
Referencing within evolving hypertext

Victor Grishchenko, Janus A. Pouwelse, and Henk Sips

Delft University of Technology
Mekelweg 4, 2628CD

Delft, The Netherlands
victor.grishchenko@gmail.com

Abstract. The classic hypertext model omits the process of text growth,
evolution and synthesis. With hypertext creation becoming increasingly
collaborative and change timescales becoming shorter, explicitly address-
ing text evolution is the key to the next stage of hypertext development.
Uniform Resource Identifier (URI) is a proven general concept that en-
abled the Web. In application to versioned deep hypertext, expressive
power of a classical hyperlink becomes insufficient.
Based on the Causal Trees model, we introduce a minimalistic but pow-
erful query language of specifiers that provides us great flexibility of
referencing within a changing hypertext. Specifiers capture the state of
the text, point at changes, expose authorship or blend branches. Being
a part of an URI, a specifier puts advanced distributed revision control
techniques within reach of a regular web user.

1 Introduction

In the WWW/HTML model and, generally, in “chunked hypertext” systems the
main addressable unit is a “page” which might optionally also have addressable
“anchors” inside it. That is generally sufficient as long as we deal with static
texts, albeit the requirement that a page author must pre-provision anchors is
limiting. However, if we follow the general vision of a text as an evolving en-
tity (the “wiki model”), then the expressive power of a classical hyperlink is
insufficient. Since the addressed text is continuously changing, anchors might
disappear, and the content that is actually addressed by the link might be re-
edited or its surroundings may change. Similarly, there is no standard way of
pointing at particular statements and passages in the text. For collaboratively
created texts, such a possibility is desirable. Also, there is no semantics in place
to address co-existing versions of a text (named “branches” in the version con-
trol parlance). Those might be drafts, reeditions, alternative versions. Thus, our
mission is to explore possible approaches and conventions of referencing partic-
ular parts of text, its particular versions, or both. We want to measure, mark
and cut text in breadth and depth!

This paper is structured as follows. First, we consider relevant existing models
and their limitations in Section 2. Section 3 briefly describes the Causal Trees
(ct) model of text versioning and the basic primitives available for text/ version

addressing. In Section 4, based on the URI specification, we define the syntax
of specifiers.In Section 5 we consider practical applications for the proposed
conventions, explained as simple Alice-Bob scenarios. The Section 6 concludes.

2 Related and previous work

The early hypertext system Xanadu employed Dewey-inspired change-resistant
addresses named tumblers, e.g. 1.2368.792.6.0.6974.383.1988.352.0.75.2.
0.1.9287 (an example from [21] addressing a particular point in a particular
version of a document). That scheme was not reused by any later system.

Today, most wikis, including Wikipedia, have a history view capable of re-
trieving and comparing different versions of a text. However, the URL syntax
is implementation-dependent. The authors are unaware of any wiki that allows
for branching/ multiversioning of texts; a document’s history is always seen as a
linear sequence of numbered revisions. Distributed revision control systems1 im-
plement an extensive toolset for identifying/processing parallel revisions of texts
(typically, source code). Most of those systems model a mutation history as a
directed acyclic graph of revisions. The inner contents of a file are considered a
single data piece; no fine-grained addressing is possible. Revisions are typically
identified by cryptographic hashes of the content and metadata. A number of
wikis2 use distributed version control systems as their back-end, but they don’t
pass on the branching functionality to the front-end.

The possibility of addressing precise parts of a text is a well-known gen-
eral problem. Texts that need repeated reading, referencing or modification typ-
ically have some fragment addressing scheme as well. Examples are Biblical
(e.g. 1 Kings 11:41), Qur’an (2:2), legal (U.S.Const.am.8.) or source code
(kernel/panic.c:57) references. Paper books are referenced using page num-
bers, but those might change from edition to edition. These days, various e-book
devices made the notion of “a page” completely ephemeral. In application to
computer hypertext, three classic examples of addressing schemes are Purple
numbers [16], XPointer [7] and the classic patch [6] format. They rely on three
basic techniques: offsets, anchors and/or context. The first and the simplest
addressing technique is to use word/symbol offsets within a file. That works
well for static files. For example, web search engines employ inverted indexes
that list all the document-offset pairs where a particular word was found. But,
in a changing text, new edits invalidate offsets. Hence, every next version has
to be processed as a separate text. The second technique is planting anchors
within the text. However, pre-provisioning anchors for any future use by any
third party is not practical. The third technique is to address a point in the
text by mentioning its context, i.e. snippets of surrounding text. The approach
is robust, but heavyweight, dependent on heuristics and also vulnerable to text
mutations. Combining those techniques may increase robustness, e.g. the UNIX
1 For example, Bazaar http://bazaar.canonical.com/, Git http://git-scm.com/, Mer-

