
A Distributed Algorithm for MLTS Generation with
Aggregation of Transitions

Djamel Eddine SAIDOUNI Riadh MATMAT Nacer TABIB
MISC Laboratory: Mentouri University

Constantine, 25000, Algeria
saidounid@hotmail.com, matmat.riadh@gmail.com, tabib.univ@gmail.com

Abstract—Enumerative model checking tools are limited by the
size of the stat space to which they can be applied. In an attempt
to extend the size of state spaces that can be dealt with, we
propose in this paper a distributed algorithm that generates a
distributed maximality-based labeled transition systems (noted
MLTS) from place/transition Petri net while performin g
aggregation of equivalent transitions proposed in [10].

Keywords: Distributed Maximality-based labeled transition
systems, Aggregation of transitions, Petri nets, Distributed
algorithm.

I. INTRODUCTION

Model checking [1] is a powerful technique for verifying
reactive systems, able to find subtle errors in real commercial
designs. Its major advantage is automation, and therefore the
ease of use for engineers.

The model checking exhaustively explores the analyzed
models. This causes a major problem: combinatorial explosion
due to the state spaces of large systems. Many solutions have
been proposed in the literature for tackling this problem to push
the limit of size, to be able to handle states spaces increasingly
of large sizes. Some of them use equivalence relation to reduce
the number of states and transitions in the model (bissimulation
relations, alpha reduction relation, partial order based relations
...) [2, 3, 4], others use symbolic representations such as BDD
[5, 6].

However, even these solutions reduce significantly the size
of maximality-based labeled transition systems (MLTS) [7, 8],
the resource limitation make yet a problem when coming to
complex systems.

Nowadays, workstations clusters give more and more
hardware resources availability, which leads to a new solution
which is distributing the graph through the workstation
network [9, 10].

This work we proposes a distributed algorithm for MLTS
construction, combined with aggregation of transitions in order
to reduce the graph size while generating it on the fly [11]. Our
algorithm implements an operational semantics defined in [12].
So it takes a Petri net as a modeling language and produces an
MLTS, it uses also the aggregation of transitions to reduce the
graph on the fly, thus it takes the advantage of workstation
hardware resources by distributing the graph and the reducing
solutions while generating the graph.

II. PRELIMINARIES

A. Petri nets related definitions

• A Petri net is a tuple (S,T,W) where S is the set of
places, T is the set of transitions such that S∩T=∅,
and W:((S×T ∪ (T×S)) → ℕ = {0,1,2,...} is the weight
function. Graphically, transitions of T are
represented by rectangles, places of S by circles
and weight function by arrows associated with
their weights. We suppose that all nets are finite, i.e.
|S ∪ T| ∈ ℕ.

• For x ∈ S ∪ T the pre-set ·x is defined by ·x = {y ∈

S ∪ T ∣ W(y¸ x) ≠ 0} and the post-set x· is defined by

x·={y ∈ S ∪ T ∣ W(y¸x) ≠ 0}.

• The marking of a Petri net (S,T,W) is defined as a
function M: S→ℕ. A marking is generally represented
graphically by putting tokens in places.

• The transition rule stipulates that a transition t is
enabled by M iff M(s) ≥ W(s, t) for all s ∈ S. The
firing of a transition t will produce a new marking M′
defined by M′(s) = M(s) - W(s, t) + W (t, s) for all s∈ S.
The occurrence of t is denoted by M [t〉 M′.

• Two transitions t₁ and t₂ (not necessarily distinct) are
concurrently enabled by a marking M iff M(s) ≥ W(s,
t1) + W(s, t2) for all s∈ S.

• A marked Petri net (S,T,W,M0) is a Petri net
(S,T,W) with an initial marking M₀.

• An alphabet is a finite set; we suppose that τ ∉ (τ
will indicate invisible action, or silent action).

• The labeling of a Petri net N = (S,T,W) is a function λ :
T → ∪ {τ}. If λ(t) ∈ then t is said to be
observable or external; at the opposite, t is silent or
internal.

