-
alized facet ranking strategy utilizes the weight w(u, e) in P (u) to rank the
facet-value pairs:

rankpersonalized((p, e), P (u)) =

{
w(u, e) if w(u, e) ∈ P (u)
0 otherwise

(3)

By combining the above three strategies it is possible to generate further facet
ranking methods. A combination of two strategies can be realized by building the
weighted average computed for a given facet-value pair (p, e) (e.g. rankcombined =
α · rankα((p, e)) + β · rankβ((p, e))).

4 Analysis of Faceted Search on Twitter

In our analysis, we study the characteristics of facets on Twitter. As described
above, tweets do not feature many facets by nature. Therefore, strategies that
enrich the semantic of tweets are required in order to derive facet-value pairs
for tweets. In this section, we examine how the semantic enrichment supports
the derivation of facets. Furthermore, we analyze the feasibility of the user and
context modeling strategies for making faceted search on Twitter adaptive.

4.1 Analysis of Semantic Enrichment

As tweets do not provide facets related to the topic, our faceted search frame-
work provides the functionality to enrich the semantics of tweets. To analyze the
feasibility of our semantic enrichment component (see Section 3), we monitored
the Twitter activities of more than 20,000 users over a period of more than two
months and processed the data that we collected (1,671,389 tweets in total) to
extract facet values from the tweets. For 62.91% of the tweets, we succeeded in
extracting at least one entity that we can use as facet value. By making use of the
semantic enrichment functionality that exploits links to external Web resources
(and news articles in particular), we increased the coverage so that 66.77% of

18

eknutov
Rectangle

Towards a Framework for Adaptive Faceted Search on Twitter 9

1 10 100 1000
user profiles

0

1

10

100

1000

10000

di
st

in
ct

 e
nt

iti
es

 p
er

 u
se

r p
ro

fil
e

Tweet-only
Tweet+News-based enrichment

Fig. 3. Entity-based user profiles that can be exploited for personalized facet ranking.

the tweets which are enriched with facet values obtained from related news have
at least one facet value. In the context of the news-based enrichment, we con-
nected 458,566 Twitter messages with news articles of which 98,189 relations
were explicitly given in the tweets by URLs that pointed to the corresponding
news article. The remaining 360,377 relations were obtained by comparing the
entities that were mentioned in both news articles and tweets as well as com-
paring the timestamps. In previous work we showed that this method correlates
news and tweets with an accuracy of more than 70% [20].

Figure 2(a) reveals that the number of facet values increases clearly when
tweets are enriched with entities of related news articles. For example, less than
20 tweets exhibit more than 10 facet values in the case of semantic enrichment
that is merely based on tweets . Given that tweets are limited to 140 characters,
this observation is expected. Moreover, the number of different facet types per
tweet also increases when linkage to news articles is exploited (see Figure 2(b)).
In our current implementation, we differentiate between 39 different facet types,
where persons, countries and organizations are the most popular types of facets.
In Figure 2(b), we see that the tweet-based enrichment does not allow for more
than 10 different types of facet types per tweets while the exploitation of news
relations features more than 10,000 tweets that can be discovered via more than
10 different facet types, i.e. users can choose between various facets to narrow
down the actual hit list (cf. Figure 1(a)).

4.2 Analysis of User and Context Modeling

The adaptation of the faceted search interface to the preferences of the user and
therefore the personalized facet ranking strategy (see Equation 3) requires entity-
based user profiles (see Definition 3). To analyze to what extent this method can
succeed, we show the profile size of 1500 randomly selected user profiles in Fig-
ure 3. We see that the news-based enrichment results in profiles that provide
more entities than the tweet-only based enrichment. For example, semantic en-
richment based merely on tweets fails for three users as the size of the profile is
zero for these users. In contrast, the news-based enrichment successfully gener-
ates profiles for all users. For more than 98% of the users, the number of distinct

19

eknutov
Rectangle

10 Ilknur Celik, Fabian Abel, Patrick Siehndel

entities per profile is even higher than 100. This indicates that news-based en-
richment prevents from sparsity problems and thus allows for supporting the
personalized facet ranking better than the tweets-only-based enrichment.

5 Evaluation Framework for Faceted Search

Evaluating the performance of faceted search is challenging. It usually requires
query logs and click-through data, which is difficult to get for researchers, or
calls for user studies, which are expensive if they are conducted on a large scale.
In this section, we propose a novel technique for automatically evaluating the
performance of faceted search on Twitter. Our evaluation methodology follows
an idea introduced by Koren et al. [21] and exploits re-tweets as ground truth
for estimating user relevance. The evaluation methodology is based on simulated
users who behave in a predefined way. The utility of the interface is measured
by the actions a simulated user needs to perform in order to find a relevant
document.

General Setup. The general setup used for the evaluation process contains
parameters describing the user interface itself and algorithms characterizing the
simulated user behavior. In general, all faceted search user interfaces share some
common characteristics and contains at least two parts: an area displaying the
facets and a part showing the search results. For our evaluation process, the
number of documents to be presented at a time, the number of different facets
to be displayed and the number of elements which can be shown for each different
facet need to be defined. We setup a basic framework for a search interface by
defining these three parameters. Based on this interface, a user can perform
different actions, where the goal is to find a relevant document. For every action
we can define a cost, where the cost is related to the time a real user would
need to accomplish this action. In our scenario a user can perform the following
actions:

Select facet-value pair Basic action a user performs every time a facet-value
pair is clicked, where the displayed search results are automatically updated
after the selection (costs: 1).

View more facet-value pairs This action indicates that none of the currently
displayed facet-value pairs are relevant for the user. By performing this action
the user gets an additional amount of facet-value pairs related to one facet
(costs: 2).

Show more documents This action allows the user to see more documents
(tweets) matching the currently selected facet-values (costs: 2).

Select relevant tweet This action ends the current search (costs: 0).

Beside the actions mentioned above one could also consider the act of dese-
lecting previously marked facet-values. In our search scenario, this action is not
included as we assume that the users have perfect knowledge about the tweet
they are looking for, and therefore a wrong selection will not take place.

20

eknutov
Rectangle

Towards a Framework for Adaptive Faceted Search on Twitter 11

Selection Strategies. The simulated users select facet-value pairs based on
different strategies. The strategies we use for our evaluation are:

Random user This user randomly selects one of the displayed facet-values
which matches the tweet he is looking for. If none of the displayed facet-
value pairs matches the tweet, he randomly chooses one facet to see more
facet-value pairs.

First-match user This user selects the first matching facet-value pair dis-
played by the interface. The basic idea behind this strategy is based on
a user who directly clicks on a matching facet-value pair suggestion and do
not look at all displayed facet value pairs to find the best matching one.

Greedy user This strategy tries to reduce the number of matching documents
as fast as possible. This user selects the facet-value pair which occurs in the
least number of remaining documents. This can be motivated by a user who
selects the facet-value pair which is particularly important for the targeted
tweet, in comparison to facet-value pairs which are related to many tweets.

Based on these facet selection strategies, the simulated user searches for a
relevant document. The cost of this search is measured by the costs and number
of actions a user needs to perform to find a relevant document.

Evaluation process. To measure the benefit of the proposed methods for
faceted search, we evaluate the cost for a user to find relevant documents. Here,
a tweet is relevant to a user, if the user re-tweeted this tweet. Re-tweeting a tweet
indicates that the user has read the tweet and is to some extend interested in
the content of the tweet. The proposed method is used to compare the costs of
finding a relevant document when using the baseline ranking strategy based on
frequency (non-personalized facet ranking) in comparison with context-adaptive
facet ranking and personalized facet ranking.

6 Conclusions

In this paper, we presented an adaptive and personalized faceted search engine
for Twitter, where we explained approaches for enriching the semantics of tweets,
extracting facets, discovering relatedness information between entities and ob-
serving user activities to learn their behavior and interests in order to support
users in their search for specific information or tweets. We proposed different
strategies based on learnt relations together with user action history for adapt-
ing the search behavior as well as improving content exploration in Twitter.
Furthermore, we introduced a generic evaluation environment based on Koren
et al. [21] that will allow us to evaluate our strategies by simulated experiments,
which constitutes part of our future research.

Acknowledgements The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no ICT 257831 (ImREAL project7).

7 http://imreal-project.eu

21

eknutov
Rectangle

12 Ilknur Celik, Fabian Abel, Patrick Siehndel

References

1. Hughes, A.L., Palen, L.: Twitter Adoption and Use in Mass Convergence and
Emergency Events. In: Proc. of ISCRAM. (2009)

2. Zhao, D., Rosson, M.B.: How and why people Twitter: the role that micro-blogging
plays in informal communication at work. In: Proc. GROUP, ACM (2009) 243–252

3. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring User Influence
in Twitter: The Million Follower Fallacy. In: Proc. of ICWSM, The AAAI Press
(2010)

4. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proc. of WWW, ACM (2010) 591–600

5. Lerman, K., Ghosh, R.: Information contagion: an empirical study of spread of
news on digg and twitter social networks. In: Proc. of ICWSM, The AAAI Press
(2010)

6. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblog-
ging usage and communities. In: Proc. of WebKDD/SNA-KDD, ACM (2007) 56–65

7. Kaufman, S.J., Chen, J.: Where we Twitter. In: Proc. of Workshop on Microblog-
ging: What and How Can We Learn From It? (2010)

8. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: Idioms, political hashtags, and complex contagion on
twitter. In: Proc. of WWW, ACM (2011)

9. Teevan, J., Ramage, D., Morris,M.R.: #TwitterSearch: A Comparison of Microblog
Search and Web Search. In: Proc. of WSDM, ACM (2011)

10. Bernstein, M., Kairam, S., Suh, B., Hong, L., Chi, E.H.: A torrent of tweets:
managing information overload in online social streams. In: Proc. of Workshop on
Microblogging: What and How Can We Learn From It? (2010)

11. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for rdf data. In:
Proc. of ISWC, Springer (2006) 559–572

12. Rowe, M, Stankovic, M., Laublet, P.: Mapping Tweets to Conference Talks: A
Goldmine for Semantics. In: Proc. of SDoW, colocated with ISWC, CEUR-WS.org
(2010)

13. Balby Marinho, L., Buza, K., Schmidt-Thieme, L.: Folksonomy-based collabulary
learning. In: Proc. of ISWC, Springer (2008) 261–276

14. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Emergent Semantics in BibSon-
omy. In: Informatik für Menschen. Volume 94(2) of LNI, GI (2006)

15. Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on
click behavior. In: Proc. of IUI, ACM (2010) 31–40

16. Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experi-
ments on recommending content from information streams. In: Proc. of CHI, ACM
(2010) 1185–1194

17. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influ-
ential twitterers. In: Proc. of WSDM, ACM (2010) 261–270

18. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing User Modeling on Twitter
for Personalized News Recommendations. In: Proc. of UMAP, Springer (2011)

19. Celik, I., Abel, F.: Learning Semantic Relationships between Entities in Twitter.
In: Proc. of ICWE, (2011)

20. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic Enrichment of Twitter Posts
for User Profile Construction on the Social Web. In: ESWC, Springer (2011)

21. Koren, J., Zhang, Y., Liu, X.: Personalized interactive faceted search. In: Proc. of
WWW, ACM (2008) 477–486

22

eknutov
Rectangle

Referencing within evolving hypertext

Victor Grishchenko, Janus A. Pouwelse, and Henk Sips

Delft University of Technology
Mekelweg 4, 2628CD

Delft, The Netherlands
victor.grishchenko@gmail.com

Abstract. The classic hypertext model omits the process of text growth,
evolution and synthesis. With hypertext creation becoming increasingly
collaborative and change timescales becoming shorter, explicitly address-
ing text evolution is the key to the next stage of hypertext development.
Uniform Resource Identifier (URI) is a proven general concept that en-
abled the Web. In application to versioned deep hypertext, expressive
power of a classical hyperlink becomes insufficient.
Based on the Causal Trees model, we introduce a minimalistic but pow-
erful query language of specifiers that provides us great flexibility of
referencing within a changing hypertext. Specifiers capture the state of
the text, point at changes, expose authorship or blend branches. Being
a part of an URI, a specifier puts advanced distributed revision control
techniques within reach of a regular web user.

