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Abstract—Enumerative model checking tools are limited by the
size of the stat space to which they can be applielsh an attempt

to extend the size of state spaces that can be deulith, we

propose in this paper a distributed algorithm that generates a
distributed maximality-based labeled transition sytems (noted
MLTS) from place/transition Petri net while performing

aggregation ofequivalent transitions proposed in [10].
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. INTRODUCTION

Model checking [1] is a powerful technique for Wgng
reactive systems, able to find subtle errors ih ceanmercial
designs. Its major advantage is automation, ancefire the
ease of use for engineers.

The model checking exhaustively explores the awealyz
models. This causes a major problem: combinatexplosion
due to the state spaces of large systems. Mangi@gwuhave
been proposed in the literature for tackling thishem to push
the limit of size, to be able to handle states epaacreasingly
of large sizes. Some of them use equivalence oeléti reduce
the number of states and transitions in the mdassifmulation
relations, alpha reduction relation, partial ortased relations
...) [2, 3, 4], others use symbolic representations siscBDD
[5, 6].

However, even these solutions reduce significathiysize
of maximality-based labeled transition systems (M)LT7, 8],
the resource limitation make yet a problem when ingnto
complex systems.

Nowadays, workstations clusters give more and more

hardware resources availability, which leads teew solution
which is distributing the graph through the workista
network|[9, 10].

This work we proposes a distributed algorithm fok %
construction, combined with aggregation of transiiin order
to reduce the graph size while generating it orflthfL1]. Our
algorithm implements an operational semantics defin [12].
So it takes a Petri net as a modeling languagepeodlices an
MLTS, it uses also the aggregation of transitianseduce the
graph on the fly, thus it takes the advantage ofkatation
hardware resources by distributing the graph amdréducing
solutions while generating the graph.

. PRELIMINARIES

Petri nets related definitions

A Petri net is a tuplds,T,wW)where S is the set of
places, Tis the set of transitions such thaf =0,
andW:((SxT U (TxS)) — & = {0,1,2,...}is the weight
function.  Graphically, transitions ofT are
represented by rectangles, places of S Ibglesi
and weight function by arrows associated with
their weights. We suppose that all nets are finiee,
[SuT e N

Forx € S U T the pre-setx is definedby "‘x={y €
S UT | W(y, x)# 0} and the post-set: is defined by
x=fy €SUT | W(y,x)#0}.

The marking of a Petri ngS,T,W)is defined as a
functionM: S—»A. A marking is generally represented
graphically by putting tokens in places.

The transition rule stipulates that a traositt is
enabled byM iff M(s)>Wf(s, t) for all s €S. The
firing of a transitiont will produce a new markiniy!’
defined byM'(s) = M(s) - W(s, t) + W (t, dor all se S
The occurrence dfis denoted by [t) M".

Two transitiong; and t, (not necessarily distinct) are
concurrently enabled by a markingiff M(s) > W(s,
t) + W(s, t) forallse S

A marked Petri net(S,T,W,N)
(S, T,wW)with an initial markingV,.

is a Petri net

An alphabe 4 is a finite set; we suppose that A (
will indicate invisible action, or silent action).

The labeling of a Petri nét= (S,T,wW)is a functior. :
To> A U {d If M) € Athent is said to be
observable or external; atthe oppoaiis, silent or
internal.

2=(S,T,W,M/) is a labeled system iffS,T,W,Nj) is a
marked Petri net and | is a labeling functior{®fr,w).

An actiona € .4 of a systent = (S,T,W,M,}) is auto-
concurrent in a markiny! iff M concurrently enables
two observable transitiongand t, (not necessarily
distinct) such that(t;) = 1 (t;) = a.



. A sequence = Myt ;Myts..
iff M [ti)M; for | <i. A sequencet, ... is a transition
sequence starting with iff there is an occurrence
sequenc@t;Mt,... If a finite sequencet,... t, leads
from M to M’'we write M[tst; ...t))M" The set of
reachable markings of a marked Petri net
(S,TW,W) is defined a.BVlg) = {M | tito o tn: Mo[ tt,

v tn)MA

B. Maximality based Labeled Transition System

Let A be a countable set of events names, maximality

based labeled transition system of suprts a quintuplet:
(‘Q! j-v “y 'gb ,l//) W|th

Q= (S, T, p) is a transition system such that:

S is the countableset of states in which the system can be

found.

T is the countable set of transitions indicating tmange of
system states.

a andg are two applications df in Ssuch that for all transition
t we havex(t) is the origin of the transition arg) its goal.

(@, 7) is atransitionsystem labeled by an alphabet A.

) M
w:S—>2
maximal event names present in this state.

H:T— 2" is a function which associates to each transitien
finite set of event names corresponding to actitlas have
already begun their execution and of which the eid
execution enables this transition.