• Σ=(S,T,W,M0,λ) is a labeled system iff (S,T,W,M0) is a
marked Petri net and l is a labeling function of (S,T,W).

• An action a ∈ of a system Σ = (S,T,W,M0,λ) is auto-
concurrent in a marking M iff M concurrently enables
two observable transitions t1 and t₂ (not necessarily
distinct) such that λ (t₁) = λ (t₁) = a.

• A sequence σ = M₀t₁M₁t₂... is an occurrence sequence
iff Mi-l [ti 〉Mi for l ≤ i. A sequence t₁t₂ ... is a transition
sequence starting with M iff there is an occurrence
sequence M₀t₁M₁t₂... If a finite sequence t₁t₂... tn leads

from M to M′ we write M[t₁t₂ ... tn〉M′. The set of
reachable markings of a marked Petri net

(S,T,W,M₀) is defined as [M₀〉 = {M | t₁t₂ ... tn : M0 [t₁t₂
... tn 〉M}.

B. Maximality based Labeled Transition System

Let be a countable set of events names, maximality
based labeled transition system of support is a quintuplet:
(Ω, λ, µ, ξ, ψ) with:

Ω = (S, T, α, β) is a transition system such that:

S is the countable set of states in which the system can be
found.

T is the countable set of transitions indicating the change of
system states.

α and β are two applications of T in S such that for all transition
t we have: α(t) is the origin of the transition and β(t) its goal.

(Ω, λ) is a transition system labeled by an alphabet A.

ψ : S → 2 which associates to each state the finite set of
maximal event names present in this state.

µ : T → 2 is a function which associates to each transition the
finite set of event names corresponding to actions that have
already begun their execution and of which the end of
execution enables this transition.

ξ: T → M : is a function which associates to its transition an
event name identifying its occurrence. Such that for any
transition t, µ(t) ⊆ ψ(α(t)), ξ(t) ∉ ψ(α(t)) − µ(t) and ψ(β(t)) =
(ψ(α(t)) − µ(t)) ∪ {ξ (t)}.

C. Operational maximality semantics for Petri nets

In this section, we introduce a notations and functions for
the definition of marking graph associated to a labeled system
in a maximality-based approach.

Definition 1 Let N = (S, T, W) be a Petri net, the marking of N is
a function M: S → ℕ× . Among others, the marking
M(s) of a place s ∈ S is a pair (,) such that ∈ ℕ and
∈ denote respectively the number of free tokens

and the set (possibly empty) of bound tokens in the place s. In
what follows, a Petri net with a marking will be called
configuration. |M(s)| denote the total number of tokens in a
place s. If M(s) = (,) such that = {n₁t₁x₁,..,nmtmxm} then

|M(s)| = + | | with | | = is the cardinal of the
bound tokens set in s.

Definition 2 Let (S, T, W) be a Petri net with a marking M:

• The set of maximal event names in M is the set
of all event names identifying bound tokens in
the marking M. Formally, the function ψ will be
used to calculate this set, it can be defined as ψ(M)

= such that M(s) = (,) with = {(ns1 ,
ts1 , xs1), . . . ,(nsms , tsms , xsms)}.

• Let N ⊂ be a non-empty finite set of event names,
makefree (N, M) is defined recursively by:

makefree ({x1,x2,… xn}, M)=makefree ({x2,…, xn } , makefree
({x1},M))
makefree ({x, M) = M′ such that for all s∈ S, if M(s) =
(,) then

∗ If there is (n, t, x) ∈ then M′(s) = (+n, -
{(n, t, x)}) (Conversion of n bound tokens identified
by the event name x to free tokens).
∗ Otherwise, M′(s) = M(s).

• Let t be a transition of T; t is said to be enabled by the
marking M iff |M(s)| ≥ W(s, t) for all s ∈ S. The set of
all transitions enabled by the marking M will be noted
enabled (M).