curial http://mercurial.selenic.com/
2 For example, Gitit wiki http://gitit.net or git-wiki http://github.com/sr/git-wiki

diff/patch format employs approximate offsets and context snippets. But, that
might increase fragility as well; e.g. an XPointer relying on an anchor and an off-
set becomes vulnerable to changes in both. Purple numbers address paragraphs
using either offsets or anchors. Neither method is perfect.

Several well-known technologies, such as WebDAV [13], BigTable [10] or Me-
mento [23], represent history of an evolving Web page as a sequence (or a graph)
of revisions identified by either timestamps or arbitrary labels. In that model,
every version stays a separate monolithic piece. There are some efforts to apply
versioning to adaptive hypertext [17].

The Operational Transformation theory (OT, [11]) generalized offset-based
addressing scheme for changing texts with the purpose of real-time revision con-
trol in distributed systems. Currently OT is employed by Google Docs, Google
Wave and other projects3. Among the shortcomings of the OT theory is its high
complexity and long-standing correctness issues [19, 15]. Systems that are known
to work had to adopt compromises on the original problem statement [11], either
by relying on a central coordinating entity [3] or by requiring that edits are al-
ways merged in the same exact order [22]. Still, the main problem is bigger: OT
does not address revision-control tasks that lie outside the frame of real-time col-
laborative editing, narrowly defined. Those are: branching, merging, propagation
of changes, “blame maps”, diffs and others.

The Causal Trees (ct) model [14] was introduced to resolve the problems ev-
ident in OT. Instead of relying on offset-based addressing, which is volatile once
we consider a changing text, ct assigns unique identifiers to all symbols of the
text. Thus, it trivially resolves the correctness/complexity problems and also in-
troduces new possibilities. For example, it allows fine-grained fragment address-
ing that survives edits. Being defined along the lines of the Lamport-Fidge [18,
12] time/event model, it allows for reliable identification of any versions, even in
a text that has multiple concurrently changing editions (branches). Effectively, ct
implements the functionality of deep hypertext, as described in [1]. The ct model
is the starting point of this work. Recently, the ct model was implemented as a
JavaScript library ctre.js4.

Consider a document which has several evolving branches. Suppose it is a
Wikipedia-style wiki of course materials which is supported by several univer-
sities in parallel. On the one hand, we want to maintain the upside of collabo-
ration which is well illustrated by the success of Wikipedia. On the other hand,
we want to avoid edit warring [2] and the extreme volatility of content typical
of Wikipedia. Thus, we suppose that such a wiki is supported by a network of
collaborators exchanging, negotiating and filtering edits in the way the Linux
kernel is developed (the “git model”).

In such an environment, a single document may be seen in hundreds of ways,
depending on which editions we are looking at, and when. Similarly, if we want
to address some particular parts of a document, there are numerous possibilities.
3 Google Docs http://docs.google.com, Google Wave http://wave.google.com, Gobby

http://gobby.0x539.de, Etherpad http://etherpad.org
4 Project page at GitHub: http://github.com/gritzko/ctre

Our intention is to extend the semantics of URIs [8] to deal with that complexity
and to make it manageable and clear to a regular user. We assume that the
address field of the browser is the user’s primary means of navigation. Finally,
the ability to identify and address (and instantly access) arbitrary resources is
the cornerstone of the Web. We extend that ability in space and time.

3 The ct model

The ct model augments the very fabric of text to reflect its evolution. Drawing
some lessons from the history of Operational Transformation theory, ct does not
use offset-based addressing and does not try to find one true frame of reference.
Instead, ct closely follows the lines of the Lamport-Fidge [18, 12] relativistic
model of events and time in a distributed system. In essence, ct is a Minkowski
spacetime [20] model for versioned texts, unifying time (versions) and space
(text) as different projections of the same phenomenon. This section will briefly
explain the basics of the model and its building blocks.