1 Introduction

In the WWW/HTML model and, generally, in “chunked hypertext” systems the
main addressable unit is a “page” which might optionally also have addressable
“anchors” inside it. That is generally sufficient as long as we deal with static
texts, albeit the requirement that a page author must pre-provision anchors is
limiting. However, if we follow the general vision of a text as an evolving en-
tity (the “wiki model”), then the expressive power of a classical hyperlink is
insufficient. Since the addressed text is continuously changing, anchors might
disappear, and the content that is actually addressed by the link might be re-
edited or its surroundings may change. Similarly, there is no standard way of
pointing at particular statements and passages in the text. For collaboratively
created texts, such a possibility is desirable. Also, there is no semantics in place
to address co-existing versions of a text (named “branches” in the version con-
trol parlance). Those might be drafts, reeditions, alternative versions. Thus, our
mission is to explore possible approaches and conventions of referencing partic-
ular parts of text, its particular versions, or both. We want to measure, mark
and cut text in breadth and depth!

This paper is structured as follows. First, we consider relevant existing models
and their limitations in Section 2. Section 3 briefly describes the Causal Trees
(ct) model of text versioning and the basic primitives available for text/ version

23

addressing. In Section 4, based on the URI specification, we define the syntax
of specifiers.In Section 5 we consider practical applications for the proposed
conventions, explained as simple Alice-Bob scenarios. The Section 6 concludes.

2 Related and previous work

The early hypertext system Xanadu employed Dewey-inspired change-resistant
addresses named tumblers, e.g. 1.2368.792.6.0.6974.383.1988.352.0.75.2.
0.1.9287 (an example from [21] addressing a particular point in a particular
version of a document). That scheme was not reused by any later system.

Today, most wikis, including Wikipedia, have a history view capable of re-
trieving and comparing different versions of a text. However, the URL syntax
is implementation-dependent. The authors are unaware of any wiki that allows
for branching/ multiversioning of texts; a document’s history is always seen as a
linear sequence of numbered revisions. Distributed revision control systems1 im-
plement an extensive toolset for identifying/processing parallel revisions of texts
(typically, source code). Most of those systems model a mutation history as a
directed acyclic graph of revisions. The inner contents of a file are considered a
single data piece; no fine-grained addressing is possible. Revisions are typically
identified by cryptographic hashes of the content and metadata. A number of
wikis2 use distributed version control systems as their back-end, but they don’t
pass on the branching functionality to the front-end.

The possibility of addressing precise parts of a text is a well-known gen-
eral problem. Texts that need repeated reading, referencing or modification typ-
ically have some fragment addressing scheme as well. Examples are Biblical
(e.g. 1 Kings 11:41), Qur’an (2:2), legal (U.S.Const.am.8.) or source code
(kernel/panic.c:57) references. Paper books are referenced using page num-
bers, but those might change from edition to edition. These days, various e-book
devices made the notion of “a page” completely ephemeral. In application to
computer hypertext, three classic examples of addressing schemes are Purple
numbers [16], XPointer [7] and the classic patch [6] format. They rely on three
basic techniques: offsets, anchors and/or context. The first and the simplest
addressing technique is to use word/symbol offsets within a file. That works
well for static files. For example, web search engines employ inverted indexes
that list all the document-offset pairs where a particular word was found. But,
in a changing text, new edits invalidate offsets. Hence, every next version has
to be processed as a separate text. The second technique is planting anchors
within the text. However, pre-provisioning anchors for any future use by any
third party is not practical. The third technique is to address a point in the
text by mentioning its context, i.e. snippets of surrounding text. The approach
is robust, but heavyweight, dependent on heuristics and also vulnerable to text
mutations. Combining those techniques may increase robustness, e.g. the UNIX
1 For example, Bazaar http://bazaar.canonical.com/, Git http://git-scm.com/, Mer-

curial http://mercurial.selenic.com/
2 For example, Gitit wiki http://gitit.net or git-wiki http://github.com/sr/git-wiki

24

diff/patch format employs approximate offsets and context snippets. But, that
might increase fragility as well; e.g. an XPointer relying on an anchor and an off-
set becomes vulnerable to changes in both. Purple numbers address paragraphs
using either offsets or anchors. Neither method is perfect.

Several well-known technologies, such as WebDAV [13], BigTable [10] or Me-
mento [23], represent history of an evolving Web page as a sequence (or a graph)
of revisions identified by either timestamps or arbitrary labels. In that model,
every version stays a separate monolithic piece. There are some efforts to apply
versioning to adaptive hypertext [17].

The Operational Transformation theory (OT, [11]) generalized offset-based
addressing scheme for changing texts with the purpose of real-time revision con-
trol in distributed systems. Currently OT is employed by Google Docs, Google
Wave and other projects3. Among the shortcomings of the OT theory is its high
complexity and long-standing correctness issues [19, 15]. Systems that are known
to work had to adopt compromises on the original problem statement [11], either
by relying on a central coordinating entity [3] or by requiring that edits are al-
ways merged in the same exact order [22]. Still, the main problem is bigger: OT
does not address revision-control tasks that lie outside the frame of real-time col-
laborative editing, narrowly defined. Those are: branching, merging, propagation
of changes, “blame maps”, diffs and others.

The Causal Trees (ct) model [14] was introduced to resolve the problems ev-
ident in OT. Instead of relying on offset-based addressing, which is volatile once
we consider a changing text, ct assigns unique identifiers to all symbols of the
text. Thus, it trivially resolves the correctness/complexity problems and also in-
troduces new possibilities. For example, it allows fine-grained fragment address-
ing that survives edits. Being defined along the lines of the Lamport-Fidge [18,
12] time/event model, it allows for reliable identification of any versions, even in
a text that has multiple concurrently changing editions (branches). Effectively, ct
implements the functionality of deep hypertext, as described in [1]. The ct model
is the starting point of this work. Recently, the ct model was implemented as a
JavaScript library ctre.js4.

Consider a document which has several evolving branches. Suppose it is a
Wikipedia-style wiki of course materials which is supported by several univer-
sities in parallel. On the one hand, we want to maintain the upside of collabo-
ration which is well illustrated by the success of Wikipedia. On the other hand,
we want to avoid edit warring [2] and the extreme volatility of content typical
of Wikipedia. Thus, we suppose that such a wiki is supported by a network of
collaborators exchanging, negotiating and filtering edits in the way the Linux
kernel is developed (the “git model”).

In such an environment, a single document may be seen in hundreds of ways,
depending on which editions we are looking at, and when. Similarly, if we want
to address some particular parts of a document, there are numerous possibilities.
3 Google Docs http://docs.google.com, Google Wave http://wave.google.com, Gobby

http://gobby.0x539.de, Etherpad http://etherpad.org
4 Project page at GitHub: http://github.com/gritzko/ctre

25

Our intention is to extend the semantics of URIs [8] to deal with that complexity
and to make it manageable and clear to a regular user. We assume that the
address field of the browser is the user’s primary means of navigation. Finally,
the ability to identify and address (and instantly access) arbitrary resources is
the cornerstone of the Web. We extend that ability in space and time.

3 The ct model

The ct model augments the very fabric of text to reflect its evolution. Drawing
some lessons from the history of Operational Transformation theory, ct does not
use offset-based addressing and does not try to find one true frame of reference.
Instead, ct closely follows the lines of the Lamport-Fidge [18, 12] relativistic
model of events and time in a distributed system. In essence, ct is a Minkowski
spacetime [20] model for versioned texts, unifying time (versions) and space
(text) as different projections of the same phenomenon. This section will briefly
explain the basics of the model and its building blocks.

A. Symbols have own identity. Attempts to identify symbols by their offsets
in a versioned text have produced unsatisfactory results. As a text constantly
changes, so do offsets. Thus, it becomes nearly impossible to reliably point at a
given character. Instead, ct starts by assigning unique identifiers to every symbol
in a document. Securing globally consistent serial identifiers is impossible in a
truly decentralized system, thus we resort to the Lamport-Fidge approach. For
a given document, all its symbols originating from the same author are sequen-
tially numbered. Thus, they constitute a vector of contributions (called a yarn)
of that particular author to that particular document. Still, we do not try to im-
pose any global numbering. Instead, we identify a symbol by its (yarn_uri, sym-
bol_number) pair, i.e. (alice.org/page,398). Given that id, we may always
retrieve the symbol, and a symbol may be reliably pointed at, independently of
any changes in the document. A symbol with an identity is called an atom.

B. Text and operations are the same. There is no separation of “a text” and
text-modifying “operations”. A text consists of atoms and any operation is a set
of atoms as well. An “atom” is a symbol plus its metadata. Even deletions are
implemented as special “backspace” meta-symbols. An atom’s metadata consists
of its own identifier and an identifier of the causing atom. The causality relation
weaves atoms together to form a text. Very much in the spirit of the Markov
chain [9] model, a symbol is said to be caused by its preceding symbol at the time
of insertion. Such a simple relation leads to provable correctness and convergence
even in a distributed system with no central entities [14]. All replicas of a text
eventually converge to the same state and no edits are misapplied.

