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Abstract 
 
     A main challenge in software development 
process is to bring error detection to first phases of 
the software life cycle. The Verification and 
Validation (V&V) of UML diagrams is of interest in 
a number of applications such as detecting flaws at 
the design phase for software security, where it is 
crucial to detect security flaws before they can be 
exploited. In this paper, we  propose an approach 
using a transformation tool  to create a PROMELA 
code based model from UML interactions expressed 
in sequence diagram to use in SPIN model checker to 
simulate the execution and to verify properties 
written in Linear Temporal Logic (LTL). Graph 
transformation is used as an approach of model 
transformation to propose a graph grammar for the 
translation using AToM3 tool. 
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1. Introduction 
 

If the software error is detected at the design 
phase before of the implementation, the software 
quality will acceptably be increased. For this target, 
the Verification and Validation (V&V) of UML [1] 
diagrams play a very important role in detecting 
flaws at the design phase. Verification is the process 
of determining that a simulation implementation 
accurately represents the developer’s conceptual 
description and specifications. Verification answers 
the question: “Are we developing the simulation right 
to our specifications?”. Validation is the process of 
determining the degree to which the relevant aspects 
of a simulation effectively represent the real world 
from the perspective of the intended uses of the 
simulation. Validation answers the question: “Are we 
developing the ‘right’ simulation for the purposes we 
have determined?”. 

The Unified Modeling Language is one of the 
well know and widely used standard describing 
software modeling in general and communication 
behavior in particular. The UML is a complete 
language that is used to design, visualize, construct 
and document systems. It is largely based on the 

object-oriented paradigm and is an essential tool for 
developing robust and maintainable software 
systems. The extended vision UML 2.0 introduces 
significant changes to interactions. In this study, we 
focus on formal V&V of one type of UML diagrams: 
“sequence diagrams”. 

The Sequence diagram describes messages 
exchanged between objects to accomplish tasks. 
Many techniques have been proposed for V&V of 
UML diagrams, for example static analysis, theorem 
proving and model checker. The Model checker is 
the most successful approach that's emerged for 
verifying requirements. Another important 
contribution is the definition of the PROMELA 
(Protocol Meta Language) structure that provides a 
precise semantics of most of the newly UML 2.0 
introduced combined fragments, allowing the 
execution of complex interactions. PROMELA is a 
verification modeling language that allows the 
dynamic creation of concurrent process to model, for 
example, distributed systems. PROMELA models 
can be analyzed with SPIN model checker, to verify 
that the modeled system produces the desired 
behavior. We use graph transformation to approach 
the problem of transforming from sequence diagrams 
to PROMELA model. Graph transformation is 
increasingly popular as a meta-language to specify 
and implement visual modeling techniques, such as 
the UML.  In this work, we use AToM3 [2] (A Tool 
for Multi-formalism and Meta-Modeling) a tool 
which implements the idea presented above. AToM3 
has a meta-modeling layer in which formalisms are 
modeled graphically and concrete syntax. 

This article aims to propose an approach that 
allows the generation a model code PROMELA for 
UML interactions expressed in a sequence diagrams 
using SPIN model checker to simulate the execution 
and to verify properties written in Linear Temporal 
Logic (LTL). 

 
2. Related work 
 

Various works intending to verify UML 
diagrams. In [3], a framework is proposed for V&V 
of some UML diagrams (Class diagram, State 
Machine, Activity diagram and Sequence diagram). 
In [10], a description of the translation of Message 
Sequence Charts (MSCs) into PROMELA. Since of 
MSCs is an interaction diagram from the SDL 



(Specification and Description Language) family 
very similar to UML's sequence diagram. Yet, the 
proposed approach trait only with the basic 
components but its PROMELA representation of 
MSCs does not cover the combined fragments. 

In [15], a metamodel-based transformation 
framework is proposed to implement the mapping 
from UML activity diagram to PROMELA. In [4, 5], 
the translation into PROMELA and V&V using 
SPIN is presented for activity diagram and in [6, 7, 
8], the translation into PROMELA code from state 
machine diagram. Hermann [9] uses algebraic graph 
transformation, restricted to abstract syntax, to 
specify transformation rules for sequence diagrams. 
In [13], the translation into PROMELA from 
sequence diagrams by plug in Eclipse tool. In [14], 
the translation From UML 2 Sequence Diagrams to 
State Machines by Graph Transformation with AGG 
tool.  