A. Symbols have own identity. Attempts to identify symbols by their offsets
in a versioned text have produced unsatisfactory results. As a text constantly
changes, so do offsets. Thus, it becomes nearly impossible to reliably point at a
given character. Instead, ct starts by assigning unique identifiers to every symbol
in a document. Securing globally consistent serial identifiers is impossible in a
truly decentralized system, thus we resort to the Lamport-Fidge approach. For
a given document, all its symbols originating from the same author are sequen-
tially numbered. Thus, they constitute a vector of contributions (called a yarn)
of that particular author to that particular document. Still, we do not try to im-
pose any global numbering. Instead, we identify a symbol by its (yarn_uri, sym-
bol_number) pair, i.e. (alice.org/page,398). Given that id, we may always
retrieve the symbol, and a symbol may be reliably pointed at, independently of
any changes in the document. A symbol with an identity is called an atom.

B. Text and operations are the same. There is no separation of “a text” and
text-modifying “operations”. A text consists of atoms and any operation is a set
of atoms as well. An “atom” is a symbol plus its metadata. Even deletions are
implemented as special “backspace” meta-symbols. An atom’s metadata consists
of its own identifier and an identifier of the causing atom. The causality relation
weaves atoms together to form a text. Very much in the spirit of the Markov
chain [9] model, a symbol is said to be caused by its preceding symbol at the time
of insertion. Such a simple relation leads to provable correctness and convergence
even in a distributed system with no central entities [14]. All replicas of a text
eventually converge to the same state and no edits are misapplied.

C. All frames of reference are equal. A frame of reference corresponds to a
single “local” author and his version of the text. There is no special “central”,
“reference” or “true” version. When accessing a text, we access not the text per

se, but its version by a particular editor (a yarn). Other yarns are retrieved by
recursively following causal dependencies. Then, yarns are woven together to
produce a version of the text [14]. A transitive closure of causal dependencies
is one of the key concepts of ct. For example, it defines the way branches are
represented in ct. A branch is a set of yarns that has dependencies on the “trunk”
yarns of the text, but there are no dependencies in the reverse direction (trunk
to branch). Once such reverse dependencies are created, the branch effectively
merges into the trunk, as it becomes a part of the trunk’s closure.

3.1 Unicode serialization

In practice, ct is implemented with regular expressions5. That is not only math-
ematically well-defined, but also practically useful, as it allows to run ct in a
Web browser with native speed. To make atoms regex-processable, their ids are
encoded with two Unicode symbols, one for the author/yarn and another for
the symbol’s serial number. For example, an atom id (alice.org/page,398)
becomes “AΘ”, where “Θ” is the Greek capital letter Theta corresponding to
Unicode code point 398. We also assume a mapping between symbols and URIs,
where “A” corresponds to alice.org/page.

While two-symbol ids might seem insufficient, they allow for up to 4 billion
symbols per document if using a baseline regex implementation supporting only
16-bit Unicode BMP characters [5]. Once an author exceeds the 216 symbol limit,
(s)he might be allocated another yarn id. The case of 216 authors per document is
considered highly unlikely, and even if that happens, there is always an option to
use two characters for a yarn id (hence three characters per atom id total). Still,
we believe that the two-symbol scheme provides sufficient numbering capacity
for most of the texts.

Serializing atoms as tuples of Unicode symbols allows to pack all data struc-
tures into strings and to process them with regular expressions. That resolves
an important practical bottleneck. Performing sophisticated revision control op-
erations in a Web browser, in real time, becomes possible.

3.2 Specifying ranges and versions

In full accordance with the spacetime concept, ct denotes intervals in time (ver-
sions) and intervals in space (text ranges) in a very similar way, namely by
mentioning their bounding atoms. Regarding text ranges, we may rely on the
linear order of symbols in a text, and simply denote a text range by mentioning
its end-points. Thus, [A4;B8) stands for an interval starting at a symbol num-
ber 4 by author A and lasting till, but not including, the symbol number 8 by
B.6 This interval specification is immune to any further text changes, including
deletion of the bounding atoms.
5 The PCRE (Perl Compatible Regular Expressions) dialect, as used in JavaScript
6 Parentheses () stand for excluded endpoints, square brackets [] for included.