• The marking M is said to be minimal for the firing of
the transition t iff |M(s)| = W (s, t) for all s ∈ S.

• Let M1 and M2 be two markings of the Petri net (S,T,
W). M1 M2 iff ∀s ∈ S, if M1(s) = (1, 1) and M2
(s) = (2, 2) then 1 ≤ 2 and 1 2
such that the relation is extended to bound tokens
sets as follows:

– 1 2 iff ∀ (n1, t, x) ∈ 1, ∃ (n2, t, x)
∈ 2 such that n1 ≤ n2.

• Let M1 and M2 be two markings of the Petri net (S,T,W)
such that M1 M2. The difference M2 -M1 is a marking
M3 (M2 - M1 = M3) such that for all s ∈ S, if M1(s) =
(1 , 1) and M2 (s) = (2 , 2) then M3(s) =
(3, 3) with

– 3 = 2 - 1
– ∀ (n1, t, x) ∈ 1, (n2, t, x) ∈ 2 if n1 ≠ n2

then (n2 - n1, t, x) ∈ 3.

• Min (M, t) = {M′ | M′ M} and M′ is minimal for the
firing of t.

• Let be a set. The function get: 2 -{ ∅}→ is a
function which satisfies get(E)∈ E for any E ∈ 2 -
{ ∅}.

• Given a marking M, a transition t and an event name
x∉ ψ (M), occur (t, x, M) = M′ such that ∀ s ∈ S, if M(s)
= (,) then M′(s) = (, ′) with ′= ∪
{W(t, s), t, x)} if W(t, s) ≠ 0 and ′= otherwise.
Hence, M′ is the resultant marking from the addition
of tokens bound to t to the marking M.

III. OPERATIONAL MAXIMALITY SEMANTICS FOR PETRI

NETS WITH AGGREGATION OF TRANSITIONS

Usually, marking graph is generated by the operational

maximality for Petri nets, thus we keep the same basic
definitions, but to achieve our goal we must change the
semantics of the function Min. In this case, a minimal marking

for the firing of a transition t is considered as an element of the
set Min (M, t) only if for each place of this marking, bound
tokens are only taken in the case when the free part does not
satisfy the pre-condition of this transition. Therefore, we can
ensure that a transition t will be executed sequentially after a
transition t′ if it cannot be executed independently with this
same transition t′.

Formally, Min (M, t) is the set of markings M′ M such that
for any state s where M(s) = (,), M′(s) is defined as
follows:

With ′ and | ′| = w(s, t) -

IV. SEQUENTIAL GENERATION OF MARKING GRAPH

In Algorithm 1 we have three sets (L, V, and T), where L
contains the set of configurations not yet explored, V contains
the set of configurations that have been already developed and
T contains the MLTS.

Algorithm 1
Begin
L :={C0}
V := ∅;
T := ∅;
While L != ∅ Do

config := pop(L) ;
push(config, V) ;
 For all enabled Transition Do /*Petri net transitions*/

// Exhaustive Development
For eash new configuration s′ Do

check if there exist s′ in L or in V
If not exist s′ Then

push(s′, L};
create new transition(s,edge,s′)
T := T ∪ {(s,edge,s′)};

Else

create new transition(s,edge,si);

T := T ∪ {(s,edge, si)};
endif

endfor
endfor

endwhile
End

In order to generate the MLTS we initialize the set L by the
initial configuration and by applying the maximality
operational semantics for Petri net we get a new configuration
to be developed. Thus we add a transition (s, edge, s′) that does
not already exist, to T for each new configuration [7].