¢:T— M :is a function which associates to its transitéon
event name identifying its occurrence. Such that day
transitiont, u(t) € w(a®), ¢ € wlat) - u) andw(Bt) =

(@) - p®) v{¢ O

C. Operational maximality semantics for Petri nets

In this section, we introduce a notations and fionst for
the definition of marking graph associated to ale&bsystem
in a maximality-based approach.

Definition 1 LetN = (S, T, Wbe a Petri net, the marking of N is
a functionM: S — Ax2M<T>*M - Among others, the marking
M(s) of a places &€ Sis a pair(F7, BT) such tha#7T € & and

BT € 2MxTxMdenote respectively the number of free tokens

and the set (possibly empty) of bound tokens inplaee s. In
what follows, a Petri net with a marking will be lled
configuration.|M(s)| denote the total number of tokens in a
places. If M(s)= (F7,B7) such thaBT = {nt;x;,...nytm then

IM(s)| = FT+ |BT| with | BT | =z§l n: is the cardinal of the
bound tokens set i

Definition 2 Let (S, T, Whe a Petri net with a marking

The set of maximal event names Mn is the set
of all event names identifying bound tokéms
the marking M. Formally, the functiory will be
used to calculate this set, it can be defirmdM)

. is an occurrence sequence

which associates to each state the finite set of

ms

= sgs ¢91 such thamM(s) = (F7,BT) with BT ={(ns; ,
ts.l.! XS. )1 et 1(n§181 tST'IS! XSﬂS)}'

Let N .M be a non-empty finite set of event names,
makefregN, M)is defined recursively by:

makefree ({xX,... X%}, M)=makefree ({,...
(xd,M))
makefree ({x, M) = Msuch that for alke S,if M(s) =

(F7,B8T7)then

* If there is(n, t, x) € BT thenM(s) = (F7T+n, BT -
{(n, t, X)}) (Conversion of bound tokens identified
by the event nameto free tokens).

* OtherwiseM'(s) = M(s)

, %}, makefree

Lett be a transition of; t is said to be enabled by the
markingM iff |M(s)| > W(s, t)for all s € S The set of
all transitions enabled by the markikgwill be noted
enabled (M)

The markingM is said to be minimal for the firing of
the transitiort iff |M(s)| =W (s, tfor alls € S

Let M; andM, be two markings of the Petri n@&,T,
V\O. MJ_@MZ iff vs € S, if Ml(s) = (j'-Tl, BT]_) and M2
(s)= (FT, BT, thenFT, < FT, andBT,€E BT,
such that the relatic€ is extended to bound tokens
sets as follows:

BT €EBT,iff V(n,t,x) € BT, 7 (N, t, X)

€ BT, such thah, <n,.

Let M; andM, be two markings of the Petri &, T,w)
such that; € M,. The differencem,-M; is a marking
Ms; (M, - M; = M3) such that for alb € § if My(s) =
(FT,,BT) andM, (s) = (FT, ,BT,) thenMy(s) =
(FT5, BT 3) with

FI3=FT,-FT,

Vin,tx)e BT, (mtx)e BT,if ni#n,
then (n,-n, t,x) € B BT,

Min (M, t) = {M' | M’ € M} and M’ is minimal for the
firing of t.

Let M be a set. The function gafw-{@} -Mis a
function which satisfieget(E)e E for anyE & oM.

{o}.

Given a markingV, a transitiont and an event name
x¢ w (M), occur (t, X, M= M’ such thatr s € § if M(s)

= (FT,BT) thenM'(s) = (F7,B7") with BT'= BT U
{wtt, s), t, x)}if w(t, s)# 0 andB7'=B7T otherwise.
Hence,M’ is the resultant marking from the addition
of tokens bound toto the markingu.

[ll.  OPERATIONAL MAXIMALITY SEMANTICS FOR PETRI

NETS WITH AGGREGATION OF TRANSITIONS
Usually, marking graph is generated by the opematio
maximality for Petri nets, thus we keep the samaicba

definitions, but to achieve our goal we must chatige
semantics of the functiodin. In this case, a minimal marking



for the firing of a transitiomis considered as an element of th

eAlgorithm 2

set Min (M, t) only if for each place of this marking, bound
tokens are only taken in the case when the freeduas not
satisfy the pre-condition of this transition. THere, we can
ensure that a transitioanwill be executed sequentially after 3
transitiont” if it cannot be executed independently with thi
same transition.

Formally, Min (M, t)is the set of markings!’ € M such that
for any states where M(s) = (F7,B7), M(s) is defined as
follows:

With B7'€ BT and BT'| =w(s, t) - FT

IV. SEQUENTIAL GENERATION OF MARKING GRAPH

In Algorithm 1 we have three sets (L, V, and T),en L
contains the set of configurations not yet explpiédontains
the set of configurations that have been alreadyldped and
T contains the MLTS.