Denoting versions in a distributed system may be trickier. In the simplest
case, a version history is linear (e.g. there is only one author). Then, a revision
may be denoted just by mentioning its most recently introduced symbol, e.g. B8.
Thus, that one and all the “older” symbols B1–B7 constitute a version. But, in
the general case of a distributed system, all participants are free to introduce
new changes, and those changes propagate with finite speed. At a given moment
in time, each participant sees a version of a text, based on the edits it is aware
of. Thus, version history is not sequential. The only appropriate model is a
directed acyclic graph. In such a case, a version might have multiple “most
recent” symbols, e.g. A4 and B8. The number of such symbols cannot exceed
the number of authors or, more precisely, yarns. Essentially, a set of those “most
recent” symbols is a logical vector timestamp [18]. Under the hood, ct represents
vector timestamps as wefts, which are strings of even length consisting of two-
symbol atom identifiers, like A4B8.

Note that range/version specifications may have any of their bounding sym-
bols either excluded or included. In general, that time-space unification will help
us a lot with our specifier syntax (see Sec. 4.2).

4 URL conventions

An atom identifier is just a pair of Unicode symbols, one for the author/yarn
code and another for the atom serial number within the yarn. A version or a
text range is thus denoted by several Unicode symbol pairs. We want to use
them in URIs as basic building blocks of our version/fragment specifiers. But,
the URI syntax [8] only allows for a restricted subset of 7-bit ASCII symbols. So,
we have to define a serialization of atom identifiers. Our end goal is to develop a
syntax convention that allows to denote text versions and ranges by URIs that
are easily communicated using email, instant messaging, Twitter, napkins [8]
and even spoken speech.

4.1 Encoding

The default option for using Unicode in URIs is the percent-encoding [8]. But
that would consume six characters per every non-ASCII symbol (hence, 12 per
atom id). Instead, we encode atom identifiers using base64 encoding, namely its
variety that employs alphanumerics, tilde and underscore to express 64 = 26

values.7 We only consider Unicode characters of the Basic Multilingual Plane,
which gives us 216 possible values for either author or symbol code, and corre-
spondingly 232 possible values of an atom id. We resort to separate encoding of
author and symbol codes by up to three base64 characters each (26×3 > 216).
Thus, an encoded atom id may take up to six base64 characters.

We expect most texts to be short, created by a few authors, so most au-
thor/symbol codes will have low values. As one URI may include many atom
7 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz˜_

ids, it is highly beneficial to use a variable-length encoding to shorten serialized
atom ids, when possible. In the worst case, we still use 6 symbols per atom
id, but in case, for example, we see a three-symbol id, we know that the first
symbol stands for the author and the other two for the symbol code. Assuming
that atom ids are guaranteed to be bounded by delimiter symbols, we may agree
to use 2=1+1, 3=1+2, 4=1+3, 5=2+3 and 6=3+3 conventions. For example, sup-
pose an atom id is encoded with five base64 characters: 0e5ZC. Then, according
to the 5=2+3 convention, the first two stand for the author code (up to 22×6

values) and the next three stand for the symbol’s number (up to 23×6 values).
Numerically, 0e = 0 × 641 + 40 × 640 + 48 = 88 is the code for the author and
5ZC = 5 × 642 + 35 × 641 + 12 × 640 + 48 = 22780 is the serial number of the
symbol among those contributed by that particular author to that particular
page. (Unicode code point 88 corresponds to a Latin capital letter X. Code point
22780 corresponds to a hieroglyph 壼).

To express the aforementioned semantics of included/excluded bounds (see
Sec. 3.2) and to guarantee reliable delimiters, we prepend every atom identifier
with either + or -, denoting included or excluded bounding symbols respectively,
e.g. +0e5ZC. The default value is +. We also allow atoms to be marked with
mnemonic labels. Then, instead of a base64 representation of an atom id, we
will use a single-quoted alphanumeric label, e.g. +'SOME_VERSION'.

While every author/yarn is encoded with an arbitrary Unicode char, it is
convenient to make base64 representations somewhat meaningful semantically.
Thus, instead of encoding “Alice” as 0e (i.e. 88 or Unicode X), we will try to use
such options as Alc (Unicode 갖), Al (Unicode ˟) or simply A (Unicode :).

