
Exploring intersection trees
for indexing metric spaces

Zineddine KOUAHLA
Laboratoire d’informatique de Nantes Atlantique (LINA, UMR CNRS 6241)

Polytechnic School of the University of Nantes, Nantes, France

Email: name.surname@univ-nantes.fr

Abstract—Searching in a dataset for objects that are similar to a given
query object is a fundamental problem for several applications that use
complex data. The general problem of many similarity measures for
complex objects is their computational complexity, which makes them
unusable for large databases. Here, we introduce a study of a variant of
a metric tree data structure for indexing and querying such data. Both
a sequential and a parallel versions are introduced. The efficiency of our
proposal is demonstrated through experiments on real-world data, as
well as a comparison with existing techniques: MM-tree and Slim-tree.

I. INTRODUCTION

For several decades, indexing techniques have been developed
in order to deal with efficient searches over large collections of
data. Especially associative searches, i.e., searches where part of
the information to be retrieved is provided, namely a key. This
basic problem has been extended over the years in order to retrieve
information based on any subset of its contents as well as taking care
of imprecisions. When considering indexing data as vectors, homoge-
neous or inhomogeneous ones, it turned out that search and indexing
become more and more difficult, when increasing the dimension
of the so-called vectors. This has been named the “dimensionality-
curse problem.” The reader can find several surveys to present
and compare existing multidimensional indexing techniques [1], [2],
[3]. However, the objects to be indexed are often more complex
than mere vectors (e.g., graph matching in ontologies) or cannot
be simply and meaningfully concatenated in order to give a larger
vector (e.g., colour histograms and keywords for describing images
in a multimedia database). Hence, the focus of indexing has partly
moved from multidimensional spaces to metric spaces, i.e., from
exploiting the data representation itself to working on the similarities
that can be computed between objects. Inherently, the difficulties of
multidimensional spaces remain, in a generalised version, whereas
new difficulties arise due to the lack of information on the objects.

Let us note that any multidimensional space is also a metric space.
Generally, it suffices to use one of the norms as a distance, e.g., the
Manhattan or the Euclidean distances. This can become an advantage,
a given distance revealing the intrinsic dimensionality of the objects
rather than each and every dimension of the vectors. Conversely, it is
possible to use a few objects as pivots and to compute the distance of
each object to each pivot. The concatenation of the distances to each
pivot is a real-based vector, e.g., FastMap [4]. So, there exists a lot
of commonalities between the two families of indexing structures.

This paper introduces the αIM-tree technique inspired by the MM-
tree. It is organised as follows: Section II introduces kNN queries and
reviews a short taxonomy of indexing technique in metric spaces.
Then, Section III introduces our proposal, the αIM-tree, overviews
its main characteristics and the corresponding algorithms. Section IV
discusses the experimental results. Section V concludes the paper and
introduces research directions.

II. INDEXING IN METRIC SPACES

Metric spaces are becoming more and more useful, for several
applications need to compare objects based on a similarity between
them that is formalised as a mathematical distance, e.g., multimedia
objects. Let us focus the basic search query and introduce some
indexing technique from the literature.

A. Similarity Queries in Metric Spaces

There exist numerous measures of similarity applicable to various
kinds of “objects”, e.g., Minkowski distances, among which the best
known are the Manhattan distance and the Euclidean distance, that
can be applied to any vector-like data such as colour histograms in
multimedia databases. Formally, a metric space is defined for a family
of elements that are comparable through a given distance.

Definition 1 (Metric space): Let O be a set of elements. Let d :
O ×O → R+ be a distance function, which verifies:

1) non-negativity: ∀(x, y) ∈ O2, d(x, y) ≥ 0;
2) reflexivity: ∀x ∈ O, d(x, x) = 0;
3) symmetry: ∀(x, y) ∈ O2, d(x, y) = d(y, x);
4) triangle inequality: ∀(x, y, z) ∈ O3, d(x, y) + d(y, z) ≤

d(x, z).