However, the proposed approach, present the 
trace semantics of the most popular combined 
fragments and their respective PROMELA code that 
correctly simulates the execution traces we use a 
Graph transformation tool AToM3. 
 
3. Graph transformation with AToM3 

tool  
 

Graph transformations is the approach 
that emerges from a natural and intuitive way among 
the model transformation approaches, this is due to 
the nature of the two concepts. The graph 
transformation is a process of graph rewriting based 
on graph grammars. A graph grammar is simply 
a result of well-formed rule, by analogy 
to Chomsky grammars where words are replaced by 
graphs and term rewriting is replaced by the bonding 
graph. Graph grammars are composed of production 
rules each having graphs in their left and right hand 
sides (LHS and RHS). The host graph is an input 
graph which compared with the rules. A rewriting 
system iteratively applies matching rules in the 
grammar to the host graph and replaces the 
sub_graph by the RHS until no more rules are 
applicable. 

AToM3 is a Meta-Modeling tool. As it has been 
implemented in Python, it is able to run (without any 
change) on all platforms for which an interpreter for 
Python is available: Linux, Windows and Mac OS. 
The main idea of the tool is: “everything is a model”. 
During its implementation, the AToM3 kernel has 
been bootstrapped from a small initial kernel. 
Models were defined for boots trapped parts of it, 
code was generated and then later incorporated into 
it. Also, for AToM3 users, it is possible to modify 
some of these model defined components, such as the 
meta-formalisms and the user interface. The main 
component of AToM3 is the Kernel, responsible for 
loading, saving, creating and manipulating models 
(at any meta-level, with the Graph Rewriting 
Processor and graph grammar models), as well as for 

generating code for customized tools. This code 
(meta-models and meta-meta-models) can be loaded 
into AToM3. 

 
4. Translation of UML 2.0 combined 

fragments into PROMELA 
 

In this section, we present the trace semantics of 
some combined fragments and their respective 
PROMELA code that correctly simulates the 
execution traces as illustrated in Figure 1. 

 

 

Figure 1. Overview of our approach. 

 
4.1. Basic elements 
 

Many techniques have been proposed for V&V 
of UML diagrams. The work presented in [10] 
specifies how to translate basic elements of MSCs 
into PROMELA [4] and [3] shows that this schema  
can be reused for basic elements of sequence 
diagrams. The translation rules for basic elements 
presented here are based on the work proposed in 
those approaches, and they will be the basis for the 
next (and more complex) interaction elements. 

Figure 2 provides the representation of the basic 
elements of a sequence diagram with combined 
fragment (CF) which are translate to PROMELA 
with the key words: proctype: for declaring new 
process behavior, mtype: it defines symbolic names 
of numeric constants that are used as messages in the 
communicating process,  chan: it declares and 
initializes communication channels. Finally, symbols 
!/? Operators: for sending/receiving messages 
to/from channels, respectively as shown in Table 1. 

 

 

Figure 2. Elements of sequence diagram. 
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Table 1.Mapping of basic UML sequence 
diagrams into PROMELA [14] 

 
4.2. Meta-model sequence diagram 
 

The meta-models in ATOM3 are a UML class 
diagrams and the constraints are expressed in Python 
language. W proposed the meta model sequence 
diagrams containing five classes such as class 
interaction is a global model containing the 
remaining elements, class  Linelife:  define the line 
of life itself as participating in individual interaction, 
class ExecutionSpecification which refers to the 
period of activity, class CombinedFragement this is 
where we introduce the important and distinctive 
interactions in UML 2.0, Operand this class defines 
the content of a combined fragment, the relation 
CFContain and IOContain allow the combination or 
overlapping fragments combined so to define 
relationships (father / child), Connect represent the 
relation between periods of activity and the life line 
or between two active period as shown in Figure 3. 

 

 

Figure 3. Sequence diagram meta-model. 

5. Transformation rules 
 

In this section we present the transformation 
rules, and we show how the rules gradually 
transform from a sequence diagram into PROMELA 
code. We use the example of Figure 5 to demonstrate 
our approach. 

 
5.1. Messages and channels declaration rule 

 
Figure 4 represent the input model of the 

transformation rule for declaration of messages and 
channels in PROMELA. We use the keyword 
“mtype” for messages and “chan” for channels. 

 
LHS RHS 

  
 

Figure 4. Translation rule for message and 
channels to PROMELA code. 

 
For the example of Figure 5 we get PROMELA 

code indicated by Listing 1. 
 

 

Figure 5. Simple interaction fragment. 