C. All frames of reference are equal. A frame of reference corresponds to a
single “local” author and his version of the text. There is no special “central”,
“reference” or “true” version. When accessing a text, we access not the text per

26

se, but its version by a particular editor (a yarn). Other yarns are retrieved by
recursively following causal dependencies. Then, yarns are woven together to
produce a version of the text [14]. A transitive closure of causal dependencies
is one of the key concepts of ct. For example, it defines the way branches are
represented in ct. A branch is a set of yarns that has dependencies on the “trunk”
yarns of the text, but there are no dependencies in the reverse direction (trunk
to branch). Once such reverse dependencies are created, the branch effectively
merges into the trunk, as it becomes a part of the trunk’s closure.

3.1 Unicode serialization

In practice, ct is implemented with regular expressions5. That is not only math-
ematically well-defined, but also practically useful, as it allows to run ct in a
Web browser with native speed. To make atoms regex-processable, their ids are
encoded with two Unicode symbols, one for the author/yarn and another for
the symbol’s serial number. For example, an atom id (alice.org/page,398)
becomes “AΘ”, where “Θ” is the Greek capital letter Theta corresponding to
Unicode code point 398. We also assume a mapping between symbols and URIs,
where “A” corresponds to alice.org/page.

While two-symbol ids might seem insufficient, they allow for up to 4 billion
symbols per document if using a baseline regex implementation supporting only
16-bit Unicode BMP characters [5]. Once an author exceeds the 216 symbol limit,
(s)he might be allocated another yarn id. The case of 216 authors per document is
considered highly unlikely, and even if that happens, there is always an option to
use two characters for a yarn id (hence three characters per atom id total). Still,
we believe that the two-symbol scheme provides sufficient numbering capacity
for most of the texts.

Serializing atoms as tuples of Unicode symbols allows to pack all data struc-
tures into strings and to process them with regular expressions. That resolves
an important practical bottleneck. Performing sophisticated revision control op-
erations in a Web browser, in real time, becomes possible.

3.2 Specifying ranges and versions

In full accordance with the spacetime concept, ct denotes intervals in time (ver-
sions) and intervals in space (text ranges) in a very similar way, namely by
mentioning their bounding atoms. Regarding text ranges, we may rely on the
linear order of symbols in a text, and simply denote a text range by mentioning
its end-points. Thus, [A4;B8) stands for an interval starting at a symbol num-
ber 4 by author A and lasting till, but not including, the symbol number 8 by
B.6 This interval specification is immune to any further text changes, including
deletion of the bounding atoms.
5 The PCRE (Perl Compatible Regular Expressions) dialect, as used in JavaScript
6 Parentheses () stand for excluded endpoints, square brackets [] for included.

27

Denoting versions in a distributed system may be trickier. In the simplest
case, a version history is linear (e.g. there is only one author). Then, a revision
may be denoted just by mentioning its most recently introduced symbol, e.g. B8.
Thus, that one and all the “older” symbols B1–B7 constitute a version. But, in
the general case of a distributed system, all participants are free to introduce
new changes, and those changes propagate with finite speed. At a given moment
in time, each participant sees a version of a text, based on the edits it is aware
of. Thus, version history is not sequential. The only appropriate model is a
directed acyclic graph. In such a case, a version might have multiple “most
recent” symbols, e.g. A4 and B8. The number of such symbols cannot exceed
the number of authors or, more precisely, yarns. Essentially, a set of those “most
recent” symbols is a logical vector timestamp [18]. Under the hood, ct represents
vector timestamps as wefts, which are strings of even length consisting of two-
symbol atom identifiers, like A4B8.

Note that range/version specifications may have any of their bounding sym-
bols either excluded or included. In general, that time-space unification will help
us a lot with our specifier syntax (see Sec. 4.2).

4 URL conventions

An atom identifier is just a pair of Unicode symbols, one for the author/yarn
code and another for the atom serial number within the yarn. A version or a
text range is thus denoted by several Unicode symbol pairs. We want to use
them in URIs as basic building blocks of our version/fragment specifiers. But,
the URI syntax [8] only allows for a restricted subset of 7-bit ASCII symbols. So,
we have to define a serialization of atom identifiers. Our end goal is to develop a
syntax convention that allows to denote text versions and ranges by URIs that
are easily communicated using email, instant messaging, Twitter, napkins [8]
and even spoken speech.

4.1 Encoding

The default option for using Unicode in URIs is the percent-encoding [8]. But
that would consume six characters per every non-ASCII symbol (hence, 12 per
atom id). Instead, we encode atom identifiers using base64 encoding, namely its
variety that employs alphanumerics, tilde and underscore to express 64 = 26

values.7 We only consider Unicode characters of the Basic Multilingual Plane,
which gives us 216 possible values for either author or symbol code, and corre-
spondingly 232 possible values of an atom id. We resort to separate encoding of
author and symbol codes by up to three base64 characters each (26×3 > 216).
Thus, an encoded atom id may take up to six base64 characters.

We expect most texts to be short, created by a few authors, so most au-
thor/symbol codes will have low values. As one URI may include many atom
7 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz˜_

28

ids, it is highly beneficial to use a variable-length encoding to shorten serialized
atom ids, when possible. In the worst case, we still use 6 symbols per atom
id, but in case, for example, we see a three-symbol id, we know that the first
symbol stands for the author and the other two for the symbol code. Assuming
that atom ids are guaranteed to be bounded by delimiter symbols, we may agree
to use 2=1+1, 3=1+2, 4=1+3, 5=2+3 and 6=3+3 conventions. For example, sup-
pose an atom id is encoded with five base64 characters: 0e5ZC. Then, according
to the 5=2+3 convention, the first two stand for the author code (up to 22×6

values) and the next three stand for the symbol’s number (up to 23×6 values).
Numerically, 0e = 0 × 641 + 40 × 640 + 48 = 88 is the code for the author and
5ZC = 5 × 642 + 35 × 641 + 12 × 640 + 48 = 22780 is the serial number of the
symbol among those contributed by that particular author to that particular
page. (Unicode code point 88 corresponds to a Latin capital letter X. Code point
22780 corresponds to a hieroglyph 壼).

To express the aforementioned semantics of included/excluded bounds (see
Sec. 3.2) and to guarantee reliable delimiters, we prepend every atom identifier
with either + or -, denoting included or excluded bounding symbols respectively,
e.g. +0e5ZC. The default value is +. We also allow atoms to be marked with
mnemonic labels. Then, instead of a base64 representation of an atom id, we
will use a single-quoted alphanumeric label, e.g. +'SOME_VERSION'.

While every author/yarn is encoded with an arbitrary Unicode char, it is
convenient to make base64 representations somewhat meaningful semantically.
Thus, instead of encoding “Alice” as 0e (i.e. 88 or Unicode X), we will try to use
such options as Alc (Unicode 갖), Al (Unicode ˟) or simply A (Unicode :).

4.2 Text state/presentation specifier

Under the hood, the ct model has lots of version control related features and
functions. Indeed, there are hundreds of ways to display an evolving text, and
many of them are useful. The main bottleneck is the user’s ability to perceive
that data and to access that functionality. So, the core of our mission is to put
that toolset within reach of an end user. Practically, we develop a small query
language based on URI-embeddable expressions that will allow us to access the
most of ct’s capacity right from the browser’s address bar.

A specifier is a complete URI-embedded expression describing the desired
state of the text and nuances of its decoration. A specifier contains a sequence of
parameters. Each parameter affects a single aspect of text state or text presen-
tation. A “state” parameter changes the actual text body delivered to the user,
while a “presentation” parameter only adjusts its decoration (i.e. color, high-
lighting, strike-through, other marks). In this section we describe seven types of
parameters: three state, three presentation and one mixed type.

The space/time unification helps us a lot. It lets all parameters follow the
same syntax convention with minor variations. Every parameter starts with a
special separator symbol (typically a sub- or general delimiter in terms of [8]).
The separator defines the type of the parameter. The separator is followed by a
sequence of zero or more atom identifiers and/or quoted labels.

29

Version is the first and the most basic state parameter. It defines the version of
the text that is actually shown to the user. A version parameter employs excla-
mation mark ! as a separator, normally followed by atom identifiers. Suppose,
Alice wrote “Hallo wrld” and Bob corrected that to “Hello world”. Thus Alice
contributed 10 atoms (say, Al01-Al0A) and Bob contributed three (including
one backspace, e.g. Bo01-Bo03). Then, the resulting version is !Al0A+Bo03.

Range is a state parameter specifying a fragment of a page that has to be
delivered to the user. Range separator is : (a colon). In the example above, a
range specifier :Al01-Al06 initially points at “Hallo”. Once Bob fixes the typo,
the value of the same range changes to “Hello”.

Branch is a parameter that allows to work with parallel versions of the same
text. The separator is = (equal sign). A branch might be specified either with
a label or with a yarn id, i.e. ='Branch' may be interchangeable with =Br.
The default “trunk” branch is addressed as =. The ct model allows to deal with
branches in completely novel ways. In particular, it allows to merge (blend)
branches in real time. Our syntax should let users access that functionality. In
case multiple branches are specified, their contents are merged (blended), but
all new edits go to the first mentioned branch. So, a specifier ='Draft'= merges
the trunk with the Draft branch, but all new edits go to the latter.

Fragment is a presentation parameter analogous to the range parameter. It
specifies an area of interest within the delivered text. We re-use the standard URI
fragment separator # (number sign). Important detail: the fragment part of URI
is not reported to a HTTP server by a HTTP client (i.e. the browser). Hence, all
corresponding actions are performed locally in the web browser (i.e. page scroll
or range highlighting). In our example, #Bo02-Al05 would show “Hello world”
with “ell” selected or highlighted.

Baseline version is a presentation parameter pointing out which version is
considered “the previous version”. Thus, all changes that happened after that
“previous” reference version should be highlighted. That is most useful when a
user wants to see the changes that happened since his/her last visit, or otherwise
compares two versions. This parameter employs $ as a separator. Thus, to see a
difference between two versions, Alice may use a specifier like $Al06!Al0A. That
will deliver “Hallo wrld”, with “wrld” highlighted.

Author parameter suggests to somehow mark/unmark contributions of certain
authors. The separator is @ (at sign). For example, $Al08@-'Alice' will unmark
contributions made by Alice thus only leaving “e” and “o” highlighted, as those
are contributed by Bob: “Hello world”. Here we deviate from the general scheme
of using full atom identifiers after a separator, as we only need to identify an
author/yarn (the same as with branches). We may rewrite the same specifier as
$Al08@-Al.