The concept of metric space is rather simple and leads to a
limited number of possibilities for querying an actual database of
such elements. These are called similarity queries and several variants
exist. We consider k nearest neighbour (kNN) searches, i.e., searching
for the k closest objects with respect to a query object q and a given
distance d.

Definition 2 (kNN query): Let (O, d) be a metric space. Let q ∈
O be a query point and k ∈ N be the expected number of answers.
Then (O, d, q, k) defines a kNN query, the value of which is S ⊆ O
such that |S| = k (unless |O| < k) and ∀(s, o) ∈ S ×O, d(q, s) ≤
d(q, o).

B. Background

Metric spaces introduce the notion of topological ball, which is
close to a broad match. It allows to distinguish between inside and
external objects.

Definition 3 ((Closed) Ball): Let (O, d) be a metric space. Let p ∈
O be a pivot object and r ∈ R+ be a radius. Then (O, d, p, r) defines
a (closed) ball, which can partition inner objects from outer objects:

I(O, d, p, r) = {o ∈ O : d(p, o) ≤ r} ;
O(O, d, p, r) = {o ∈ O : d(p, o) > r}.

Another useful partitioning concept is the one of generalised
“hyper-plane.”

Metric-space Indexing Tree

Hyper-plane partitioning

GNAT

GH-tree

M-tree

Space-partitioning Non-Space
partitioning

Ball partitioning

MVP-tree

VP-tree

Slim-tree
MM-tree

Onion-tree αIM-tree

EGNAT

Fig. 1. A simplified taxonomy of indexing techniques in metric spaces

Definition 4 (Generalised hyper-plane): Let (O, d) be a metric
space. Let (p1, p2) ∈ O2 be two pivots, with d(p1, p2) > 0. Then
(O, d, p1, p2) defines a generalised hyper-plane:

H(O, d, p1, p2) = {o ∈ O : d(p1, o) = d(p2, o)}

which can partition “left-hand” objects from “right-hand” objects:

L(O, d, p1, p2) = {o ∈ O : d(p1, o) ≤ d(p2, o)} ;
R(O, d, p1, p2) = {o ∈ O : d(p1, o) > d(p2, oP)}.

Based on these two partitioning techniques, we present a general
summary of some indexing techniques in metric spaces. Figure 1
shows a simple taxonomy of some techniques of indexing in metric
spaces. There are two main cases:

1) The first one is based on the partitioning of the space. Two
sub-approaches are included in this first class:

a) One of them uses ball partitioning, like VP-tree [5], mVP-
tree [6], etc.

b) The other approach uses hyper-plane partitioning such as
GH-tree [7], GNAT [8], etc.

2) The second class that does enforce a partitioning (non-space-
partitioning). There, we find M-tree, Slim-tree, etc.

In the second class, the M-tree [9] builds a balanced index,
allows incremental updates, and it performs reasonably well in high
dimension. Unfortunately it suffers from the problem of overlapping
that increases the number of distance calculations to answer a query.
There is an optimised version of it: the Slim-tree [10]. It mainly
reorganises the M-tree index in order to reduce overlaps. The used
algorithm, called slim-down, has shown good performances on the
research algorithm and has reduced its processing time. Its defect is
the need for reinserting objects.

The first class, the one base on space-partitioning of the space,
either with balls or with hyper-planes, is richer.

The GH-tree is a type of index based on the partitioning of hyper-
planes. It has proven its efficiency in some dimensions but it is still
inefficient in large dimensions. The principle of this technique is
the recursive partitioning of space into two regions. We choose each
time two pivots, and each one is associated to the nearest objects.
The problem of this technique is that intersections between regions
are influenced on the search algorithm which made the GH-trees less
effective in large spaces.

The VP-tree is a type of index based on a partitioning by a ball. The
VP-tree building process is based on finding the median element of a
set of objects. The mVP-tree is an enary generalisation of the VP-tree.
The mVP-tree nodes are divided into quantiles. In fact, the operations

III IVIII

IV
II III
I

p
2p

1

node

r = d × α

d(p
1
, p

2
)

r
1 r

2

r

children

Fig. 2. The partitioning principle in an αIM-tree and the corresponding tree
structure

(insertion and search) on this type of index are very similar to VP-
trees. Often, it behaves better; but there is not enough differences to
investigate further.