V. DISTRIBUTED GENERATION OF MLTS WITH

AGGREGATION OF TRANSITIONS

Algorithm 2
Data : initial configuration C0;
Variables :
NT_configi : the list of configurations not yet explored
T_configi : the list of configurations explored
Si : the list of state the MLTS
Ti : the list of transition the MLTS
Begin
(a) If hash(C0) = i Then

NT_configi.push(C0)
Endif
While (shutdown signal not received) Do

(b)While NT_configi is not empty Do
 conf := pop(NT_configi) ;

push(conf, T_configi) ;
For eash t in Transition Do /*t is a Petri net transition*/

If enabled(t) Then
MinAggreg(conf,t) /*using aggregation of transition t*/
Exhaustive development /* SOS of Maximality */
For each new configuration new_conf Do
(c)If hash(new_conf) = i then
 check if there exist new_conf in NT_configi or

in T_configi
If new_conf not exist Then

push(new_conf,NT_configi};
create new transition (conf,edge, new_conf)
Si = Si ∪ {new_conf};
Ti := Ti + (conf,edge,new_conf);

Else
create new transition (conf,edge,confi);
Ti := Ti + (conf,edge,confi);

Endif
Else

create new transition(conf,edge,new_conf);
Ti := Ti + (conf,edge,new_conf);
SEND(new_conf,hash(new_conf)) ;

Endfor
Endif

Endfor
Endwhile
(d) If RECEIVE(conf_d) Then

 check if there exist conf_d in NT_configi or in T_configi
If config_d not exist Then

push(conf_d, NT_configi};
Endif

Endif
(e)If RECEIVE(terminate) Then

If NT_configi = ∅ Then
Procedure_Terminisation();

(f) If isInitiator and NT_configi = ∅ Then
Init_Terminisation();

Endwhile
End.

Figure 1:Marked Petri net

We take an example to better explain the algorithm. We
suppose the Petri net in “Fig. 1” from which we generate the
distributed MLTS.

We distribute the generated MLTS through three nodes of

workstations network N=3. Referring to maximality operation
semantics [10] the configuration for this Petri net is C0= (<1,
∅><1, ∅><0, ∅>)

For each node i we initiate NT_configi = ∅, T_configi = ∅. Si =
∅, Ti = ∅. In the first step (a) in the algorithm we apply the hash
function defined as:

hash (new_conf.toString())=31*MD5(new_conf.toString()) mod 3 to
the initial configuration ,thus we get the initiator node that
inserts C0 into NT_configi then we start the process of distribute
generation. The results in our case are:

C0.toString () = “1, {} 1, {} 0, {}”,

 md5(“1,{}1,{}0,{}”) = 4ef58d8d06188dbd58bf39f5877c7285,
hash(C0.toString()) = 0; so the node 0 will be the initiator and
NT_config0 ={ (<1, ∅><1, ∅><0, ∅>)}, T_config0= ∅.

In the step (b) in algorithm 2 from the initial configuration
we get two new configurations “Fig. 2” because t0 and t1 are
both enabled, we apply the hash function we get:

C1= (<0, ∅><1,1t0x><0, ∅>).

hash (“0, {} 1,1t0x 0, {} “) =1

C2= (<1, ∅><0, ∅ ><0, 1t1x >)

hash (“1,{}0,{}0,1t1x“) =2

Hence we send each new configuration to its corresponding
node (step c), then:

NT_config1= {(<0, ∅><1,1t0x><0, ∅>)}

T_config1= ∅.

NT_config2= {(<1, ∅><0, ∅ ><0, 1t1x>)}

T_config2= ∅.

• The node number one receives the new configuration

(<0, ∅><1, 1t0x><0, ∅>) step (d) and start
computation. In the first iteration (b) the transition t1
is enabled so two new configurations can be
generated each one from either the bound token or the
free token but by applying the reduction by
aggregation of transition t1 one configuration must be

Figure 2: New markings by firing two transitions

Figure 3: Free tokens and bound tokens in a marking

kept “Fig. 3”,in this case the algorithm keeps
(<0,∅><0,1t0x><0,1t1x>) then calculates its
corresponding hash : hash(“0,{}0,1t0x0,1t1y”)=1. The
value corresponds to the node itself so the
configuration won’t be sent. The node must update its
variables:

NT_config1= {(<0, ∅><0,1t0x ><0, 1t1y>)}

T_config1= {(<0, ∅><1,1t0x><0, ∅>)}.