30

Change status is a mixed state/presentation parameter with a syntax some-
what deviating from the common pattern. It employs an asterisk * as a separator.
Its mission is to filter/recover symbols based on their insertion/deletion status.
For example, $Al0A*+AlBo shows all symbols inserted by Alice and removed by
Bob since version !Al0A. Thus, the resulting text is “Heallo world”, with “a”
struck out, “e” and “o” highlighted.

Effectively, we created a small query language that controls state and presenta-
tion of a versioned text, points at ranges and versions, locates changes, navigates
branches. As with any language, the expressive power comes from combining
the primitives. We may easily imagine sophisticated but still comprehensible
constructions, like:

http://server.dom/Proposal='Draft'$Alzu!Bo4Vk@-Bo#Alb8-AlyK

That means: “on a page named Proposal, within a branch named Draft, using
version Bo4Vk, please highlight changes made since version Alzu, except for the
changes made by Bob, and please select the range Alb8–AlyK”. We do not expect
every user to master this language. Composition of queries may be done by the
GUI. Still, we see that this formal and compressed way of expressing versioning-
related page state/presentation opens promising possibilities. One interesting
example is the ability of specifiers to fully describe the current state of the edited
page, including the current selection. If all changes of the state are reflected in
the fragment part of the URI (rewriting fragment does not cause the page to
reload), then the entire page state may be copied and sent by e-mail or IM to
another person. An evolving text is almost like a river, in the sense that you
cannot step into the same river twice. With specifiers, remote collaborators will
have that possibility to be almost literally on the same page.

5 Scenarios

In this section we consider a hypothetic scenario of Happytown State University
participating in a project that might be briefly described as a cross between
OpenCourseWare and Wikipedia, collaboratively developed the git way. Collab-
orators from peer universities contribute academic information, including course
materials, lecture notes and general articles. Users experience the system as a
real-time wiki running in a browser. Each university hosts its own wiki.

That wiki also supports branches and distributed revision control to allow for
parallel coexistence of drafts and working versions, on par with polished “canon-
ical” public versions. Distributed revision control also allows to federate wikis of
different universities. Users may pull changes from peer wikis in automated or
manual fashion. Eventually, constant exchange of changes makes different wikis
converge. Still, some pages may differ, because they are not merged yet or be-
cause of a conflict, e.g. in case Prof. Montague is unable to find common ground
with Prof. Capuleti.

31

Voluntary import of changes allows to avoid Wikipedia-style edit warring
and “the most persistent person wins” problem. It also acts as a soft variety
of peer review, improving prestige of authors whose edits are widely accepted.
While changes propagate from site to site, all authorship information is preserved
intact. Academic prestige provides healthy incentives for participation, while
direct spamming and self-promotion are countered by social filtering. Effectively,
we consider a hypothetical bottom-up open-source academic publishing system.

5.1 Lecture and scribes

While assistant professor Alice delivers a lecture, appointed scribes transcribe
it collaboratively in real-time by filling the lecture skeleton previously created
by Alice. As the course is available on the web site both to peer universities
and general public in real-time, scribes use a separate branch for their work:
http://ocw.happytown.edu/Lecture=Scribes. Once scribes enter the URL, the
branch is automatically created. They transcribe the lecture quite hastily. After
the lecture, PhD student Bob polishes the text and merges it back into the uni-
versity’s trunk version. Thus, the public version is now updated and available
to external audiences. Later, PhD student Fred of Fartown University decides
to cite a passage from the lecture. He selects the passage and uses the link from
his browser’s address bar: http://ocw.fartown.edu/Lecture#Bk-B7~
Note that Fred uses the Fartown wiki which pulled content from Happytown.

5.2 Private remarks

Professor Carol oversees the lecture to see how well Alice is doing. Carol wants
to see what scribes are recording to avoid getting out of sync with their version.
Still, Carol wants to keep her remarks private. Thus, Carol blends Scribes with
her own private branch by entering URL: http://ocw.happytown.edu/Lecture
=Notes=Scribes. Now, the edits made by the scribes and her own changes are
visible to Carol as a single merged text, updating in real time. Authorship is
highlighted, one color per a yarn. Scribes cannot see the remarks made by the
professor. Later, Carol will discuss the Notes with Alice and they will work on
improving the text. A polished version of the branch will have to be merged back
into the trunk. But, the edit history of the branch has lots of offhand remarks
and back-and-forth editing which shouldn’t go into the public history of the
document. Thus, Carol rebases [4] the changes into the trunk, i.e. includes them
by value, not by reference, leaving the edit history behind.

5.3 Back from vacation

PhD student Bob gets back from a conference and a vacation and logs into the
system. He finds out that the project has advanced a lot since he departed.
He loads the project status page. The changes made since his last visit are
highlighted, contributions of different authors shown in different colors. At some

32

point Bob decides to discuss the changes with post-doc Dave, who has authored
some key new pieces of the text. Bob wants Dave to see exactly the same “blame
map” highlighting as well. He picks the full URL of the current page state to paste
it into an instant messaging client http://ocw.happytown.edu/Lecture$Bo2j8
Then, he understands he should ask a focused question, so he selects a passage he
is mostly concerned about. The URL changes to http://ocw.happytown.edu/
Lecture$Bo2j8#Bo64Q-D77j now denoting the selection. Bob pastes the link
into IM asking Dave for a clarification. This way he minimizes interruptions of
context that would otherwise result from going and asking about “that change”.

6 Conclusion

In this work, we bridged the ct model [14] of deep hypertext and the generic URI
scheme [8]. We have shown that a simple and laconic convention may provide very
fine-grained addressing for particular versions and/or segments of a changing
text. Although the convention is ct-specific, it is rooted in the Lamport-Fidge
time/event model and thus more predetermined than arbitrary.

We described several novel end-user scenarios for deep hypertext applications.
Currently, distributed revision control is an expert-only domain. We have shown
that such a functionality might be served to a regular academic user as well.

7 Acknowledgements

This work was partially supported by the EC FP7 project P2P-Next, grant
#216217. Authors are grateful to David Hales for valuable feedback.

References

1. Deep hypertext: The Xanadu model. http://www.xanadu.com/xuTheModel/.
2. Edit warring on Wikipedia. http://en.wikipedia.org/wiki/Wikipedia:Edit_warring.
3. Google Wave protocol. http://waveprotocol.org.
4. Rebasing at “The Git Community Book”. http://book.git-scm.com/4_rebasing.html.
5. The Unicode standard. version 6.0 - core specification.

http://www.unicode.org/versions/Unicode6.0.0/.
6. Unix manual page for the patch utility. man patch.
7. XML Pointer Language (XPointer) Version 1.0. http://www.w3.org/TR/WD-xptr.
8. RFC 3986: Uniform Resource Identifier (URI): Generic Syntax, 2005.
9. Markov A.A. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie

drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom
universitete, 15:135—156, 1906.

10. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a
distributed storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7, OSDI
’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

33

11. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. SIGMOD
Rec., 18:399–407, 1989.

12. Colin Fidge. Logical time in distributed computing systems. Computer,
24(8):28–33, 1991.

13. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP extensions
for distributed authoring – WEBDAV. RFC 2518.

14. Victor Grishchenko. Deep hypertext with embedded revision control implemented
in regular expressions. In Proceedings of the 6th International Symposium on Wikis
and Open Collaboration, WikiSym ’10, pages 3:1–3:10, New York, NY, USA, 2010.
ACM.

15. Abdessamad Imine, Pascal Molli, Gérald Oster, and Michaël Rusinowitch.
Proving correctness of transformation functions in real-time groupware. In
ECSCW’03: Proceedings of the Eighth European Conference on Computer
Supported Cooperative Work, pages 277–293, Norwell, MA, USA, 2003. Kluwer
Academic Publishers.

16. E. E. Kim. An introduction to Purple. http://eekim.com/software/purple/purple.html.
17. E. Knutov, P. De Bra, and M. Pechenizkiy. Versioning in Adaptive Hypermedia. In

Proceedings of the 1st DAH’2009 Workshop on Dynamic and Adaptive Hypertext:
Generic Frameworks, Approaches and Techniques, pages 61–71, 2009.

18. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

19. Du Li and Rui Li. An admissibility-based operational transformation framework for
collaborative editing systems. Comput. Supported Coop. Work, 19:1–43, February
2010.

20. Hermann Minkowski. Raum und Zeit. B. G. Teubner, Leipzig, 1909.
21. Theodor Holm Nelson. Literary Machines. Mindful Press, 1982.
22. Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen.

Achieving convergence, causality preservation, and intention preservation in
real-time cooperative editing systems. ACM Trans. Comput.-Hum. Interact.,
5(1):63–108, 1998.

23. H. VandeSompel, M. Nelson, and R. Sanderson. HTTP framework for time-based
access to resource states – Memento. draft-vandesompel-memento-01.

34

A set of adaptation patterns for expressing
adaptive navigation in Adaptive Hypermedia

Nadjet Zemirline1,2, Yolaine Bourda1, and Chantal Reynaud2

1 SUPELEC Systems Sciences (E3S) - Computer Science Department, France
(Nadjet.Zemirline, Yolaine.Bourda)@supelec.fr

2 University of Paris-Sud XI, CNRS (LRI) & INRIA-Saclay/Projet Leo, France
Chantal.Reynaud@lri.fr

Abstract. This paper presents a set of 22 adaptation patterns, inde-
pendent of any application domain and independent of any adaptation
engine. They have been translated to LAG and GLAM adaptation lan-
guages in order to plug them on existing adaptation engines. Currently,
they are used in the EAP framework, which allows defining complex
adaptation strategies in Adaptive Hypermedia. We also propose a typol-
ogy for the elementary adaptation patterns in order to facilitate their
use and their understanding.

1 Introduction

Over the last decade, Adaptive Hypermedia (AH) have been under develop-
ment [6], particularly in education [1], where learners get access to particular
resources according to their knowledge, preferences and goals. Such access are
proposed through the definition of adaptation, which is often considered as the
most difficult part to author in AH [4, 2].

The definition of adaptation is made through expressing multiple adaptation
strategies. An adaptation strategy specifies which resources have to be proposed
and how these resources will be proposed to a set of users who share the same
characteristics [9]. For example, users being theorist, textual and sequential,
will have access only textual resources related to theory before those related to
samples according to a depth-first navigational path on the relation successor.

Thereby, authors face numerous challenges when defining their adaptation
strategies. The 1st challenge concerns the expression of adaptation strategies.
The 2nd challenge concerns the reuse of adaptation strategies from one system
to another one, and the expression of adaptation strategies independently of
any AH System. To do so, the paradigm ”write once, use many” [8] has been
proposed. It endorses expressing adaptation at a high level, independently of any
AHS, then translating this adaptation into a particular AHS. The 3rd challenge
concerns the granularity in writing adaptation strategies. Its target is to avoid
writing the common parts of adaptation strategies several times.