In recent years, a new technique has emerged, the MM-tree [11],
which also uses the principle of partitioning by balls, but it is based
on the exploitation of regions obtaines from the intersection between
two balls (See Figure 2). The general idea of this structure is to
select two pivots from the set of objects, in a random way, then
to partition the space into four disjoint regions using these two
balls, their intersection, their respective differences, and the external
objects. The partitioning is done in a recursive way. In order to
improve the balancing of the tree, a semi-balancing algorithm is
applied near to the leaves, which reorganises the objects in order
to gain of level.

An extension of this technique was developed: the Onion-tree [12].
Its aim is to divide the region IV to create successive expansions that
improve the search algorithm, because the region IV is particularly
vast. The goal is to have an index less deep and wider to go faster
to the right answers to a query. In our opinion, the problem is not
totally solved because the construction phase is always slow due to
the reinsertion of objects.

On the one hand, we believe that parallelism is unavoidable for
dealing with large datasets that present inherent “dimensionality”
difficulties. Some directions have already been investigated. On the
other hand, we think that the important open issue is finding the trade-
off between a maximally parallel kNN query algorithm – that scans all
the data – and the parallel gathering of (statistical) information about
the unknown radius – that can limit the number of data accesses. We
also argue that some replication of the data would be beneficial both
to a sequential version and also to a parallel one, something that, to
the best of our knowledge, has not been exploited in the literature.

III. αIM-TREE

In this section, we introduce a new quadrary tree, called αIM-
tree (α Intersection Metric tree), as an indexing technique in metric
spaces. It is a memory-based Metric Access Method (MAM) that
divides recursively the dataset into four disjoint regions by selecting
two pivots.

Figure 2 illustrates informally the way the tree is built at a given
step in the refining process of recursively splitting the dataset.

Two pivots are chosen as being the farthest from each other in a
given data subset. A radius is computed so as to create an intersection
between the two balls centred on these pivots but without including
them. Therefore, the radius varies between the pivots inter-distance
(excluded) and the pivots mid-point (excluded). The computation
depends on the α parameter introduced and discussed below.

Thanks to these two inner balls, we can divide the space into
four disjoint regions, namely (I) their intersection, (II) and (III) their
respective differences, and (IV) the complement to their union. Notice
that we adds two “outer” balls defined by the radii, r1 and r2, given
by the farthest points to p1 and p2 respectively; sometimes, these
points are located inside the balls, sometimes outside. They help to
reduce faster the query radius rq .

A. Definition

Let us introduce formally the αIM-tree.
Definition 5 (αIM-tree): Let M = (O, d) be a metric space. Let

1
2
< α < 1 be a given parameter to be studied later.
We define NM,α, or N for short, as the nodes of a so-called αIM-

tree.
A leaf node consists merely of a subset of the indexed objects:

L = 〈E〉

with E ⊆ O.
An inner node is a nonuple:

N = 〈p1, p2, r, r1, r2, N1, N2, N3, N4〉

where:
• (p1, p2) ∈ O2 are two distinct pivots, i.e., with d(p1, p2) > 0;
• r = d(p1, p2) × α defines two balls, B1(p1, r) and B2(p2, r),

centred on p1 and p2 respectively and having a common radius
value, large enough for the two balls to have a non-empty
intersection;

• (r1, r2) ∈ R+2 are the distances to the farthest object in the sub-
tree rooted at that node N with respect to p1 and p2 respectively,
i.e., ri = max{d(pi, o),∀o ∈ N} for i = 1, 2 where the
set notation o ∈ N is abusely used for the union of the leaf
extensions that are rooted at N ;

• (N1, N2, N3, N4) ∈ N 4 are four sub-trees such that:
– N1 = {o ∈ N : d(p1, o) < r ∧ d(p2, o) < r};
– N2 = {o ∈ N : d(p1, o) < r ∧ d(p2, o) ≥ r};
– N3 = {o ∈ N : d(p1, o) ≤ r ∧ d(p2, o) < r};
– N4 = {o ∈ N : d(p1, o) ≥ r ∧ d(p2, o) ≥ r};

with the same informal set notation for the extension of an inner
node.