(w (s, ), 0)
(FT, BT’)

if FT = w(s,t)
otherwise

M (s)

Algorithm 1

Begin
L :={Cq)
V=0,
T:=0;
While L I= ¢ Do
config := pop(L) ;
push(config, V) ;
For all enabled TransitioDo /*Petri net transitions*/
/I Exhaustive Development
For eashnew configuration'dDo
check if there exist'sn L or in V
If not exist §Then
push($ L};
create new transition(s,edde,s
T:=T U {(s,edge,8};
Else

create new transition(s,edgg;,s

T:=T U {(s,edge, 8};
endif
endfor
endfor
endwhile
End

In order to generate the MLTS we initialize thelsély the
initial configuration and by applying the maximslit
operational semantics for Petri net we get a nenfigaration
to be developed. Thus we add a transition (s, esjghat does
not already exist, to T for each new configurafigi

Data : initial configuration G;
Variables :
NT_config: the list of configurations not yet explored
T_config : the list of configurations explored
SS : the list of state the MLTS
T, : the list of transition the MLTS
Begin
(a) If hash(G) =iThen
NT_config.push(G)
Endif
While (shutdown signal not receivep
(b)While NT_config is not emptyDo
conf ;= pop(NT_confip;
push(conf, T_confij ;
For eash t in TransitionDo /#tis a Petri net transition*/
If enabled(t)Then
MinAggreg (conf,t) /*using aggregation of transition t*
Exhaustive developmertsos of Maximality */
For eachnew configuration new_coiifo
(c)If hash(new_conf) =then
check if there exist new_conf in NT_confoy
in T_config
If new_conf not existhen
push(new_conf,NT_config
create new transitioftonf,edge, new_conf)
S =3 U {new_conf};
T;:=T; + (conf,edge,new_conf);
Else
create new transition (conf,edge,cinf
T; :=T; + (conf,edge,cofjf
Endif
Else
create new transition(conf,edge,new_con
T; :=T; + (conf,edge,new_conf);
SEND(new_conf,hash(new_conf)) ;
Endfor
Endif
Endfor
Endwhile
(d) If RECEIVE(conf_d)Then
check if there exist conf_d in NT_configr in T_config
If config_d not exisThen
push(conf_d, NT_confiy
Endif
Endif
(e)if RECEIVE( terminateYhen
If NT_config=@ Then
Procedure_Terminisation();
(f) If isInitiator and NT_config=® Then
Init_Terminisation();
Endwhile
End.

V. DISTRIBUTED GENERATION OFMLTS WITH

AGGREGATION OF TRANSITIONS




t:LT
O

Figure 1:Marked Petri net

We take an example to better explain the algorithfa.
suppose the Petri net in “Fig. 1” from which we gexte the
distributed MLTS.

We distribute the generated MLTS through three aasfe
workstations networlk=3. Referring to maximality operation
semantics [10] the configuration for this Petri ieCy= (<1,
7><1, #><0, &)

For each nodéewe initiateNT_config= 4, T_config= 2. S =
g, T. = #. In the first step (a) in the algorithm we apgig thash
function defined as:

hash (hew_conf.toString())=31*MD5(new_conf.toStfiignod 3to
the initial configuration ,thus we get the initintnode that
inserts @ into NT_config then we start the process of distribute
generation. The results in our case are:

CotoString 0 =“1, {4 1, {} 0, {}",

md5(“1,{1,00{}) =  4ef58d8d06188dbd58bf39f5877285,
hashCo.toString()) = 0;s0 the node 0 will be the initiator and
NT_config ={ (<1, #><1, #><0, Z>)}, T_config= &.

In the step (b) in algorithm 2 from the initial duration
we get two new configurations “Fig. 2" becaugeund { are
both enabled, we apply the hash function we get:

C,= (<0, #><1,1t0x><0, 2>).
hash (“0, {} 1,1t0x 0, {} ) =1
C= (<1, #><0, 7><0, 1t1x >)
hash (“1,{}0,{}0,1t1x“ ) =2

Hence we send each new configuration to its coomedipg
node (step c), then:

NT_config= {(<0, #><1,1t0x><0, #>)}
T_config= 2.

NT_config= {(<1, #><0, 7#><0, 1tlx>)}
T_config= &

o

Figure2: New markings by firing two transitions

Figure 3:Free tokens and bound tokens in a marking

kept “Fig. 3”,in this case the algorithm keeps
(<0,2><0,1t0x><0,1t1x>)  then calculates its
correspondinghash : hash(“0,{}0,1t0x0,1tly")=1 The
value corresponds to the node itself so the
configuration won’t be sent. The node must update i
variables:

NT_config= {(<0, #><0,1t0x ><0, 1tly>)}
T_config= {(<0, #><1,1t0x><0, #>)}.