As shown in [9], till now, there have been no works concerning building
complex adaptation strategies, independent of any AHS by combining simple
adaptations.

35

II

So, in this paper, we present a set of 22 elementary adaptation patterns
(EAP), easy to understand, independent of any application domain and also
independent of any adaptation engine. They have been translated to LAG [2]
and GLAM [7] in order to plug them to existing adaptation engines. Note that,
LAG is already plug on multiple adaptation engines and GLAM proposes its
adaptation engine. These EAP are used in the EAP framework [9]. The EAP
framework enables authors to define complex adaptation strategies, at a high
level and independent of any adaptation engine. It assists authors to instantiate
our EAP on their domain model, thus to define elementary adaptations. Each el-
ementary adaptation is associated to a user characteristic. As a user has multiple
characteristics at a time, the framework proposes a semi-automatic combination
process of elementary adaptations to compose complex adaptation strategies3.

2 Description of an elementary adaptation pattern

We propose the following definition for elementary adaptation patterns (EAP),
based on the definition of design patterns [5].

Definition 1. An elementary adaptation pattern describes a generic solution
for a generic elementary adaptation problem.

The solution is independent from any language, and it exploits the characteristics
of the domain model.

Definition 2. A generic elementary adaptation problem describes a criterion
to select resources to be proposed and a criterion to define in which order the
selected resources are going to be proposed.

In the following, we define fundamental criteria to select resources and to orga-
nize the selected resources on which EAP are based.

Criteria used to select resources. They are based on the structure of the
domain model. We argue that the general description of a domain model includes
the following elements: a set of classes, which must contain the class representing
all the resources to be proposed, most often known as Resource, and the class
representing all the domain concepts, most often known as Concept. A set of
relations between classes. Each relation defines a graph on instances of classes
on which it is defined. The graph have to be navigated in order to reach user
goals. A set of properties.

Thereby, we have differentiated between criteria selecting resources and crite-
ria defining a navigational path on relations. Our criteria for selecting resources
are: (a) their belonging to a class, (b) the values of some properties, or (c) the
presence of a relation through the resources or (d) the presence of a relation
through the concepts. Furthermore, our criteria currently considered for defining
a navigational path are either (a) depth-first, (b) breadth-first.

3 The most difficult part of the combination is done automatically.

36

III

Criteria used to order the selected resources. In [9], we have studied
over works defining adaptation methods, by giving a particular interest for adap-
tive navigation. We have retained four distinct and basic modes to select re-
sources in a setting of adaptive navigation, as described below:

a - Selection only mode provides a set of resources based on a criterion. Only
the selected resources are proposed to users, the other ones are not proposed.
For example, we propose only textual resources.

b - Recommend selection mode provides multiple sets of resources (at least
two) that include knowledge to specify which set should be recommended
rather than the others. For example, to recommend definitions rather than
examples. Both types of resources are accessible by users with distinct typo-
graphic indication to identify which resources are recommended.

c - Ordered selection mode provides multiple sets of resources (at least two),
accompanied with knowledge to specify the order in which they must be pre-
sented. Only one set of resources is proposed at a time, and the resources of
a particular set are not proposed until all the resources of all sets of higher
priority have been viewed by the user. For example, concepts can be selected
and ordered using the successor relation defined between concepts.

d - Alternate selection mode provides multiple sets of resources (at least
two), accompanied with data that specifies the order in which they must be
presented, knowing that only one set is presented to the user. For example,
we propose textual resources when they are available, and audio resources
in the absence of textual resources.

Table 1 presents the characteristics retained from [5] and used to describe EAP.

Name: is the name of the elementary adaptation pattern described.
Intent: is a short statement about an elementary adaptation problem. It answers what
is the elementary adaptation pattern supposed to do? i.e. what is its goal? Indeed, it
indicates the way the resources are selected and the way they are presented.
Solution: includes two elements:

– Expressions: denote a set of resources to be proposed, and the conditions which
have to be satisfied. These conditions can be represented in one or more logi-
cal expressions. Those to be considered simultaneously are gathered in the same
expression, while excluded conditions are expressed in different expressions.

– Meta-expressions: a binary relation between two expressions. Indeed, when using
multiple expressions, we specify the way they have to be considered using meta-
expressions. Let E1, E2 two expressions, we defined the following meta-expressions

E1 ≺ E2 to define an ordered selection mode.
E1 � E2 to define a recommended selection mode.
E1 | E2 to define an alternate selection mode.

Constituents: describe the elements of the domain model used.

Table 1: Description of elementary adaptation patterns

37

IV

3 Organization of elementary adaptation patterns

Based on the criteria defined above, we have defined a library of 22 EAP. In
order to be able to look easily over them, we have organized them in a tree
where each leaf is an EAP (cf. Figure 1). The tree is read from left to right and
each EAP is based simultaneously on:
1 - One of the 4 selection modes of resources to be proposed,
2 - One of the 3 elements of the domain model involved in the selection process

- When the element is a relation, we consider also one of the 2 types of
navigation through the resources or the concepts graph4.

Adaptive
navigation

1. Selection only

2. Ordered
Selection

3. Recommended
Selection

.1. Relations

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.3. Properties

.3. Properties

Type of navigation on
 the domain model

Selection modes Elements of
the domain model

4. Alternate
Selection

..2. Resource

.1. Relations

..1. Concept

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

Classes related
to relations

Navigational
path on instances

Patterns

P 1.1.1

P 1.1.2

P 1.3

P 1.2

P 2.1.1.2

P 2.1.1.1

P 2.1.2.2

P 2.1.2.1

P 2.3

P 2.2

P 3.3

P 3.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

P 3.1.1.2

P 3.1.1.1

P 3.1.2.2

P 3.1.2.1

P 4.3

P 4.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

P 4.1.1.2

P 4.1.1.1

P 4.1.2.2

P 4.1.2.1

Fig. 1. Typology of elementary adaptation patterns

Just looking to the typology, we can deduce that the previous example of
adaptation strategy (cf. Section 1) can be expressed using three separate EAP.
Selecting select only textual resources is expressed using P1.3. Proposing ordered
resources according to a successor relation is expressed using P2.1.2.1. Proposing
resources related to theory before resources related to samples is expressed either

4 The two navigation modes are applied for all the selection modes except for the
selection only mode, which proposes a set of resources according to a criterion.

38

V

using P2.2 if theory and sample are modeled as two classes in the domain model,
or using P2.3 if theory and sample are modeled as an attribute of the Resource
class in the domain model.

We describe below our library of EAP per selection mode. Table 2 describes
EAP using the selection only mode. P1.1.1, P1.1.2, P1.2 and P1.3 in Figure 1.

P
1
.1
.1

Name: Selection Only - Relation - Concept
Intent: It proposes resources that are linked to concepts by abstraction, and where
each concept can reach the concept named goal directly/indirectly using relationi.
Solution:
Expression
E1: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

E1 means that selected resources are linked to concepts using abstraction. The
concepts can reach the goal using relationi.
Constituents: See row 1, row 2 in Table 6

P
1
.1
.2

Name: Selection Only - Relation - Resource
Intent: It proposes resources that can reach the resource named goal directly or
indirectly using relationi.
Solution:
Expression
E1: linked-transitive(r, goal, relationi)
E1 means that selected resources are linked to concepts using abstraction and they

can reach the goal using relationi.
Constituents: See row 1, row 2 in Table 6

P
1
.2

Name: Selection only - Classes
Intent: It allows to select all resources of a specific type.
Solution:
Expression
E1: instanceOf (r, Class1)

E1 means that selected resources are instances of the class Class1.
Constituents: See row 1, row 3 in Table 6

P
1
.3

Name: Selection only- particular value of a property
Intent: It allows to select resources according to some values of a property.
Solution:
Expression
E1: characteristicOf(r, propertyi , op, val)

E1 means that selected resources must have the property propertyi and their value
must satisfy the comparison test.
Constituents: See row 1, row 4 in Table 6

Table 2: Elementary adaptation patterns using simple selection mode

Table 3 describes EAP using the ordered selection mode. P2.1.1.1, P2.1.1.2,
P2.1.2.1, P2.1.2.2, P2.2 and P2.3 in Figure 1.

P
2
.1
.1
.1

Name: Ordered Selection - Depth first- Relation - Concept
Intent: It proposes resources according to a depth first navigational path on con-
cepts.
Solution:

39

VI

Expression

– E1: linked(currentR, concept’, abstraction) ∧ linked-transitive(concept, goal,
relationi) ∧ linked(r, concept, abstraction) ∧ linked(concept, concept’,
relationi)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1 selected resources are linked to concepts using abstraction. The
concepts can reach the goal using relationi and are directly linked to current concept.
According to E2 selected resources are linked to concepts using abstraction. The

concepts can reach the goal using relationi.
Meta-expressions
E1 ≺ E2

According to this meta-expression, the set of resources selected by E1 is proposed
before the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
2
.1
.1
.2

Name: Ordered Selection - Relation - Concept - breadth first
Intent: It proposes resources that are linked to concepts by abstraction, and where
each concept can reach the concept named goal directly or indirectly using relationi

according to a depth first navigational path.
Solution:
Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2,
abstraction) ∧ distance(concept2, origin, relationi) ∧ distance(concept,
origin, relationi) ∧ linked(currentR, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1 selected resources are linked to concepts using abstraction. The
concepts are linked to the goal using relationi and have the same distance of the
concept which is an abstraction of current resource from the first selected resource.
According to E2 selected resources are linked to concepts using abstraction. The

concepts can reach the goal using relationi.
Meta-expressions
E1 ≺ E2

According to this meta-expression, the set of resources selected by E1 is proposed
before the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
2
.1
.2
.1

Name: Ordered Selection - Relation - Resource - Depth-first
Intent: It proposes resources that can reach the resource named goal directly or
indirectly using relationi according to a depth first navigational path.
Solution:
Expression

– E1: linked-transitive(resource, goal, relationi) ∧ linked(currentR, resource,
relationi)

– E2: linked-transitive(r, goal, relationi)

Meta-expressions
E1 ≺ E2

40

VII

According to this meta-expression, the set of resources selected by E1 is proposed
before the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
2
.1
.2
.2

Name: Ordered Selection - Relation - Resource - Breadth-first
Intent: It proposes resources that can reach the resource named goal directly or
indirectly using relationi according to a breadth first navigational path.
Solution:
Expression

– E1: linked-transitive(resource, goal, relationi) ∧ distance(resource, origin,
relationi) ∧ distance(currentR, origin, relationi)

– E2: linked-transitive(r, goal, relationi)

Meta-expressions
E1 ≺ E2

According to this meta-expression, the set of resources selected by E1 is proposed
before the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
2
.2

Name: Ordered Selection - Classes
Intent: It proposes ordered resources belonging only to subclasses of the class Re-
source.
Solution:
Expression
- E1: instanceOf (r, Class1)
-
- En: instanceOf (r, Classn)

Meta-expressions
Ei ≺ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by Ei is proposed
before the ones selected by Ej (i < j).
Constituents: See row 1, row 3 in Table 6

P
2
.3

Name: Ordered Selection - Properties
Intent: It proposes ordered resources that satisfy some values of the property
propertyi.
Solution:
Expression
- E1: characteristicOf(r, propertyi , op, val1)
-
- En: characteristicOf(r, propertyi , op, valn)

Meta-expressions
Ei ≺ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by Ei is proposed
before the ones selected by Ej (i < j).
Constituents: See row 1, row 4 in Table 6

Table 3: Elementary adaptation patterns using ordered selection mode

Table 4 describes EAP using the recommended selection mode. P3.1.1.1,
P3.1.1.2, P3.1.2.1, P3.1.2.2, P3.2 and P3.3 in Figure 1.