4.2 Text state/presentation specifier

Under the hood, the ct model has lots of version control related features and
functions. Indeed, there are hundreds of ways to display an evolving text, and
many of them are useful. The main bottleneck is the user’s ability to perceive
that data and to access that functionality. So, the core of our mission is to put
that toolset within reach of an end user. Practically, we develop a small query
language based on URI-embeddable expressions that will allow us to access the
most of ct’s capacity right from the browser’s address bar.

A specifier is a complete URI-embedded expression describing the desired
state of the text and nuances of its decoration. A specifier contains a sequence of
parameters. Each parameter affects a single aspect of text state or text presen-
tation. A “state” parameter changes the actual text body delivered to the user,
while a “presentation” parameter only adjusts its decoration (i.e. color, high-
lighting, strike-through, other marks). In this section we describe seven types of
parameters: three state, three presentation and one mixed type.

The space/time unification helps us a lot. It lets all parameters follow the
same syntax convention with minor variations. Every parameter starts with a
special separator symbol (typically a sub- or general delimiter in terms of [8]).
The separator defines the type of the parameter. The separator is followed by a
sequence of zero or more atom identifiers and/or quoted labels.

Version is the first and the most basic state parameter. It defines the version of
the text that is actually shown to the user. A version parameter employs excla-
mation mark ! as a separator, normally followed by atom identifiers. Suppose,
Alice wrote “Hallo wrld” and Bob corrected that to “Hello world”. Thus Alice
contributed 10 atoms (say, Al01-Al0A) and Bob contributed three (including
one backspace, e.g. Bo01-Bo03). Then, the resulting version is !Al0A+Bo03.

Range is a state parameter specifying a fragment of a page that has to be
delivered to the user. Range separator is : (a colon). In the example above, a
range specifier :Al01-Al06 initially points at “Hallo”. Once Bob fixes the typo,
the value of the same range changes to “Hello”.

Branch is a parameter that allows to work with parallel versions of the same
text. The separator is = (equal sign). A branch might be specified either with
a label or with a yarn id, i.e. ='Branch' may be interchangeable with =Br.
The default “trunk” branch is addressed as =. The ct model allows to deal with
branches in completely novel ways. In particular, it allows to merge (blend)
branches in real time. Our syntax should let users access that functionality. In
case multiple branches are specified, their contents are merged (blended), but
all new edits go to the first mentioned branch. So, a specifier ='Draft'= merges
the trunk with the Draft branch, but all new edits go to the latter.

Fragment is a presentation parameter analogous to the range parameter. It
specifies an area of interest within the delivered text. We re-use the standard URI
fragment separator # (number sign). Important detail: the fragment part of URI
is not reported to a HTTP server by a HTTP client (i.e. the browser). Hence, all
corresponding actions are performed locally in the web browser (i.e. page scroll
or range highlighting). In our example, #Bo02-Al05 would show “Hello world”
with “ell” selected or highlighted.

Baseline version is a presentation parameter pointing out which version is
considered “the previous version”. Thus, all changes that happened after that
“previous” reference version should be highlighted. That is most useful when a
user wants to see the changes that happened since his/her last visit, or otherwise
compares two versions. This parameter employs $ as a separator. Thus, to see a
difference between two versions, Alice may use a specifier like $Al06!Al0A. That
will deliver “Hallo wrld”, with “wrld” highlighted.

Author parameter suggests to somehow mark/unmark contributions of certain
authors. The separator is @ (at sign). For example, $Al08@-'Alice' will unmark
contributions made by Alice thus only leaving “e” and “o” highlighted, as those
are contributed by Bob: “Hello world”. Here we deviate from the general scheme
of using full atom identifiers after a separator, as we only need to identify an
author/yarn (the same as with branches). We may rewrite the same specifier as
$Al08@-Al.

Change status is a mixed state/presentation parameter with a syntax some-
what deviating from the common pattern. It employs an asterisk * as a separator.
Its mission is to filter/recover symbols based on their insertion/deletion status.
For example, $Al0A*+AlBo shows all symbols inserted by Alice and removed by
Bob since version !Al0A. Thus, the resulting text is “Heallo world”, with “a”
struck out, “e” and “o” highlighted.

