
Integrating Behavioral Properties in an Ontology

to Automatically Produce an Information System

Ana Simonet

AGIM laboratory

Université de Grenoble

38700 La Tronche - France

Ana.Simonet@imag.fr

Abstract— The use of domain ontologies lies at the very heart of

Information Systems, as they provide a shared conceptualization

of domains. However, using an ontology, which by essence

embraces a wide range of concepts, poses several questions

among which the determination of the subset of its concepts that

is actually needed for an application and how this sub-ontology

can support the production of Information System artifacts

compliant with user requirements. We present an approach

based on the enrichment of an ontology with properties deduced

from the user requirements to determine the subset of the

ontology that is necessary for a new Information System. These

properties also make possible the automatic production of an

operational IS with a prototypical GUI. This approach,

implemented by the ISIS platform, can support a high number of

specification-implementation-validation cycles without increasing

the global cost of the project.

Keywords- Ontology, Information System Design, User

Requirements

I. INTRODUCTION

Information System (IS) design involves the representation
of the knowledge of a domain through three families of models
in order to represent the expected functional, static and
dynamic aspects of the IS. For example, when using UML, a
use case diagram, a class diagram and one or several dynamic
diagrams (e.g., state transition diagrams, sequence diagrams,
activity diagrams, collaboration diagrams …) must be designed
by the analyst [4][19]. These diagrams allow the analyst to
increase his understanding of the domain, help communication
between developers and users and facilitate the implementation
of the information system. Today, new needs arise and
question the classical process. Among these we underline the
need for the company to rely on accepted referentials in order
to ensure the usability of the IS over time and the need for the
analysis process to take in account the dynamics of the
company, which may require changes in the user requirements,
even during the design process [17].

The enterprise global schema is an attempt to answer the
first question [12]. This schema represents the entities specific
to the company and their associations, whether they are
represented in a computer system or not. The global schema
may be used as a referential, both terminological and semantic,
for the company, from which sub-schemas can be derived in
order to implement different IS. However, the cost for building
a global schema is high. Moreover, the existence of such a
referential within a company does not ensure it is a referential

for the external actors with which it must communicate. The
solution to this problem is that all the actors agree upon a
common referential, independent from a particular company.
This is actually the role of a domain ontology.

A domain ontology (in short an ontology, in the context of
this paper) expresses an agreement of the actors of a domain
upon the concepts of a domain and their interrelations [11]. It
can play the role of a semantic pivot for the different IS of a
company and can also be used as a semantic referential by the
companies working in the same domain, thus favoring a non
ambiguous communication inside and outside a company.
However, as an ontology has a universal purpose it tends to
have a bigger size than a class diagram and to grow rapidly,
especially when it becomes a standard in a given domain [2].
Thus, when using an ontology as a basis for IS design, one is
faced with the question of determining the subset of the
ontology which is concerned with the concrete IS. Another
question concerns the artifacts (diagrams and software) that
may be (semi-)automatically derived from an ontology.

Regarding the first question, as many of the concepts of a
domain ontology will be of no use for a given application, one
has to select those of interest for this application and enrich
them if necessary. However, mastering the hundreds or
thousands of concepts of an ontology is beyond the capacity of
a human IS designer. Thus, extracting the sub-ontology that is
pertinent in a given situation has become a problem in itself.
This problem has been dealt with not only in IS design [9][20],
but also in different contexts such as Information Retrieval [3],
computational biology [2], building ontologies from texts [10]
and ontology evolution [13].

In the area of IS design, most authors have used ontologies
to favor the reuse of the knowledge contained in the ontology.
Reusing this knowledge reduces the time needed by the analyst
to assimilate the knowledge of the studied domain and enables
him to define a conceptual data schema more quickly.
According to some authors, the conceptual schema produced
this way is more understandable and more consistent than a
schema produced without the support of an ontology [20].
However, the contribution of ontologies is most often limited
to the (semi-automatic) design of the sole conceptual data
schema, all others diagrams and software artifacts being
produced manually.

In this paper we propose an approach that enforces the use
of a domain ontology in IS design. This approach is
implemented by the ISIS system, a platform for the

specification of Information System that aims at implementing
the equation:

Ontology + User Requirements = Information System
In practice, given an ontology and user requirements
represented by the use cases of the application, we first propose
to enrich the ontology with information derived from the use
cases. Then, the extraction of the useful part of the initial
ontology by “hiding” the concepts and relationships that are
not pertinent for the business processes is realized. The
concepts that must be represented by objects, literals and index
at the implementation level [6][18] are then deduced. Finally, a
database optimized for the user requirements, the SQL code for
the queries corresponding to the use cases, and a prototype
GUI (Graphical User Interface) are automatically generated.