41

VIII
P

3
.1
.1
.1

Name: Recommended Selection - Relation - Concept- Depth first
Intent: It proposes recommended resources that are linked to concepts by
abstraction, and where each concept can reach the concept named goal directly
or indirectly using relationi according to a depth-first navigational.
Solution:
Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2,
abstraction) ∧ linked(concept, concept2, relationi) ∧ linked(currentResource,
concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

Meta-expressions
E1 � E2

According to this meta-expression, the set of resources selected by E1 is recom-
mended rather than the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
3
.1
.1
.2

Name: Recommended Selection - Relation - Concept - breadth first
Intent: It proposes recommended resources that are linked to concepts by
abstraction, and where each concept can reach the concept named goal directly
or indirectly using relationi according to a depth first navigational path.
Solution:
Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2,
abstraction) ∧ distance(concept2, origin, relationi) ∧ distance(concept,
origin, relationi) ∧ linked(currentResource, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

Meta-expressions
E3 � E2

According to this meta-expression, the set of resources selected by E1 is recom-
mended rather than the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
3
.1
.2
.1

Name: Recommended Selection - Relation - Resource - Depth-first
Intent: It proposes recommended resources that can reach the resource named goal
directly or indirectly using relationi according to a depth first navigational path.
Solution:
Expression

– E1: linked-transitive(resource, goal, relationi) ∧ linked(currentResource, re-
source, relationi)

– E2: linked-transitive(r, goal, relationi)

Meta-expressions
E4 � E5

According to this meta-expression, the set of resources selected by E1 is recom-
mended rather than the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
3
.1
.2
.2

Name: Recommended Selection - Relation - Resource - Breadth-first

42

IX

Intent: It proposes recommended resources that can reach the resource named goal
directly or indirectly using relationi according to a breadth first navigational path.
Solution:
Expression

– E1: linked-transitive(resource, goal, relationi) ∧ distance(resource, origin,
relationi) ∧ distance(currentResource, origin, relationi)

– E2: linked-transitive(r, goal, relationi)

Meta-expressions
E1 � E2

According to this meta-expression, the set of resources selected by E1 is recom-
mended rather than the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
3
.2

Name: Recommended Selection - Classes
Intent: It proposes recommended resources according to their type.
Solution:
Expression

– E1: instanceOf (r, Class1)
– ...
– En: instanceOf (r, Classn)

Meta-expressions
Ei � Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by Ei is recom-
mended rather than the ones selected by Ej (i < j).
Constituents: See row 1, row 3 in Table 6

P
3
.3

Name: Recommended Selection - Properties
Intent: It proposes resources that satisfy some values of the property propertyi.
Solution:
Expression

– E1: characteristicOf(r, propertyi , op, val1)
–
– En: characteristicOf(r, propertyi , op, valn)

Meta-expressions
Ei� Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by Ei is recom-
mended rather than the ones selected by Ej (i < j).
Constituents: See row 1, row 4 in Table 6

Table 4: Elementary adaptation patterns using recommended selection

Table 5 describes EAP using the alternate selection mode. P4.1.1.1, P4.1.1.2,
P4.1.2.1, P4.1.2.2, P4.2 and P4.3 in Figure 1.

P
4
.1
.1
.1

Name: Alternate Selection - Relation - Concept- Depth first

43

X

Intent: It proposes alternate resources that are linked to concepts by abstraction,
wher each concept can reach the concept named goal directly/indirectly using
relationi according to a depth-first navigational.
Solution:
Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2,
abstraction) ∧ linked(concept, concept2, relationi) ∧ linked(currentResource,
concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

Meta-expressions
E1 | E2

According to this meta-expression, the set of resources selected by E1 is alternate
of the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
a
tt
er
n
4
.1
.1
.2 Name: Alternate Selection - Relation - Concept - breadth first

Intent: It proposes alternate resources that are linked to concepts by abstraction,
and where each concept can reach the concept named goal directly/indirectly using
relationi according to a depth first navigational path.
Solution:
Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2,
abstraction) ∧ distance(concept2, origin, relationi) ∧ distance(concept,
origin, relationi) ∧ linked(currentResource, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

Meta-expressions
E1 | E2

According to this meta-expression, the set of resources selected by E1 is alternate
of the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
a
tt
er
n
4
.1
.2
.1 Name: Alternate Selection - Relation - Resource - Depth-first

Intent: It proposes alternate resources that can reach the resource named goal di-
rectly/indirectly using relationi according to a depth first navigational path.
Solution:
Expression

– E1: linked-transitive(resource, goal, relationi) ∧ linked(currentResource, re-
source, relationi)

– E2: linked-transitive(r, goal, relationi)

Meta-expressions
E1 | E2

According to this meta-expression, the set of resources selected by E1 is alternate
of the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
a
tt
er
n
4
.1
.2
.2 Name: Alternate Selection - Relation - Resource - Breadth-first

Intent: It proposes alternate resources that can reach the resource named goal di-
rectly/indirectly using relationi according to a breadth first navigational path.

44

XI

Solution:
Expression

– E1: linked-transitive(resource, goal, relationi) ∧ distance(resource, origin,
relationi) ∧ distance(currentResource, origin, relationi)

– E2: linked-transitive(r, goal, relationi)

Meta-expressions
E1 | E2

According to this meta-expression, the set of resources selected by E1 is alternate
of the ones selected by E2.
Constituents: See row 1, row 2 in Table 6

P
a
tt
er
n
4
.2

Name: Alternate Selection - Classes
Intent: It proposes alternative resources according to their type.
Solution:
Expression

– E1: instanceOf (r, Class1)
– ...
– En: instanceOf (r, Classn)

Meta-expressions
Ei | Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by Ei is an alter-
native of the ones selected by Ej (i < j).
Constituents: See row 1, row 3 in Table 6

P
a
tt
er
n
4
.3

Name: Alternate Selection - Properties
Intent: It proposes alternative resources, where each of them satisfy a value of the
property propertyi.
Solution:
Expression

– E1: characteristicOf(r, propertyi , op, val1)
–
– En: characteristicOf(r, propertyi , op, valn)

Meta-expressions
Ei | Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by Ei is alternate
of the ones selected by Ej (i < j).
Constituents: See row 1, row 4 in Table 6

Table 5: Elementary adaptation patterns using alternate selection mode

row1 r: represents an instance of the class Resource or of one of its specializations.

row2 concept: represents an instance of the Concept class.
goal: represents the goal to reach. It is an instance of Concept class.
currentResource: represents an instance of the current resource.
relationi: represents a relation between instances of the Concept class.
origin: represents the first resources proposed to the user.

45

XII

abstraction: represents a relation between an instance of the Concept class and
instance(s) of the Resource class or of one of its specializations.

row3 Classi: represents a subclass of the Resource class.

row4 propertyi: represents a property of the Resource class.
val: represents a possible value for the property propertyi.

Table 6: Constituents used in elementary adaptation patterns

4 Discussion and conclusion

Concerning the domain model, we argue that whatever the domain model, it is
composed of a set of classes, of properties and relations [7, 4, 2]. Therefore our
EAP are independent of any domain model.

Concerning the adaptive navigation, we have conducted a study [9] of sup-
ported types of adaptive navigation and we have included all of them in our
EAP. In case, we didn’t consider a type of adaptive navigation, our EAP are
extensible to support missing types of adaptive navigation.

We also argue that a user model is always composed of a set of characteristics.
For any user model, our framework is generic to consider any user characteristics.
The EAP framework enables to associate a value of a user characteristic to
an instantiation of EAP. Afterward, it generate complex adaptation strategies
basing on combinations of user characteristics.

References

1. P. Brusilovsky, J. Eklund, and E. Schwarz, “Web-based education for all: a tool for
development adaptive courseware,” Comput. Netw. ISDN Syst., vol. 30, pp. 291–300,
April 1998.

2. A. Cristea and L. Calvi, “The three layers of adaptation granularity,” in Proceed-
ings of the 9th int. conference on User modeling, ser. UM’03. Berlin, Heidelberg:
Springer, 2003, pp. 4–14.

3. P. Brusilovsky, “Adaptive navigation support for open corpus hypermedia systems,”
in AH, 2008, pp. 6–8.

4. P. De Bra, D. Smits, and N. Stash, “Creating and delivering adaptive courses with
aha!” in 1st Eur. Conf. on Technology Enhanced Learning, ser. 0302-9743, LNCS,
Ed. Springer, 2006, pp. 21–33.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

6. E. Knutov, P. De Bra, and M. Pechenizkiy, “Ah 12 years later: a comprehensive
survey of adaptive hypermedia methods and techniques,” New Rev. Hypermedia
Multimedia, vol. 15, pp. 5–38, April 2009.

7. C. Jacquiot, Y. Bourda, F. Popineau, A. Delteil, and C. Reynaud, “Glam: A generic
layered adaptation model for adaptive hypermedia systems,” in AH, 2006, pp. 131–
140.

8. C. Stewart, A. Cristea, T. Brailsford, and H. Ashman, “Authoring once, delivering
many: Creating reusable adaptive courseware,” in WBE 2005 Conference, 2005.

9. N. Zemirline, Y. Bourda, and C. Reynaud, “Expressing adaptation strategies using
adaptation patterns,” in TLT. Accepted, to appear, 2011.

46

Adaptive Hypermedia Systems Analysis Approach by
Means of the GAF Framework

Evgeny Knutov, Paul De Bra, and Mykola Pechenizkiy

Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, the Netherlands

e.knutov@tue.nl, debra@win.tue.nl, m.pechenizkiy@tue.nl

Abstract. Adaptive Hypermedia Systems (AHS) have long been concentrating
on adaptive guidance of links between domain concepts with lots of custom de-
velopments and ad-hoc implementations. Here we consider a formalization ap-
proach to AHS composition and design by defining building blocks’ interfaces
and presenting corresponding dependencies by means of the GAF framework.
This helps to identify system design guidelines and start building adaptive sys-
tem from scratch as well as analyze adaptive system behaviour, architecture and
risks involved.