B. Incremental construction

Building a αIM-tree is realised incrementally. The insertion is done
in a top-down way. Algorithm 1 describes formally the incremental
insertion process.

Initially, a tree is empty, i.e., it is a leaf with an empty set of
objects.

The first insertions in a leaf make it only grow until a maximum
number of elements is attained. This is the cmax parameter in
Algorithm 1. Due to time complexity considerations, its value cannot
be larger than

√
n where n = |E| is the cardinal of the whole

population of objects to be inserted in the tree.
When the cardinal limit is reached, a leaf is replaced by an inner

node and four new leaves are obtained by splitting the former set
of objects into four subsets according to the conditions given in
Definition 5.

In order to split the object set, two distinct pivots have to be chosen.
The selection of these pivots plays an important role in our proposal
along with the cmax parameter. The goal is to balance, as much as
possible, the tree. In Algorithm 1, we decided to choose two objects
as far as possible from each other. The larger the cardinal limit, the

more representative of the whole collection the objects should be,
and the more actually distant should the pivots be with respect to the
whole collection E.

Inserting a new object in an inner node amounts to selecting the
subtree that has to contain it with respect to the conditions given
in Definition 5 and applying the insertion recursively. Also, r1 and
r2 may be increased. Let us note that, at each inner node, only two
distances are calculated in order to insert a new object. Besides, the
tree tends to be rather balanced, hence inserting a new object is a
logarithmic operation, in amortised cost.

C. Similarity queries

Next, let us describe the algorithms associated to αIM-trees for
answering kNN queries. We introduce a standard sequential algorithm
along with a parallel version and a companion algorithm to this
parallel version.

1) Parallel version of the kNN search: Let us start with the
parallel version, which is simpler. Algorithm 2 works as follows.
Leaf nodes contain a subset of the indexed data. In order to find the
k nearest neighbours with respect to a given leaf, it is sufficient to
sort them in increasing distances to the query object. Then, we return
at most the kth first sorted elements. Notice that a full sort is not
necessary; there exists a variant, say “k-sort”, in O(n. log2 k) rather
than O(n. log2 n). Here, we have 1 ≤ n ≤

√
|E|.

In inner nodes, the principle is to start, in parallel, a kNN search
in all the candidate children. Being a candidate child depends on
the intersection between the query ball B(q, rq) and the topology
of the child. The four regions are distinct in shape (See Figure 2),
therefore we have to provide four distinct conditions, namely C1 to
C4 in Algorithm 2.

Notice that in the recursive calls, the upper bound, rq , which
is initially set to +∞ by default, can be (hopefully) decreased.
This, again, depends on the considered child, as indicated by the
evaluations of rq1 to rq4.

The results from zero to all of the four children are merged and
at most k of them returned. Notice, again, that this step does not
really require a sort, but only a sequence of merges. In both cases, the
complexity is “constant”, i.e., in O(4.k) – rather than O(4.k. log2 k).

In the worst case, the overall computation can be seen as the partial
answers going up from all the leaves to the root of the tree; this is a
full parallel search. In the best case, only the leaves that could contain
at least one candidate answer take part in the ascending computation;
this is the perfect parallel search. In both cases, the overall average
time complexity can be expected and estimated to be in:

O
(

1
2

√
n. log2 k + log4

n√
n
.4.k

)
=

O
(

1
2

√
n. log2 k + 1

2
log4 n.4.k

)
=

O(
√
n+ log4 n) =

O(
√
n)

with n = |E| and cmax =
√
n, where the first term corresponds to

the parallel computations on the leaves and the second term to the
parallel computations on the way up. However, this result holds under
the hypotheses that the tree is quasi balanced, that the distribution
of elements in the leaves is uniform, and that the distribution of the
elements among the various children is also uniform. In that case, it
is quite an improvement over a mere “k-sort” in O(n. log2 k), though
it requires O(

√
n) processors, in the worst case, to be executed at

full speed.