The paper is organized as follows. We first present some
works on sub-ontology extraction, then the ISIS model.
Finally, we present our approach to enrich the sub-ontology
based on the user requirements.

II. FROM ONTOLOGICAL TO IMPLEMENTATION LEVEL

A domain ontology aims at universality and application
independence [8]. Hence, when using an ontology in an
application, it is necessary to first determine the sub-ontology
needed for this application. This process, named sub-ontology
extraction, has as main objective to obtain a consistent sub-
ontology, i.e., an “ontology” that is valid and autonomous [10].
This process can be decomposed into three steps: identifying a
family of relevant concepts, labeling them and applying
algorithms to produce a consistent sub-ontology. Such a
process has been dealt with in various domains [16]: ontology
design from texts [10], Information Retrieval [2][3],
visualization adapted to a particular category of end-users of
large ontologies [10]. For example, Navigli et al. use statistic
methods during ontology design to label redundant and much
specific concepts, so that they can be eliminated by pruning
algorithms to produce the right ontology [13]. In the OntoMove
system, proposed by Bhatt et al. [3], a sub-ontology is defined
for every category of users in order to reduce the search space
and consequently reduce the query response time. For each
category of users there is a manual phase to annotate each
concept of the initial ontology as selected, deselected and void.
The result of this phase, the annotated ontology, is considered
by the authors as the user requirements for the considered
category of users and the extracted sub-ontology as a persistent
view of the initial ontology.

The use of domain ontologies for database design is now
considered as a way to reuse the knowledge about a domain,
which is made explicit in the ontology. OMMDE [20] and
SISRO [9] are two systems which use ontologies to support the
design of a database conceptual schema.

OMDDE uses a domain ontology enriched with certain
particular relationships (pre-condition, mutually inclusive,
mutually exclusive) that are used to help the design of the
conceptual schema of a database. Thus, considering a fragment
of an existing E-R schema, OMDDE checks its validity and
proposes an extended schema according to the ontology
enriched with the particular relationships. For example, it
compares the names of the entities with the names of the

concepts or their synonyms and proposes to use concept names
whenever possible; it checks that pre-conditions and mutually
inclusive concepts have actually been used and if not it
proposes their insertion …

In the SISRO approach the designer may work with one or
several domain ontologies from which he selects the classes he
wants to be present in his final class diagram. For each selected
class, SISRO builds a local class that is related to the ontology
class through an ISA relationship. When designing a local
class, the designer can add new attributes or suppress attributes
inherited from the ontology. Thus, the classes of the domain
ontology are used as patterns for the design of the classes of the
local schema.

However, in IS design, the sole E-R schema or the class
diagram alone are not sufficient to ensure the production of an
IS compliant with the needs of the end-users: two end-users
can validate the same diagram while expecting different final
IS, as their knowledge is insufficient to validate anything other
than the terms used in the diagram. Moreover, they interpret
these terms in their own culture, and two users validating the
same diagram may actually expect different systems. In order
to ensure an IS compliant with the actual needs of the
company, the functionalities of the IS and the dynamics of the
objects must also be validated by the end-users, which
necessitates a representation they can understand.

With the ISIS project we wanted to propose an approach to
enrich an ontology with knowledge derived from the user
requirements, in order that both the extraction of the sub-
ontology needed by the IS and that the transformation of this
sub-ontology into an operational IS with a prototype interface
be automatic. An important objective of our approach was to
allow the user to validate the user requirements and refine them
if necessary, in a way that several <specification-
implementation-validation> cycles can be performed without
increasing the global cost of the project. Thus, the final IS can
be closer of the real needs of the company. As this
methodology also supports the modification of the user
requirements during the design step, it can take into account the
evolution strategy of the company itself.

Another objective of the ISIS project is to favor the
collaboration between analysts and end-users. Thus we chose
to limit the number of models, and consequently the number of
meta-concepts an end-user has to master. In particular, we
chose to favor the enrichment of an OD with behavioral
properties rather than producing several dynamic diagrams and
verifying the global consistency of all the produced diagrams.

The ISIS data model is a binary relational model [1][14],
which is simultaneously simple, formal and powerful. Its main
meta-concepts are concept, binary relationship and ISA
relation, which may be readily mastered by the end-users.
Consequently, it favors a better collaboration between end-
users and analysts, which facilitates the acceptation of the final
IS [5][7]. In this model, an ontology is represented by a graph
which we call an Ontological Diagram (OD).

To automatically produce an operational system from the
conceptual level, one must know how to transform a notion at
the conceptual level into concepts at the physical level, e.g.,

class, index and attribute in the case of an object model. In the
transformation from the conceptual to the physical level, a
concept is transformed into a class and a binary relationship is
transformed into an attribute of the class representing its
concept domain. Two kinds of classes are possible: object class
and value class. Formally, a class is an object class if and only
if there is at least one of its instances whose value changes over
time [6]; otherwise, the class is a value class. Thus, the
automatic production of an operational IS requires the
automatic determination of the mutability of class instances.