1 Introduction

Since the most cited Adaptive Hypermedia (AH) model AHAM [1] new terms, defi-
nitions and models have been introduced and realized in prototypes. Most AH models
focus on a layered architecture and concentrate on adaptation to the linking and naviga-
tion between concepts of a domain. With the exploding popularity of the Web search-
ing rather than linking, or Recommender systems (RS) to rank relevant content and
provide personalized information the area of AHS has gained a lot. The Generic Adap-
tation Framework (GAF)1 research project aims to develop a new reference model for
the adaptive hypermedia research field. The new model considers new developments,
techniques and methodologies in the areas of adaptive hypermedia and adjacent fields.
Besides GAF concerns the detailed system analysis in terms of AHS building blocks,
connections and dependencies, approaches that can be used to implement such a sys-
tem.

GAF conceptual scheme of the layered structure is presented in Figure 1. It aligns
the order of the layers in the system according to the classification of AH methods and
techniques [5]. Though this order represents the basic understanding of the adaptation
questions, every particular system may vary or even omit some of these, thus leading to
a different composition of the system layers determined by the different adaptation idea
behind this (adaptive eLearning application, Recommender System, etc.). We believe
that in order to couple, align, sort and arrange the layers of such a system (both the
generic model or some particular domain focused implementation) one should keep in
mind an adaptation process scenario (partially considered as use-cases in [4]) that will
partially determine the layer arrangement and to some extent will define the mandatory
and optional elements and drive the system design.

1 http://www.win.tue.nl/˜eknutov/gaf.html

47

Fig. 1. Conceptual scheme of GAF layered structure

2 AHS Analysis Approach

As thoroughly investigated in [7] the evaluation of AH systems plays an important role.
The described layered evaluation provides the description of the system functionality
and helps to solve many related problems. In our work we consider a more formalized
and specific system analysis approach by taking up systems’ block composition sce-
narios, interfaces. Thus we define dependencies between models, methods they use to
communicate with each other and particular implementations (based on usage scenar-
ios). As a reference we took the approach from [3]. The main steps of such an analysis
are presented in Figure 2. By scenarios here we mean framework use-cases (adaptive
search, adaptive eLearning, recommender system, etc.), mostly covered in [4]. These
scenarios are represented by ‘sequence charts’ and are constructed using GAF layers.
We also consider system specific aspects and AHS building blocks composition which
impacts the system architecture, such as event-driven system or service oriented or these
two together.

As a result of this approach we would have elementary base concerns of AHS,
which would explain mandatory and optional building blocks of the system, trade-off
available, mostly concerning optional elements of AHS, and the dependencies involved
presented as table. We will elaborate the approach further and explain it through the
example of the Domain Model (DM).

3 AHS Models Analysis Approach: DM example

Hereafter we elaborate the analysis approach and consider the AHS DM. In Figure 3
we show an example of DM interface dependencies. Analyzing it down further we
comprise the dependency table of building blocks’ interfaces (such as Domain, Use,
Resource, Context models), scenarios of how these models are used and which type

48

Fig. 2. AHS analysis approach

Fig. 3. Domain Model interface dependencies

of system is being described (AHS, Adaptive eLearning, Recommender System, etc.),
possible technologies to implement it (Data Bases, OWL ontologies for semantic web
enabled systems, TF-IDF index for search, etc.). As a result we’ll have a detailed picture
of the system components, evaluated against the reference model (GAF), which will
help to identify all pros and cons.

Considering any arbitrary DM properties and interfaces we analyze them against
the following properties and methods of the reference structure (see Figure 4 for de-

49

Fig. 4. Domain Model abstraction class

Table 1. partial GAF blocks high-level dependencies: DM example

DM
properties
and methods

Scenario Resource Model Adaptation Engine User Modelling

concept tree conventional AHS
eLearning

content
pages/frames

ECA reasoning,
prerequisites
relations

UM overlay

feature space recommender
system

datasets promotions
and ranking
mechanisms

implicit
user profiling

index adaptive search WWW ranking implicit
user profiling

tails). The major division here concerns methods and properties of the abstract Domain
Model class. Further we distinguish classes (like sets or collections of concepts or con-
cept maps, indices, trees, etc.), relationships (which are conventionally constituted by
the ontology relationships), attributes of the concepts (e.g feature space, properties,
characteristics, etc.), then functional terms which are denoted by complex structures
usually treated as a single term, and restrictions defined by assertions or some specific
domain rules.

Methods can be defined by constructors used to author DM as well as refine, main-
tain or update it. Major DM methods describe the access and retrieve procedures mainly
called by User Model (UM), Resource model (RM) and Adaptation Engine (AE) to ac-
cess the conceptual structure and query corresponding content. We also define mapping

50

methods which are used to maintain structure sustainability especially in overlay type
of models or ontology mapping for instance. These mappings (or alignments) can be
done between DM and User, Goals, Groups models and Rules sets. Additionally we
have methods to merge, split and extract sub-models of DM, which can be used in
distributed domain modelling or open corpus adaptation.

DM scenarios describe the system behaviour in terms of functional flow and user
interaction. We have described most prominent use-cases of such a framework compli-
ance with different types of systems in [4]. Thus the DM usage in different cases could
be analyzed against these reference scenarios.

Finally we have a number of particular technologies to work with DM and associ-
ated or cross-technology data available to start modelling (e.g Dublin Core to devise
adaptive eLearning application or a dataset feature list to devise recommender system
or adaptive search portal). This may remind us of the UML notion used in [6] to for-
malize the AHS modelling, however we define more strict dependencies in the GAF
formalization through defining interfaces, methods and scenarios, besides we use it to
analyze system, identify alternatives and be able to compare and assess other systems
in terms of the GAF framework. Table 1 presents high-level dependencies between DM
properties and methods, scenarios and other AHS’ models. This is just to give an idea
of our approach, ideally these dependencies would be described in meticulous details,
parametrizing abstract DM interfaces and to some extent show concrete technology or
implementation approach for each of these models’ interfaces.

4 Summarizing Implications of the Analysis Approach

Here we would like to summarize the major implications of our approach and antici-
pated benefits.

– Reference structures — being a reference model GAF and detailed dependencies
of its layers will serve as an ideal starting point for AH system designers and re-
searches in the field.

– Complexity and Performance — defining a number of dependencies and known
technologies would give an impression of the system complexity.

– Compatibility and Compliance — compliance description ([4]) provides the de-
scription of use-cases and application scenarios of the GAF framework.

– Modifiability — trade-off between blocks or modules’ alternatives will show the
modification possibilities, or further system extensions.

5 Conclusions and Future Work

The coming years will bring more use-cases of how AHS can provide adaptation and
personalization, what techniques will be introduced, and what research areas will in-
troduce new technologies in its evolution. So far a study of existing adaptation and
personalization approaches was done to comply with the layered structure of adap-
tive information systems, which raised the problem of system composition and design
analysis. We try to solve this problem using a classical software architecture analysis

51

approach extending it with adaptation framework specific questions and interface de-
pendencies in order to meticulously analyze any adaptive system in terms of the GAF
framework.

At the same time evaluating the proposed general-purpose AHS architecture (GAF
framework) against recommender systems [2] has shown that the GAF architecture is
sufficiently generic to accommodate the description of different personalization ap-
proaches including recommenders, as well as provide the flexibility of both AH and
RS in one go by building a custom system with the GAF building blocks. The real
though not very meticulous case study has proven our points. It has given us new chal-
lenges to investigate the applicability of new approaches, as well as new developments
in adaptive information systems which will allow to decide on the system composition
at the implementation level and this is where one would need the AHS analysis.

6 Acknowledgements

This work has been supported by the NWO GAF: Generic Adaptation Framework
project.

References

1. P. De Bra, G.-J. Houben, and H. Wu. AHAM: a Dexter-Based Reference Model for Adaptive
Hypermedia. In Hypertext, pages 147–156. ACM, 1999.

2. J. Hannon, E. Knutov, P. D. Bra, M. Pechenizkiy, K. McCarthy, and B. Smyth. Bridging
Recommendation and Adaptation: Generic Adaptation Framework - Twittomender compli-
ance case-study. In to appaear in Proc. of the 2nd International Workshop on Dynamic and
Adaptive Hypertext (DAH’11), 2011.

3. R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture evaluation. Technical
Report ESC-TR-2000-004, Carnegie Mellon, Software Engineering Institute, 2000.

4. E. Knutov, P. D. Bra, and M. Pechenizkiy. Generic adaptation framework: a process-oriented
perspective. J. Digit. Inf., 12(1), 2011.

5. E. Knutov, P. De Bra, and M. Pechenizkiy. AH 12 years later: a comprehensive survey of
adaptive hypermedia methods and techniques. New Rev. Hypermedia Multimedia, 15(1):5–
38, 2009.

6. N. Koch. “Software engineering for adaptive hypermedia systems”. PhD thesis, Ludwig-
Maximilians University of Munich, Munich, Germany, 2001.

7. A. Paramythis, S. Weibelzahl, and J. Masthoff. Layered evaluation of interactive adaptive
systems: framework and formative methods. User Modeling and User-Adapted Interaction,
20:383–453, December 2010.

52

Open Corpus Adaptation++ in GALE: Friend or Foe?

David Smits and Paul De Bra

Faculty of Mathematics and Computer Science, Eindhoven University of Technology,
Postbus 513, 5600 MB Eindhoven, The Netherlands

d.smits@tue.nl, debra@win.tue.nl

Abstract. “Open” has quickly become the hottest topic in any field related to
information, including open government data, open learning resources, open
user models, … Open Corpus Adaptation has been defined as the ability to per-
form adaptation to resources located anywhere on the Web. This leaves the def-
inition of and control over the adaptation in a central place. GALE adds the
ability to have the adaptation (definition) distributed over the Web. In this paper
we describe how GALE achieves this functionality and we raise the question
whether this is actually a desired feature or potentially a dangerous addition
with unintended consequences.

1 Introduction and Motivation

Using hypertext to open up and link all available information was first suggested by
Ted Nelson when introducing Xanadu (see http://www.xanadu.net/) and became a
reality soon after the introduction of the Web. The initial Web was a “safe” environ-
ment, where all information was static. The browser could download any web page
and display it, and the user would be assured that this would not have any side effects.
Since then the (on-line) world has become much more dynamic. Our data resides “in
the cloud”, processing is done “in the cloud”, but even when just accessing websites
they know (remember) who we are, and they may cause our browser to execute code
we have no control over.