• The node number two also start computation in
parallel with the node number one and in the first
iteration (b) we can generate from the configuration
received the new configuration (<0, ∅><0,1t0y><0,
1t1x>) where: hash(0,{}0,1t0y0,1t1x)=0 and thus will
be send to node 0.

NT_config2={}

T_config2={(<1, ∅><0, ∅ ><0, 1t1y>)}

NT_config0={(<0, ∅><0,1t0y><0, 1t1x>) }

T_config0={(<1, ∅><1, ∅ ><0, ∅>)}

Since NT_config1 and NT_config0 are non-empty, the node
zero and node one continues working and node 2 wait for
receiving new configurations. From the configuration (<0,
∅><0, 1t0y><0, 1t1x>) located in node 0 and the configuration
(<0, ∅><0, 1t0x ><0, 1t1y>) located in node 1 we obtain the
configuration (<0, ∅><0, ∅><0, 1t1x 1t0y>). The two nodes zero
and one get the same hash value : hash(0,{}0,{}0,1t1x1t0y)=2 .

The node 2 receives this configuration which is no more
enabled and thus no new configuration can be generated. Each
node must update its variables:

NT_config0={}

T_config0={(<1, ∅><1, ∅ ><0, ∅),(<0, ∅><0,1t0y><0, 1t1x>))}

NT_config1={ }

T_config1={(<0, ∅><1,1t0x><0, ∅>),(<0, ∅><0,1t0x ><0,1t1y>) }.

NT_config2= {}

T_config2={(<1, ∅><0,∅><0,1t1y>),(<0, ∅><0, ∅><0,1t1x 1t0y>)}

All lists not yet explored are empty; the termination is thus
detected by the initiator node which is the node 0 in this case.
The obtained MLTS is represented in “Fig. 4”.

VI. DISTRIBUTED TERMINATION DETECTION

The principle of the termination detection algorithm used in
Algorithm 2 is done in [12] by a two-wave algorithm. All
machines have processed all their configuration and no more
messages are in transit in the queues. Here, we have used a
simple technique when all lists are empty, the termination is
detected.

For more information about distributed termination
detection we refer the reader to [13].

VII. IMPLEMENTATION AND EXPERIMENTATION

To assess the feasibility of our approach, we have
developed an environment (D-STEM-PNet) that generates
either a centralized or a distributed reduced MLTS by the
aggregation of transitions presented in the algorithms 1 and 2.
This environment has a graphical editor to draw and edit Petri
nets “ Fig. 5” and a result viewer “Fig. 6, 7” that produces a dot
file type [14].

We have used java as programming language to implement
all the pieces of the environment. For the distributed algorithm
we executed the implementation on a network of 7 pcs 2.4 Ghz
Pentium with 256 MBytes of RAM connected with 100 Mbps
Ethernet. For the communication we have used jade
environment [15] so each node is presented by an agent.

Case study :

In order to illustrate the interest of the proposed approach,
we study in this section an example of processes
synchronization, namely ticket reservation system illustrated in
“Fig. 5”.

The algorithm generates 20076 states without aggregation
of transitions dispersed over 7 nodes as shown in “Fig.7” and
10999 with aggregation “Fig. 8” hence the ratio of reduction in
percent by each node is shown in “Table. I”. The ratio
reduction of the entire graph is about 45%. Thus the
aggregation of transitions gives important results. In addition,
the graph is distributed over nodes and by this we limit the
combinatorial explosion problem.