The two main behavioral properties we have identified to
support the transformation from the ontological level into the
implementation level, are the criticity and the modifiability of
the relations. The criticity of a relation expresses that this
relation is necessary for at least one of the use cases modeling
the user requirements. The modifiability of a relation with
domain A and range B expresses that, in the context of an IS,
there exists at least one instance of A where its image in B
changes over time. However, deciding on the criticity or the
modifiability of the relations is outside the capabilities of end-
users, whose knowledge is directly related to the way they
achieve their business tasks, particularly the data and the
business rules they use to perform them. This data, made
explicit in the ISIS methodology through the input and output
parameters of each use case, enables the system to infer which
relations are critical and/or modifiable. We can then deduce the
concepts that can be omitted and the best physical
implementation for the remaining ones.

III. THE ISIS SYSTEM

ISIS is the acronym for Information Systems Initial
Specification. It is a model, a methodology and a tool for the
design of an Information System, from a Domain Ontology and
a set of user requirements. Our strategy is to enforce the use of
a unique diagram to represent the static properties of the
entities of the domain as well as their dynamic (behavioral)
properties.

A. The ISIS Use Case Model

The ISIS use case model allows the representation of user
requirements, expressed in natural language, by a set of use
cases. Each use case is represented by a collection of queries,
where each query is represented by a tuple <name, type of
query, input concepts, output concepts, relations, business
rules>. For a query, only its type (selection, creation,
modification, suppression) and its input concepts are
mandatory.

We have distinguished two kinds of use cases: those whose
all queries are selection queries (e.g., for a patient, date of its
consultations and name of the doctor), and those in which at
least a query is an update query (e.g., create a new
consultation). We call the former Sel-UC (for Selection use
case) and the latter Up-UC (for Update use case). For example,
the above Sel-UC is interpreted as <selection, in: {patient},
out: {consultation date, name of doctor}>. The set of Sel-UC
enables ISIS to determine the subgraph of the OD that is
actually needed to produce the IS. The set of Up-UC enables
ISIS to determine which relations are mutable and

consequently which concepts of the ontology have mutable
instances. Thus, for each concept of the OD, ISIS can propose
the best physical representation according to the users
requirements.

B. The ISIS Model

The concepts of a given domain and their relationships are
represented through an OD graph.

Definitions

- A concept is an intensional view of a notion whose

extensional view is a set of instances.

- A binary relation R between two concepts A (domain) and B

(range), noted R(A,B), is considered in its mathematical

sense: a set of pairs (a, b) with a A and b B.

- The image of x through R, noted R(x) is the set of y such

that R(x,y); R(x)t is the image of x through R at time t.

- An association is a pair of binary relations, reverse of one

another.

- A subsumption relation holds between two concepts A and B

(A subsumes B) iff B is a subset of A.

In an OD, static properties (or constraints) of concepts and
relations are given. Among these, only the minimal (generally
0 or 1) and maximal (generally 1, * or n) cardinalities of
relations and unicity constraints are mandatory. As in other
models, the static constraints govern the production of the
logical database schema. Behavioral constraints are necessary
to automatically produce the physical database schema and the
associated software. The main behavioral properties we
consider are the criticity and the modifiability of a relation for
a given application. Critical relations are the relations needed
in at most one query of Sel-UC. A modifiable relation is a non-
monotonous relation. It is deduced from the update queries of
Up-UC.

Critical Relations. The ultimate purpose of an IS is expressed
through Sel-UC, hence our choice of the queries of Sel-UC to
decide which relations are critical. Our main criterion in
selecting the critical relations is to consider the relations
participating in at least one selection query of Sel-UC (critical
query). However, the designer can decide to make any relation
critical, independently from critical queries.

The update queries of Up-UC are needed to ensure that, at
every moment, data in the IS are complying with data in the
real world; they are not considered in the determination of the
critical relations.

Definitions

- A selection query is critical iff it is part of Sel-UC.

- A selection query Q is defined by a triple (I, O, P) where:

 I is the set of input concepts of Q

 O is the set of output concepts of Q

 P is a set of paths in the OD graph.

- The triple (I, O, P) defines a subgraph of the OD.

- A path p(i, o) in a query (I, O, P) is an ordered set of

relations connecting i I to o O.

- A binary relation is critical iff it belongs to at least one

critical selection query or if it has been explicitly made

critical by the designer.

- An association in a OD is critical iff at least one of its

relations is critical.