So far adaptive hypermedia applications have been “safe”: an adaptive application
is served by a single adaptive hypermedia system (AHS), providing adaptation to
local resources, and storing user-related information in a local database. These appli-
cations are also “closed”. Initiatives to open up AHS have so far approached two
aspects: 1) the user model has become distributed [1], integrating information coming
from many different adaptive and non-adaptive applications, including social net-
works, and 2) the resources have become distributed in open corpus adaptive hyper-
media [2]. Distributing user model and resources has also been a goal in the
GRAPPLE project (http://www.grapple-project.org/) in which GALE (the GRAPPLE
Adaptive Learning Environment) was developed. Within GRAPPLE it was foreseen
that the definition of the adaptation would be kept centralized, created through a
graphical authoring toolset GAT (GRAPPLE Authoring Tool) [3]. GALE has been
designed to be able to perform to resources that can be loaded from anywhere on the
Web (retrieved through HTTP). This leads to a seemingly strange situation: an author
defines adaptation for a resource in GAT and GALE performs adaptation to that re-

53

source that is created by someone else, located anywhere in the world, without the
author of the resource having any influence on the adaptation that will be performed
to that resource. Would it not be logical to enable authors of resources to also define
the adaptation (and user model updates) associated with that resource? This is exactly
what the Open Corpus Service in GALE allows. In Sect. 2 we describe this “open
corpus adaptation++” and then (Sect. 3) we discuss the feasibility of actually uptake
of this functionality and the potential dangers involved.

2 Open Corpus Adaptation++ in GALE

Figure 1 below shows the overall architecture of GALE. This architecture is “distrib-
uted” around an internal Event Bus.

Adaptation Engine

Processor Stack

LayoutProcessor /
UpdateProcessor

LoadProcessor

HTMLProcessor

ParseProcessor

XMLProcessor

SerializeProcessor

C
od

e
M

an
ag

er

C
on

fig
ur

at
io

n

DM cache

UM cache

GALE servlet

Concept
Manager

Login
Manager

G
A

LE
 c

on
te

xt

Ev
en

t
Bu

s

Domain Model service

GEB connector

other DM services

User Model service

other services

GUMF (over GEB)
connector

GEB

HTTP

HTTP

CAM update service GAT

Fig.1. Core GALE architecture

In “standard” use an application is defined by an author and added to GALE through
the “CAM update service”, resulting in a domain model (DM) which in GALE con-
tains the conceptual structure and the adaptation for the application. The GALE event
bus can connect different DM services with the common adaptation engine. It can
also connect different user model services, including an internal GALE user model
service and an external GRAPPLE User Model Framework GUMF. In this paper we
concentrate on the Open Corpus Service, which is a DM service.

A domain model in GALE is defined using the GAM language (GALE application
model). The authoring process normally results in a set of concepts with for each

54

concept the associated GAM code that defines properties, user model attributes and
event code for the concept and its attributes. All requests to GALE normally specify a
concept (not a web page). When the concept specification refers to a concept on an
external server (the concept is requested from another server through HTTP) the Open
Corpus service retrieves that concept and scans the file for a <meta> element with a
‘name’ attribute with value ‘gale.dm’. When no information for the current concept is
found, the Open Corpus service searches for files called concept.gdom and con-
cept.gam (where concept stands for the actual concept name). It does so from the
current path in the URL up to the root of the server specified. The first description
found on the current concept is used.

Below is an example http://gale.win.tue.nl/elearning.xhtml (taken from [4]) with
the following content:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns=http://www.w3.org/1999/xhtml
 xmlns:gale="http://gale.tue.nl/adaptation">
 <head>
 <meta name="gale.dm" content="
 { #[visited]:Integer `0` {
 event `if (${#suitability} && ${#read} < 100)
 #{#read, 100};
 else if (!${#suitability} && ${#read} < 35)
 #{#read, 35};`}
 #knowledge:Integer !`GaleUtil.avg(new Object[]
 {${<=(parent)#knowledge},${#read}}).intValue()`
 #[read]:Integer `0`
 #suitability:Boolean `true`
 event `#{#visited, ${#visited}+1};` } " />
 </head>
 <body>
 <p>This page is a placeholder for the elearning
 concept.</p>
 </body>
</html>

We don’t describe the details of the GAM syntax and semantics here, but only briefly
explain the example code:

• The code event `#{#visited, ${#visited}+1};` } means that when
the concept is accessed the value of the “visited” attribute in increased by 1.

• The attribute “visited” is an integer, and when its value changes its event
code is execute which updates the “read” attribute.

• The attribute “read” is also an integer.
• The attribute “knowledge” is an integer which is not stored but calculated

from the “read” value and the “knowledge” value of the children of the
“elearning” concept.

• The attribute “suitability” is a Boolean, which is “true” by default. This too is
not stored but calculated when needed. If there were prerequisites for the
“elearning” concept there would be an expression that defines the condition
for the concept to become suitable.

55

Another “page” can “inherit” this adaptation (GAM) code as follows:
 <?xml version="1.0" encoding="UTF-8"?>
 <html xmlns=http://www.w3.org/1999/xhtml
 xmlns:gale="http://gale.tue.nl/adaptation">
 <head>
 <meta name="gale.dm" content= {->(extends)
 http://gale.win.tue.nl/elearning.xhtml}" />
 </head>
 <body>
 <p>This page uses the elearning template.</p>
 </body>
 </html>
When a whole application domain is stored in a single file the “meta” element for the
concepts/pages would look like:
 <meta name=’gale.dm’ content=’redirect:course.gam’ />
and the file “course.gam” might have contents like:
 welcome.xhtml {
 ->(extends)http://gale.win.tue.nl/elearning.xhtml
 ->(extends)layout.xhtml
 <-(parent)gale.xhtml
 <-(parent)gat.xhtml
 }
 gale.xhtml {
 ->(extends)welcome.xhtml
 ->(parent)welcome.xhtml
 }
 gat.xhtml {
 -> (extends)welcome.xhtml
 ->(parent)welcome.xhtml
 }
 layout.xhtml {
 #layout:String `
 <struct cols="250px;*">
 <view name="static-tree-view" />
 <struct rows="60px;*;40px">
 <view name="file-view" file="gale:/header.xhtml" />
 <content />
 <p><hr />Next suggested concept to study:
 <view name="next-view" /></p>
 </struct>
 </struct> `
 }
Again we do not explain this code but just illustrate that code can be shared between
different concepts/pages, and can be placed in individual files or combined into a
single GAM file.

When GALE retrieves “open corpus GAM definitions” it treats them just like a lo-
cally stored definition: the concepts are created, user model information is stored and
updated, and the adaptation of other concepts (and the retrieved concepts themselves)
can depend on user model values for both these external and internal concepts. The
event code in GAM is essentially arbitrary Java code. This has potentially serious
implications which we discuss in the next section.

56

3 The implications of Open Corpus Adaptation++

When “dynamic” content was first introduced on the Web it came with significant
security concerns. To illustrate:

• Browser plug-ins consist of executable code that can potentially harm the
end-user’s computer. It has full access to all resources to which the browser
has access. A harmful plug-in can not only crash the browser but also wipe
the user’s hard drive, send spam messages, search for critical personal data
on the hard drive like credit card numbers and transfer that to a criminal or-
ganization, etc.

• Scripting code can be made somewhat less dangerous depending on what the
scripting language allows.

• Java Applets are running within a Sandbox environment: they cannot read or
write any information on the hard drive and they can only make network
connections to the site from which they are downloaded. The end-user can
make an exception (for signed applets) to allow access to the hard drive and
network.

The Open Corpus Service in GALE allows arbitrary GAM code to be stored in the
domain model, after which it is executed by the GALE Adaptation Engine (AE). This
AE executes GAM event code which is arbitrary Java code that stores, retrieves and
updates user model information, but that in principle can try to also do anything else.
The security measures within GALE are:

• The AE runs in a Sandbox environment just like browser applets. The code
has no direct access to the hard drive or the network. Its only “way out” of
the Sandbox are the methods the Sandbox provides. These methods must al-
low the service to store and retrieve user model data.

• The only user model access that is allowed is to the user model of the user
for whom the AE is executing code. This currently prevents GALE from
providing “group adaptation” but it is at least “secure”.

Although the adaptation engine cannot do anything “truly harmful” it does perform
user model updates. And with open corpus adaptation++ the AE performs user model
updates defined by possibly unknown authors. When the end-user types the URL to
access a remote concept on any server through the local AE that local AE will execute
whatever GAM code the unknown author has written. This code may potentially
retrieve “private” user model information, and it may also destroy valuable infor-
mation in the user model. This is currently a concern that is specific to GALE as
GALE is the only “open corpus adaptation++ engine” we know of. GALE provides
basic safety of user model information by limiting user model updates to concepts
with a URI relative to the URI of the concept where the code resides. But the issue as
to what should be allowed (and what not) in open corpus adaptation++ is still open in
general.

57

4 Discussion and Conclusions

This paper presented the concept of Open Corpus Adaptation++ where not only the
corpus is distributed over the Web but also the adaptation model is distributed. This is
currently just a novel feature offered by GRAPPLE’s Adaptive Learning Environment
GALE, and not yet widely used because the current authoring tool set GAT still does
not support specifying open corpus adaptation++. The code shown in Sect. 2 is clearly
not intended to be hand-written by human authors, so authoring tools will be needed.

But most importantly the paper has raised concern that open corpus adaptation++
can be potentially harmful so we should discuss what is permissible and what should
be blocked for arbitrary adaptation models loaded from the Web.

Acknowledgement

We wish to thank the European Commission, project 215434 (GRAPPLE) for their
financial support for this research.

References

1. Abel, F., Henze., N., Herder, E., Krause, D., Interweaving Public User Profiles on the
Web, In Proceedings of UMAP 2010, User Modeling Adaptation and Personalization,
LNCS 6075, pp. 16-27, Springer, 2010.

2. Brusilovsky, P., Henze, N., Open Corpus Adaptive Educational Hypermedia, in: The
Adaptive Web, pp. 671-696, Springer, 2007.

3. Hendrix, M., Cristea, A.I., Design of the CAM model and authoring tool. A3H: 7th Inter-
national Workshop on Authoring of Adaptive and Adaptable Hypermedia Workshop, 4th
European Conference on Technology-Enhanced Learning, 2009.

4. Smits, D., De Bra, P., GALE: A Highly Extensible Adaptive Hypermedia Engine, Proc. of
the ACM Conference on Hypertext and Hypermedia, Eindhoven, 2011.

58