 

 
Listing 1 

5.2. Linelifes specification  
 

To represent the linelifes we use the keyword 
“Proctype” and the !/? Operator for 
sending/receiving messages to/from channels, 
respectively. For the example of Figure 5 we get 
PROMELA code indicated by Listing 2. 
 

 
Listing 2 

5.3. Translation combined fragments rules 
 

A combined fragment is used to group sets of 
messages together to show conditional flow in a 
sequence diagram. In other words, it is a piece of an 
interaction [11].  Figure 6 represent the input model 

Proctype a (){ab_Msg1!Msg1; ab_Msg2!Msg2;}; 

 Proctype b (){ab_Msg1?Msg1; ab_Msg2?Msg2;}; 

      mtype={Msg1,Msg2} 

      chan ab_Msg1=[1] of {mtype} 

      chan ab_Msg1=[1] of {mtype} 
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of the transformation rule for deferent combined 
fragment to PROMELA code. 
 
LHS RHS 

  

 
Figure 6. Translation rule for deferent combined 

fragment to PROMELA code. 
 
5.3.1. Weak sequencing combined fragments 
 

In Figure 7 we provide the execution traces for 
the weak sequencing operator which denoted by Seq 
operator. On a lifeline, the occurrence specification 
within an operand cannot execute until the OSs in the 
previous operand complete.  

 

 
Figure 7. Weak sequencing combined fragment. 

 
For the example of Figure 7 we get PROMELA code 
indicated by Listing 3. 
 

 
Listing 3 

5.3.2. Alternative combined fragments 
 

Alternative combined fragments denoted by Alt 
operator, it represent a choice of behavior in 
sequence diagrams. It is one of the operands whose 
interaction constraints evaluate to true is 
nondeterministically chosen to execute. Each 
operand must have an explicit or an implicit or an 
else constraint. The chosen operand's constraint must 
evaluate to true. An implicit constraint always 
evaluates to true. The else constraint is the negation 
of the disjunction of all other constraints in the 
enclosing alternative combined fragment. The set of 
traces that defines a choice is the union of the traces 
of the operands [3,10].For the example of Figure 8 
we get PROMELA code indicated by Listing 4. 

 

 

Figure 8. Alternative combined fragment. 

 

 
Listing 4 

5.3.3. Parallel combined fragments 
 

A parallel combined fragment, denoted by Par 
operator. The operand specifies on a Lifeline within 
different operands may be interleaved, but the 
ordering imposed by each operand must be 
maintained separately. Its set of traces describes all 
the ways that events of the operands may be 
interleaved without obstructing the order of the 
events within the operand. For the example of Figure 
9 we get PROMELA code indicated by Listing 5. 

 

 

Figure 9. Parallel combined fragment. 

 
Listing 5 

Proctype a(){ 

  run sub_a() 

  ab_Msg2!Msg2; 

  aSubA?token;} 

proctype b(){ 

  run sub_b() 

  ab_Msg2!Msg2; 

  bSuB?token;}  

proctype sub_a(){ 

  atomic{ab_Msg1!Msg1; aSubA!token;};} 

proctype sub_b(){ 

   atomic{ab_Msg1!Msg1; aSubA!token;};} 
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  if  

    ::(X>0) -> ab_msg2!msg2;  

    :: else -> ab_msg1!msg1;  

  fi;}  

 prototype b() {  

  if  

    ::(X>0) -> ab_msg2?msg2;  

    :: else -> ab_msg1?msg1;  

  fi;}  

 init {  

    if  

       :: (true) -> X>0=true;  

       :: (true) -> X>0=false;  

 fi;} 
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6. Example 
 

We have applied our approach on the sequence 
diagram of Figure 10. 

 

 
Figure 10. Example of sequence diagram. 

 
6.1. Graph grammar for the transformation 
of UML sequence diagrams to PROMELA 
code 

  
We have proposed a graph grammar containing 

13 rules. To generate PROMELA code from a UML 
sequence diagram. For lack of space   we only 
describe in the following some rules. 

 
6.1.1. Messages declaration rule 
 

Listing 6 represent the code python of Messages 
declaration rule’s condition which represented in 
figure 4. 

 

 
Listing 6 

 
 
And the action of this rule is indicated by Listing 7.  
 

 
Listing 7 

6.1.2.  Channels declaration rule 
 

This rule used to declare channels which will be 
marked as "Visited" for the first time. We use the 
same condition and the graph grammar of messages 
declaration rule and the action indicated by Listing 8. 
 