Figure 4: A distributed MLTS over 3 nodes

Figure 5: graphical tool for editing Petri nets

Figure 6: graph viwer tool

Figure 7. Distribution of states over 7 nodes without aggregation

Figure 8. Distribution of states over 7 nodes with aggregation

TABLE I. TABLE I. RATE RESULTS

Nodes Before reduction After reduction
Reduction

rate %
1 2511 1630 35
2 3985 1559 61
3 2400 1615 33
4 2814 1036 63
5 5418 3399 37
6 340 167 51
7 2608 1593 39

Total 20076 10999 45

VIII. CONCLUSION

In this work we proposed a distributed algorithm for
generating a distributed MLTS in order to push the limit of size
to be able to handle spaces states increasingly of large sizes.
We have also applied the aggregation of transitions to reduce
the size in each node as well. This work gives significant
results in reducing the graph and distributing it over nodes in
order to fight against the combinatorial problem, however
using a hash function for distributing the states may lead to
huge communication between the nodes and less connectivity
between states, which pushes us to try another methods for
reducing the graph such as using a distributed maximality
bissimulation and try to take another direction as well to
increase the connectivity between states.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and

abstraction. ACM Transactions on Programming Languages and
Systems, 16(5) :1512–1542, septembre 1994.

[2] D. E. Saidouni and A. Benamira, La Alpha-Reduction à la Volé Des
Systémes de Transitions etiquetés Maximales, Master thesis, LIRE
Laboratory, University of Mentouri, Constantine, Algeria, 2004.

[3] P. GodeFroid, Using Partial Orders to Improve Automatic Verification
Methods, in Proceedings of CAV’90, volume 3, pages321-340, ACM,
DIMACS, 1990

[4] P. Godefroid and P. Wolper. A Partial Approach to Model
Checking, in Proceedings 6th Symp. On Logic in Computer Science,
volume 531,pages 406-415, Amsterdam 1991.

[5] R. Drechsler, et B. Becker. Binary Decision Diagrams: Theory and
Implementation. Kluwer Academic Publisher, 1998.

[6] R.E. Bryant. Graph-based algorithm for boolean function Manipulation.
IEEE Transactions on Computer Science, 37: 77-121, 1986.

[7] D. E. Saidouni. Semantique de Maximalité: Application Au
Rafinement D’actions Dans LOTOS. PhD thesis, LAAS, Université
Paul Sabatier, Toulouse (Mars 1996).

[8] J. P. Courtiat and D. E. Saidouni. Relating maximality based semantics
to action refinement in process algebras. In ” D. Hogrefe and S. Leue,
Editors, IFIP TC/WG6.1, 7th Int. Cof of Formal Description
Techniques(FORTE’94)”, pages 293- 308. Chapman Hall (1995).

[9] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space
Construction for model-checking. In Proc. 8th Inter. SPIN Workshop,
volume LNCS 2057, pages 217-234. Springer, 2001.

[10] D. E. Saïdouni, N. Belala, and M. Bouneb. Aggregation of transitions in
marking graph generation based on maximality semantics for Petri
nets.In Proceedings of the Second International Workshop on
Veri?cation andEvaluation of Computer and Communication Systems
(VECoS’2008), Uni-versity of Leeds, UK. eWiC Series, The British
Computer Society (BCS),July, 2-3rd 2008. ISSN: 1477-9358..

[11] D. E. Saïdouni, N. Belala, and M. Bouneb. Maximality-based structu-
ral operational semantics for Petri nets. In Proceedings of
INTELLIGENT SYSTEMS AND AUTOMATION: 2nd Mediterranean
Conferenceon Intelligent Systems and Automation (CISA’09), Zarzis,
Tunisia, volume1107, pages 269–274. American Institute of Physics,
March 23th-25th 2009.

[12] F. Mattern. “Algorithms for Distributed Termination Detection.
Distributed Computing”, 1987.

[13] J. Misra and K. M. Chandy, Termination detection of diffusing
Computations in communication sequential processes, ACM
Transactions on Programming Languages and Systems, January, 1982,
37-42.

[14] http://jade.tilab.com/ ,2011

[15] http://www.graphviz.org/ ,2011