Relying on the decreases expressed by the computations of rq1 to
rq2 in Algorithm 2 is quite insufficient. It is necessary to estimate an

Algorithm 1 Incremental insertion in a αIM-tree

Insert
(
o ∈ O, N ∈ P(N), d ∈ (O ×O → R+), cmax ∈ N∗, α ∈

]
1
2
, 1
[)
∈ N

with:
• E′ = E ∪ {o};
• (p1, p2) = argmax(o1,o2)∈E′2{d(o1, o2) : d(o1, o2) > 0};
• r = d(p1, p2)× α;
• E′1 = {o ∈ E′ : d(p1, o) ≤ r ∧ d(p2, o) ≤ r};
• E′2 = {o ∈ E′ : d(p1, o) < r ∧ d(p2, o) ≥ r};
• E′3 = {o ∈ E′ : d(p1, o) ≥ r ∧ d(p2, o) < r};
• E′4 = {o ∈ E′ : d(p1, o) ≥ r ∧ d(p2, o) ≥ r};

∆
=

〈E′〉 if N = 〈E〉 ∧ |E| < cmax〈
p1, p2, r, r1, r2,
〈E′1〉, 〈E′2〉, 〈E′3〉, 〈E′4〉

〉
if N = 〈E〉 ∧ |E| = cmax〈

p1, p2, r,max{d(o, p1), r1},max{d(o, p2), r2},
Insert(o,N1, d, cmax, α), N2, N3, N4

〉
if N = 〈p1, p2, r, r1, r2, N1, N2, N3, N4〉∧

d(p1, o) ≤ r ∧ d(p2, o) ≤ r〈
p1, p2, r,max{d(o, p1), r1},max{d(o, p2), r2},
N1, Insert(o,N2, d, cmax, α), N3, N4

〉
if N = 〈. . .〉∧

d(p1, o) < r ∧ d(p2, o) ≥ r〈
p1, p2, r,max{d(o, p1), r1},max{d(o, p2), r2},
N1, N2, Insert(o,N3, d, cmax, α), N4

〉
if N = 〈. . .〉∧

d(p1, o) ≥ r ∧ d(p2, o) < r〈
p1, p2, r,max{d(o, p1), r1},max{d(o, p2), r2},
N1, N2, N3, Insert(o,N4, d, cmax, α)

〉
if N = 〈. . .〉∧

d(p1, o) ≥ r ∧ d(p2, o) ≥ r

Algorithm 2 Parallel version of the kNN search

kNN (N ∈ N , q ∈ O, k ∈ N∗, rq ∈ R+ = +∞) ∈ (R+ ×O)N
with:
• d1 = d(q, p1);
• d2 = d(q, p2);
• a specific condition for each branch:

– C1 = B(q, rq) ∩B(p1, r) 6= ∅, for the intersection;
– C2 = B(q, rq) ∩B(p1, r) 6= ∅ ∧B(q, rq) ∩B(p2, r) 6= ∅, for the partial ball centred on p1;
– C3 = B(q, rq) ∩B(p1, r) 6= ∅ ∧B(q, rq) ∩B(p2, r) 6= ∅, for the partial ball centred on p2;
– C4 = B(q, rq) ∩B(p1, r1) 6= ∅ ∨B(q, rq) ∩B(p2, r2) 6= ∅, for the remaining space;

• a specific upper-bound decrease for each branch:
– rq1 = min{rq,min{d1 + r1, d2 + r2}};
– rq2 = min{rq, d1 + r1};
– rq3 = min{rq, d2 + r2};
– rq4 = min{rq,max{d1 + r1, d2 + r2}}.