The node number two also start computation in
parallel with the node number one and in the first
iteration (b) we can generate from the configuratio
received the new configuratiof<0, #><0,1t0y><0,
1t1x>) where hash(0,{}0,1t0y0,1t1x)=@nd thus will
be send to node 0.

NT_config={}

T_config={(<1, #><0, #><0, 1tly>)}

NT_config={(<0, #><0,1t0y><0, 1t1x>)}

T_config={(<1, #><1, #><0, 7>)}

The node number one receives the new configuration gjnce NT_config and NT_config are non-empty, the node
(<0, ¢><1, 1t0x><0, ¢>) step (d) and start zerg and node one continues working and node 2 foait
computation. In the first iteration (b) the traiwsitty  rgcejving new configurations. From the configuratieo,

is enabled so two new configurations can beg..q 110y><0, 1t1x>) located in node 0 and the configuration
generated each one from either the bound tokeineor t (<0, #><0, 1t0x ><0, 1tly>) located in node 1 we obtain the
free token but by applying the reduction by configuration(<o, g><0, #><0, 1tix 1t0y>). The two nodes zero
aggregation of transition one configuration must be 514 one get the same hash valuresh(0,{}0,{}0,1t1x1t0y)=2.



The node 2 receives this configuration which is more
enabled and thus no new configuration can be getergach
node must update its variables:

NT_config={}

T_config={(<1, #><1, #><0, 7),(<0, #><0,1t0y><0, 1t1x>))}
NT_config={}

T_config={(<0, #><1,1t0x><0, #>),(<0, #><0,1t0x ><0,1tly>) }.
NT_config= {}

T_config={(<1, #><0, #><0,1tly>),(<0, #><0, #><0,1t1x 1t0y>)}

All lists not yet explored are empty; the termipatis thus
detected by the initiator node which is the noda this case.
The obtained MLTS is represented in “Fig. 4”.

VI. DISTRIBUTED TERMINATION DETECTION

The principle of the termination detection algamtlised in
Algorithm 2 is done in [12] by a two-wave algorithrAll
machines have processed all their configuration rananore
messages are in transit in the queues. Here, we hsed a
simple technique when all lists are empty, the teation is
detected.

For more information about distributed
detection we refer the reader to [13].

VII.  IMPLEMENTATION AND EXPERIMENTATION

To assess the feasibility of our approach, we have
developed an environment (D-STEM-PNet) that gemserat
either a centralized or a distributed reduced ML the
aggregation of transitions presented in the allgorst 1 and 2.
This environment has a graphical editor to draw ediid Petri
nets" Fig. 5” and a result viewer “Fig. 6, 7” that proésca dot
file type [14].

We have used java as programming language to inguiem
all the pieces of the environment. For the distebualgorithm
we executed the implementation on a network ofs¥2é4 Ghz
Pentium with 256 MBytes of RAM connected with 10@p4
Ethernet. For the communication we have used
environment [15] so each node is presented by antag

termination

jade

Case study :

In order to illustrate the interest of the proposggroach,
we study in this section an example of processes
synchronization, namely ticket reservation systiustrated in
“Fig. 5".

The algorithm generates 20076 states without agtjcey
of transitions dispersed over 7 nodes as showrrig.7” and
10999 with aggregation “Fig. 8" hence the ratigeduction in
percent by each node is shown in “Table. I". Théora
reduction of the entire graph is about 45%. Thus th
aggregation of transitions gives important resutisaddition,
the graph is distributed over nodes and by thislimé the
combinatorial explosion problem.
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MLTS over 3 nodes

[£] D-STEM-PNet <MISC Lab 20115 [Reservation System.rdp] o | =] &

File Generation Display Help
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Figure 5: graphical tool for editing Petri nets
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Figure 6: graph viwer tool
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TABLE I. TABLE |. RATE RESULTS
Nodes Before reduction After reduction Reduction
rate %
1 2511 1630 35
2 3985 1559 61
3 2400 1615 33
4 2814 1036 63
5 5418 3399 37
6 340 167 51
7 2608 1593 39
Total 20076 10999 45

VIIl.  CONCLUSION

In this work we proposed a distributed algorithnr fo

generating a distributed MLTS in order to pushliimit of size
to be able to handle spaces states increasinglgroé sizes.
We have also applied the aggregation of transittonseduce

the

size in each node as well. This work gives iBaamt

results in reducing the graph and distributingviéronodes in
order to fight against the combinatorial problengwhver
using a hash function for distributing the statemyrnead to
huge communication between the nodes and less ciivitye
between states, which pushes us to try anotheraugtfor
reducing the graph such as using a distributed mmlity
bissimulation and try to take another direction vesll to
increase the connectivity between states.
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