 
Listing 8 

 
6.1.3. Alternative combined fragments rule 
 

Figure 6 represent the rule that translate the 
combined fragment Alt  which are represented as if 
condition in PROMELA. The condition of the 
alternative combined fragments rules is indicated by 
Listing 9. 
 

 
Listing 9 

 
Due to space constraint the Python code 

corresponding to the action of the alternative 
combined fragments rules cannot be represented in 
this paper. 
 
6.2. PROMELA code result 
 

After the application of the previous grammar we 
have obtained the PROMELA code as indicated by 
Listing 11 of the example represented in Figure 10. 
 

tnode=self.getMatched(graphID, 

self.LHS.nodeWithLabel(1)) 

return tnode.visited == 0 

msg=self.getMatched(graphID, 

self.LHS.nodeWithLabel(3)) 

l1=self.getMatched(graphID, 

self.LHS.nodeWithLabel(1)) 

l2=self.getMatched(graphID, 

self.LHS.nodeWithLabel(2)) 

msg.visited = 2 

posx,posy= 

10+125*(self.graphRewritingSystem.NButtons%3), 

10+70*(self.graphRewritingSystem.NButtons/3) 

self.graphRewritingSystem.NButtons= 

self.graphRewritingSystem.NButtons + 1 

file = self.graphRewritingSystem.file 

nameMSg=msg.name.toString() 

file.write("chan 

"+l1.name.toString()+l2.name.toString()+"_"+nameMSg

+" =[1] of {mytype};\n") 

msg=self.getMatched(graphID,self.LHS.nodeWithLabel(4)

) 

msg.visited = 1 

posx,posy= 

10+125*(self.graphRewritingSystem.NButtons%3), 

10+70*(self.graphRewritingSystem.NButtons/3) 

self.graphRewritingSystem.NButtons = 

self.graphRewritingSystem.NButtons + 1 

file = self.graphRewritingSystem.file 

nameMSg=msg.name.toString() 

file.write(nameMSg+" ") 

tnode=self.getMatched(graphID, 

self.LHS.nodeWithLabel(4)) 

return tnode.visited == 0 



 
Listing 11 

 

7. Conclusion  
 

We present in this paper a technique to translate 
UML 2.0 sequence diagrams to PROMELA code. 
We have shown how concrete syntax-based graph 
transformation rules can be used to specify a 
transformation implemented in the software tool 
AToM3. This code-generating tool, developed in 
Python, relies on graph grammars and meta-
modeling techniques. It is a great advantage that the 
developer can specify rules in the well known 
concrete syntax of sequence diagrams instead of the 
complicated abstract syntax. Since it takes into 
account the most popular UML combined fragments, 
this approach allows the developer to detect flaws in 
more completed complex sequence diagrams. 

We have presented AToM3, a tool which 
implements the concepts presented before, and 
demonstrated its usefulness by generating a 
PROMELA code for use in SPIN model checker to 
simulate the execution and to verify properties. In a 
future work, we plan to transform other combined 
fragment to PROMELA code. We plan also to 
perform some verification of properties using SPIN. 
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mytype={ Asking_postcard ,Asking Code, Asking Code,  

Card verify SUM  }; 

chan AutomateBilletClient_Asking_postcard =[1] of 

{mytype}; 

chan ClientAutomateBillet_Card =[1] of {mytype}; 

chan ClientAutomateBillet_verify SUM=[1] of {mytype}; 

chan AutomateBilletClient_Asking Code=[1] of {mytype}; 

chan AutomateBilletClient_Asking Code=[1] of {mytype}; 

proctype Client(){ 

AutomateBilletClient_Asking_postcard?Asking_postcard; 

ClientAutomateBillet_card!card; 

AutomateBilletClient_Asking_code?Asking_postcode; 

if 

  ::(rightcode)-

>ClientAutomateBillet_verifySUM!verifySUM; 

  ::Else-

>AutomateBilletClient_Asking_code?Asking_postcode; 

fi;} 

proctype AutomateBillet(){ 

AutomateBilletClient_Asking_postcard!Asking_postcard; 

ClientAutomateBillet_card?card; 

AutomateBilletClient_Asking_code!Asking_postcode; 

if 

  ::(rightcode)-> 

ClientAutomateBillet_verifySUM?verifySUM; 

  ::Else-

>AutomateBilletClient_Asking_code!Asking_postcode; 

fi;} 

init{ 

 ::(true) -> guard=true; 

 ::(false) -> guard=false; 

} 