∆
=

{
k-sort{(d(x, q), x) : x ∈ E} if N = 〈E〉
k-merge{kNN(Ni, q, k, rqi) : Ci, ∀1 ≤ i ≤ 4} if N = 〈p1, p2, r, r1, r2, N1, N2, N3, N4〉

upper-bound to the forthcoming kth distance. In this way, the first call
on the root node could be initialised with a much more satisfactory
value than +∞, the best estimation leading to a perfect search.

This is the role of a companion algorithm to Algorithm 2. It finds
a minimal upper-bound by scanning a limited number, β, of inner
nodes. (Leaf nodes are too costly.) Due to lack of space, we do not
detail this simpler algorithm. Besides, it works in a similar way to
the sequential version of a kNN search, that is introduced in the
following section.

2) Sequential version of the kNN search: Contrary to its par-
allel counterpart, a sequential search can benefit from information
gathered in previous branches. More specifically, a fastly decreasing
upper-bound is obtained by the incrementally constructed answer.
Conversely, in the parallel version, the parallel computations cannot
exchange such an information.

Algorithm 3 is a “standard” algorithm, i.e., a kNN search adapted

to our proposal. It runs a kind of “branch-and-bound” algorithm
where the upper bound rq is the monotonically decreasing (future)
range of the kth answer. Therefore, Algorithm 3 accepts an A
parameter, i.e., a solution “so-far.”

The tree is traversed in pre-order. When arriving at a leaf node,
the difference with the parallel version is that the currently known
sub-solution is merged with the local sub-solution.

When arriving on an inner node, the difference is that the calls are
not made in parallel but in sequence. In that way, the sub-solution
from a previous call is transmitted to the next call, hence improving
the knowledge of the next branch on the query upper-bound.

IV. EXPERIMENTS AND COMPARISON

In order to show the efficiency of our approach, we run some
experiments. Firstly, we chose a dataset and the accompanying
queries, then run various variants of the algorithms, and finally

Algorithm 3 Sequential version of the kNN search

KNN (N ∈ N , q ∈ O, k ∈ N∗, rq ∈ R+ = +∞, A ∈ (R+ ×O)N = ∅) ∈ (R+ ×O)N
with:
• A = A0 = ((d1, o1), (d2, o2), . . . , (dk′ , ok′));
• d1 = d(q, p1);
• d2 = d(q, p2);
• C1, . . . , C4 as of Algorithm 2;
• a specific upper-bound decrease for each branch:

– A0 = A;
– C0 = true;
– rq0 = min{rq, dk′} if k′ = k, rq otherwise;
– Ai = kNN(Ni, q, k, rqi−1 , Ai−1) if Ci, Ai−1 otherwise
– rqi = min{rqi−1 , dk} if |Ai−1| = k ∧Ai−1 = ((d1, o1), . . . , (dk, ok)), rqi−1 otherwise.{

k-sort(A ∪ {(d(x, q), x) : x ∈ E}) if N = 〈E〉
k-merge{Ai, ∀0 ≤ i ≤ 4} if N = 〈p1, p2, r, r1, r2, N1, N2, N3, N4〉

evaluate some measures on the index structure as well as the kNN
searches.

A. Indexed collections and queries made

We ran preliminary experiments on a few datasets. Here, we only
report representative results on a multimedia dataset.

Effectively, multimedia descriptors are a good example of complex
objects. We use a subset of the the MPEG-7 Dominant Color
Descriptor (DCD) from the COPhIR dataset (Content-based Photo
Image Retrieval).1 The selected sample consists of 10,000 descriptors,
each being a vector of 64 dimensions.

To run the search algorithms, we used 100 different descriptors as
queries and averaged the results.

B. Algorithm variants

Firstly, we varied the building algorithm by using different values
of α, namely 0.52, 0.55, 0.6, and 0.69. The cmax parameter was set
to the square root of the size of the collection, i.e.,

√
10, 000 = 100.

Then, we ran 20-NN search, i.e., (k = 20), using four algorithmic
variants:
• Parallel-full. A parallel kNN search as of Algorithm 2 algorithm

(with rq initialised with +∞ and k to 20).
• Sequential. The sequential counterpart kNN search as of Algo-

rithm 3.
• Perfect. A very special search algorithm, for we start our search

with rq initialised to the exact distance to the kth object! So this
is an ideal case that allows a base comparison with the other
approaches.