Effectively, we created a small query language that controls state and presenta-
tion of a versioned text, points at ranges and versions, locates changes, navigates
branches. As with any language, the expressive power comes from combining
the primitives. We may easily imagine sophisticated but still comprehensible
constructions, like:

http://server.dom/Proposal='Draft'$Alzu!Bo4Vk@-Bo#Alb8-AlyK

That means: “on a page named Proposal, within a branch named Draft, using
version Bo4Vk, please highlight changes made since version Alzu, except for the
changes made by Bob, and please select the range Alb8–AlyK”. We do not expect
every user to master this language. Composition of queries may be done by the
GUI. Still, we see that this formal and compressed way of expressing versioning-
related page state/presentation opens promising possibilities. One interesting
example is the ability of specifiers to fully describe the current state of the edited
page, including the current selection. If all changes of the state are reflected in
the fragment part of the URI (rewriting fragment does not cause the page to
reload), then the entire page state may be copied and sent by e-mail or IM to
another person. An evolving text is almost like a river, in the sense that you
cannot step into the same river twice. With specifiers, remote collaborators will
have that possibility to be almost literally on the same page.

5 Scenarios

In this section we consider a hypothetic scenario of Happytown State University
participating in a project that might be briefly described as a cross between
OpenCourseWare and Wikipedia, collaboratively developed the git way. Collab-
orators from peer universities contribute academic information, including course
materials, lecture notes and general articles. Users experience the system as a
real-time wiki running in a browser. Each university hosts its own wiki.

That wiki also supports branches and distributed revision control to allow for
parallel coexistence of drafts and working versions, on par with polished “canon-
ical” public versions. Distributed revision control also allows to federate wikis of
different universities. Users may pull changes from peer wikis in automated or
manual fashion. Eventually, constant exchange of changes makes different wikis
converge. Still, some pages may differ, because they are not merged yet or be-
cause of a conflict, e.g. in case Prof. Montague is unable to find common ground
with Prof. Capuleti.

Voluntary import of changes allows to avoid Wikipedia-style edit warring
and “the most persistent person wins” problem. It also acts as a soft variety
of peer review, improving prestige of authors whose edits are widely accepted.
While changes propagate from site to site, all authorship information is preserved
intact. Academic prestige provides healthy incentives for participation, while
direct spamming and self-promotion are countered by social filtering. Effectively,
we consider a hypothetical bottom-up open-source academic publishing system.

5.1 Lecture and scribes

While assistant professor Alice delivers a lecture, appointed scribes transcribe
it collaboratively in real-time by filling the lecture skeleton previously created
by Alice. As the course is available on the web site both to peer universities
and general public in real-time, scribes use a separate branch for their work:
http://ocw.happytown.edu/Lecture=Scribes. Once scribes enter the URL, the
branch is automatically created. They transcribe the lecture quite hastily. After
the lecture, PhD student Bob polishes the text and merges it back into the uni-
versity’s trunk version. Thus, the public version is now updated and available
to external audiences. Later, PhD student Fred of Fartown University decides
to cite a passage from the lecture. He selects the passage and uses the link from
his browser’s address bar: http://ocw.fartown.edu/Lecture#Bk-B7~
Note that Fred uses the Fartown wiki which pulled content from Happytown.

5.2 Private remarks

Professor Carol oversees the lecture to see how well Alice is doing. Carol wants
to see what scribes are recording to avoid getting out of sync with their version.
Still, Carol wants to keep her remarks private. Thus, Carol blends Scribes with
her own private branch by entering URL: http://ocw.happytown.edu/Lecture
=Notes=Scribes. Now, the edits made by the scribes and her own changes are
visible to Carol as a single merged text, updating in real time. Authorship is
highlighted, one color per a yarn. Scribes cannot see the remarks made by the
professor. Later, Carol will discuss the Notes with Alice and they will work on
improving the text. A polished version of the branch will have to be merged back
into the trunk. But, the edit history of the branch has lots of offhand remarks
and back-and-forth editing which shouldn’t go into the public history of the
document. Thus, Carol rebases [4] the changes into the trunk, i.e. includes them
by value, not by reference, leaving the edit history behind.