• Parallel-bounded. The last variant is the parallel search algorithm
where rq is initialised with an estimation of the distance to
the kth neighbour, as provided by the companion algorithm. In
the experiments, we varied the β parameter of this companion
algorithm from 10, to 20, to 50, and to 150 (as the number of
inner nodes investigated before running the parallel algorithm).

C. Measures on the index structure

The quality of the index structure is very important for the search
algorithms. Contrary to the MM-tree, our proposal is a bucketed
metric-tree. Therefore, the semi-balancing algorithm of the MM-tree
is replaced by our leaf splitting. The question to answer is that of
the balance of the resulting tree.

1It is available on demand at the address: http://cophir.isti.cnr.it.

1 2 3 4 5 6 7

0

50

100

150

200

250

Node depth

N
u

m
b

er
o

f
n

o
d

es α=0,52

α=0,55

α=0,6

α=0,69

Fig. 3. Index structure with different values of α

Figure 3 shows the structure of the index for different values
of α. We see that the chosen value has not a very high impact
on the structure of the tree; it always remains balanced. Effec-
tively, with a collection of 10,000 descriptors and leaves with a
maximum of

√
10, 000 = 100 objects, the minimal depth of (i) a

complete, (ii) perfectly balanced, and (iii) quadrary tree would be
log4

√
10, 000 = 3.3. Since we cannot reasonably expect each and

every leaf to contain exactly 100 objects, nor can we imagine that
the balance is perfect, not even that no children is empty, then the
observed distribution of Figure 3 is very satisfactory; the actual depth
is no more than twice the unreachable perfect case. Besides, we
observed that the average number of objects per leaf is 26; therefore,
the strictly minimal depth cannot be less than 4.3 rather than 3.3.
Finally, notice that the value 0.69 for α almost reduces the expected
depth by one with respect to 0.52.

This value of α plays a key role in the distribution of objects in the
index. By varying it a lot on different datasets, we could have a hint
on a good choice for this value. It seems that a perfect distribution
of one third of the population for each of the regions I to III is the
best choice; region IV should remain as empty as possible. So the
goal seems to obtain a ternary tree, region IV being used mostly for
“outliers.”

D. Measures on searches

We recall that we ran a hundred different queries, each time
looking for the 20 nearest neighbours, and averaged the results.
We measured (i) the average percentage of visited leaves, (ii) the
average percentage of visited inner nodes, (iii) the average number
of distances calculated, and (iv) the average number of visited objects
(out of 10,000). The statistics are shown in Table I.

http://cophir.isti.cnr.it

Algorithm Leaves (%) Inner Nodes (%) #distances #objects
parallel-full 100 100 10800 10,000
sequential 15.65 9.36 7,254 2,951
parallel-bounded 18.1 14.35 8,654 3,521
perfect 2.42 5.22 1,054 960

TABLE I
PERFORMANCE STATISTICS OF FOUR KNN SEARCH ALGORITHMS ON A

αIM-TREE

β Leaves (%) Inner Nodes (%) #distances #objects
10 46.80 57.99 10,231 4,787
20 44.24 55.34 9,963 4,512
50 42.62 53.70 9,098 4,345

150 18.1 14.35 8,654 3,521

TABLE II
PERFORMANCE STATISTICS OF THE PARALLEL-BOUNDED VARIANT FOR

DIFFERENT VALUES OF β

Without any surprise, the parallel-full version is the most expensive
and the perfect version is the most efficient. But we can see that
the parallel-bounded version is quite competitive with respect to the
standard sequential approach. However, this has to be taken with a
grain of salt; it stands only in its best estimation of the upper bound
by the companion algorithm.

We varied the value of β, the number of internal nodes traversed,
before starting the search parallel algorithm. We see very clearly in
Table II that whenever the value of β increases the performance of
the search algorithm also increases.

However, we can also see that the improvement is not important
for the first values of β. A significant number of inner nodes has to
be visited in order to obtain a useful estimation of the upper bound
(150 out of ±400). Therefore, there is a trade-off to find between a
better (sequential) estimation of the initial query radius and running
the faster (potentially parallel) algorithm on a looser estimation.

Figure 4 shows the evolution of the value of rq in the search
algorithms. In the perfect case, the bound is known before hand, so
it does not evolve during a search. Next, it is visible that in the case of
the sequential approach the curve decreases very rapidly; this is due
to the fact that entering leaf nodes provides intermediate results with
very relevant approximations. Finally, with no surprise, the parallel

0

10

20

30

40

50

60

70

1 2 3 4

PerfectParalell fullSequentielparallel bounded

Fig. 4. Evolution of rq in the search

approach does not benefit from this information, so the curve goes
down more slowly since the algorithm can only take advantage of
the distances computed along the visited ancestor inner nodes.

V. CONCLUSION

In this paper, we have extended the known hierarchy of indexing
methods in metric spaces with a variant of the ball-partitioning family,
inspired by the recent MM-tree technique.

Our technique can be seen as a parametrisation of the MM-tree.
An intermediate result, which is to be further investigated, is that the
tree should be ternary rather than quadrary, the ad hoc α parameter
being replaced by a three-third distribution of objects into regions I
to III.

Next, we also investigated the usefulness of a parallel search.
Although this variant cannot collect as many information as its
sequential counterpart, we showed that the parallel version can be
turned competitive thanks to a companion algorithm that estimates
an upper-bound of the answer set maximal distance. Therefore, an
actual parallelisation is certainly beneficial and is part of future work.

REFERENCES

[1] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys, vol. 30, no. 2, pp. 170–231, 1998.

[2] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,” ACM Computing Surveys, vol. 33, no. 3, pp. 322–373, Sep.
2001.

[3] H. Samet, Foundations of Multidimensional And Metric Data Structures.
Morgan-Kaufmann, Sep. 2006, 993 p.

[4] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia data,” in
Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, San Jose, CA, 1995, pp. 163–174.

[5] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” proceedings of the 4th Annual In ACM-
SIAM Symposium on Discrete Algorithms, pp. 311–321, 1993.

[6] T. Bozkaya and M. Özsoyoglu, “Indexing large metric spaces for
similarity search queries,” ACM Transactions on Database Systems,
vol. 24, pp. 361–404, Sep. 1999.

[7] J. K. Ulhmann, “Satisfying general proximity/similarity queries with
metric trees,” Information Processing Letters, vol. 40, pp. 175–179,
1991.

[8] S. Brin, “Near neighbor search in large metric spaces,” Proceedings
VLDB Conference Switzerland, 1995, pp. 574–584, 1995.

[9] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” Proceedings of the 23rd VLDB
International Conference, pp. 426–435, 1997.

[10] C. Traina Jr, A. Traina, B. Seeger, and C. Faloutsos, “Slim-trees:
High performance metric trees minimizing overlap between nodes,”
International Conference on Extending Database Technology (EDBT),
2000.

[11] I. R. V. Pola, C. Traina, Jr, and A. J. M. Traina, “The mm-tree: A
memory-based metric tree without overlap between nodes,” ADBIS 2007,
vol. LNCS 4690, pp. 157–171, 2007.

[12] C. C. M. Carélo, I. R. V. Pola, R. R. Ciferri, A. J. M. Traina, C. T. Jr.,
and C. D. de Aguiar Ciferri, “Slicing the metric space to provide quick
indexing of complex data in the main memory,” Inf. Syst, vol. 36, pp.
79–98, 2011.

	Introduction
	Indexing in Metric Spaces
	Similarity Queries in Metric Spaces
	Background

	IM-tree
	Definition
	Incremental construction
	Similarity queries
	Parallel version of the kNN search
	Sequential version of the kNN search

	Experiments and Comparison
	Indexed collections and queries made
	Algorithm variants
	Measures on the index structure
	Measures on searches

	Conclusion
	References