5.3 Back from vacation

PhD student Bob gets back from a conference and a vacation and logs into the
system. He finds out that the project has advanced a lot since he departed.
He loads the project status page. The changes made since his last visit are
highlighted, contributions of different authors shown in different colors. At some

point Bob decides to discuss the changes with post-doc Dave, who has authored
some key new pieces of the text. Bob wants Dave to see exactly the same “blame
map” highlighting as well. He picks the full URL of the current page state to paste
it into an instant messaging client http://ocw.happytown.edu/Lecture$Bo2j8
Then, he understands he should ask a focused question, so he selects a passage he
is mostly concerned about. The URL changes to http://ocw.happytown.edu/
Lecture$Bo2j8#Bo64Q-D77j now denoting the selection. Bob pastes the link
into IM asking Dave for a clarification. This way he minimizes interruptions of
context that would otherwise result from going and asking about “that change”.

6 Conclusion

In this work, we bridged the ct model [14] of deep hypertext and the generic URI
scheme [8]. We have shown that a simple and laconic convention may provide very
fine-grained addressing for particular versions and/or segments of a changing
text. Although the convention is ct-specific, it is rooted in the Lamport-Fidge
time/event model and thus more predetermined than arbitrary.

We described several novel end-user scenarios for deep hypertext applications.
Currently, distributed revision control is an expert-only domain. We have shown
that such a functionality might be served to a regular academic user as well.

7 Acknowledgements

This work was partially supported by the EC FP7 project P2P-Next, grant
#216217. Authors are grateful to David Hales for valuable feedback.

References

1. Deep hypertext: The Xanadu model. http://www.xanadu.com/xuTheModel/.
2. Edit warring on Wikipedia. http://en.wikipedia.org/wiki/Wikipedia:Edit_warring.
3. Google Wave protocol. http://waveprotocol.org.
4. Rebasing at “The Git Community Book”. http://book.git-scm.com/4_rebasing.html.
5. The Unicode standard. version 6.0 - core specification.

http://www.unicode.org/versions/Unicode6.0.0/.
6. Unix manual page for the patch utility. man patch.
7. XML Pointer Language (XPointer) Version 1.0. http://www.w3.org/TR/WD-xptr.
8. RFC 3986: Uniform Resource Identifier (URI): Generic Syntax, 2005.
9. Markov A.A. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie

drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom
universitete, 15:135—156, 1906.

10. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a
distributed storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7, OSDI
’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

11. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. SIGMOD
Rec., 18:399–407, 1989.

12. Colin Fidge. Logical time in distributed computing systems. Computer,
24(8):28–33, 1991.

13. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP extensions
for distributed authoring – WEBDAV. RFC 2518.

14. Victor Grishchenko. Deep hypertext with embedded revision control implemented
in regular expressions. In Proceedings of the 6th International Symposium on Wikis
and Open Collaboration, WikiSym ’10, pages 3:1–3:10, New York, NY, USA, 2010.
ACM.

15. Abdessamad Imine, Pascal Molli, Gérald Oster, and Michaël Rusinowitch.
Proving correctness of transformation functions in real-time groupware. In
ECSCW’03: Proceedings of the Eighth European Conference on Computer
Supported Cooperative Work, pages 277–293, Norwell, MA, USA, 2003. Kluwer
Academic Publishers.

16. E. E. Kim. An introduction to Purple. http://eekim.com/software/purple/purple.html.
17. E. Knutov, P. De Bra, and M. Pechenizkiy. Versioning in Adaptive Hypermedia. In

Proceedings of the 1st DAH’2009 Workshop on Dynamic and Adaptive Hypertext:
Generic Frameworks, Approaches and Techniques, pages 61–71, 2009.

18. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

19. Du Li and Rui Li. An admissibility-based operational transformation framework for
collaborative editing systems. Comput. Supported Coop. Work, 19:1–43, February
2010.

20. Hermann Minkowski. Raum und Zeit. B. G. Teubner, Leipzig, 1909.
21. Theodor Holm Nelson. Literary Machines. Mindful Press, 1982.
22. Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen.

Achieving convergence, causality preservation, and intention preservation in
real-time cooperative editing systems. ACM Trans. Comput.-Hum. Interact.,
5(1):63–108, 1998.

23. H. VandeSompel, M. Nelson, and R. Sanderson. HTTP framework for time-based
access to resource states – Memento. draft-vandesompel-memento-01.