- Given a concept CC, domain of the critical relations r1, r2,…,

rn, and C1, C2, …, Cn the range concepts of r1, r2,…, rn. The

value of an instance cck CC is an element of the Cartesian

product C 1 x C 2 x … x C n, where C i = Ci if ri is

monovalued (max. card. = 1) and C i = P(Ci) 1 if ri is

multivalued (max. card. 1).

Modifiable Relations and Modifiable Concepts

Definition: Given a relation R(A, B), R is modifiable iff there

exists a A such that R(a)t is different from R(a)t+1.
To express the modifiability property we had to extend the

classical binary relational model, which has only two
categories of nodes2, to a model with three types of nodes:
predefined concepts, primary concepts and secondary
concepts. Predefined concepts correspond to predefined types
in programming languages, e.g., string, real, integer. Primary
and secondary concepts are built to represent the concepts
specific to a domain. Primary concepts correspond to those
concepts whose instances are usually considered as atomic; a
secondary concept corresponds to concepts whose instances are
« structured ». We name valC the relation whose domain is a

primary concept C and whose range is a predefined concept

(e.g., valAge, valName).

In Fig. 1, three categories of nodes are represented:
predefined concepts (integer, string), primary concepts (name,

age) and secondary concepts (person). Primary and secondary

concepts are concepts built for an application.

Fig. 1. Built and predefined concepts in an OD.

Distinguishing these three categories of concepts in the
model is necessary to support the automatic production of an
IS. However, in the ISIS tool predefined concepts are hidden in
order to make the presentation of an OD simpler (see Fig. 2).

Fig. 2. Partial ISIS diagram of a library management application.

1 P(E) represents the set of parts of E.
2 E.g., in Z0, concrete (structured) and abstract (atomic) sets; lexical

and not-lexical in Niam.

Fig. 3 illustrates a data schema represented with a classical
binary relational model, which has only two categories of
nodes. This schema, extracted from [1], represents the Z0
schema of a set person with two access functions3, ageOf and

nameOf, where the notion of access function is derived from
that of relation. This representation induces a representation of
ageOf and nameOf as attributes of a class/entity (in the object/E-
R model) or of a table (in the relational model) person.

Fig. 3. Z0 schema modeling persons with name and age [1].

Thanks to the behavioral properties added to the diagram,
ISIS will propose that a concept such as age, name or person
be represented as an object or as a literal, according to the
ODMG classification [6], and among the objects propose
candidates to become database indexes.

Let us consider the concept person represented in Fig. 1
and Fig. 3, and the use case change the age of a person in the
context of Korea and other Asian countries, where a person
changes his age on Jan. 1st at 0h [15]. In common design
situations, representing age by a literal or by an object is
(manually) decided by the designer; as it is atomic, it is
generally considered as a literal. However, if the designer is
conscious that an age update on Jan. 1st will concern millions
or billions of persons he will choose an object representation
for age, which leads to at most 140 updates (if the age ranges
from 0 to 140) instead of millions or billions with a
representation as an attribute. This «best» solution cannot be
automatically produced from the diagram of Fig. 3 where the
only relation that may be considered as modifiable is ageOf. In
the ISIS representation (Fig. 1) two relations are potentially
modifiable: ageOf and valAge. Making ageOf modifiable models
the update of one person, whereas making valAge modifiable
models the update of all the persons with a given age. The best
modeling for Korea is then to consider valAge as a modifiable
relation, while the best modeling for Europe is to consider
ageOf as the modifiable relation. Distinguishing primary
concepts and predefined concepts is necessary to differentiate
these two ways of modeling the update of the age of a person.
The same reasoning applies to other primary concepts such as
salary: either change the salary of one person (who has been
promoted individually) or change the salary of all the persons
belonging to a given category.

Definition: a concept is said to be a concept with instances with
modifiable values, or simply modifiable concept4, iff it is the
domain of at least a binary relation that is both critical and
modifiable.

Considering the example of Fig. 1, person is a modifiable

concept for European countries, whereas in the Korean context
age is a modifiable concept

3 « An access function maps one category into the powerset of

another (the set of all subsets) ».
4 Note that it is not the concept itself that is mutable, but its instances.

1..* Person-with-name
1..*

PERSON
ageOf nameOf

Person-with-age

1..1
1..1

STRING INTEGER

1..* 1..*
personName

PERSON
hasAge hasName

personAge

1..1 1..1 valAge

 1..1
valName

 1..1 STRING
NAME

INTEGER

AGE

C. Enriching an OD with Behavioral Properties

Let us consider the following use cases in a library
management application:

UC1 books of a reader: given a reader (identified by its numReader),
find the books he has borrowed; for each book, display its title, its
authors and its isbn.

UC2 loans of a reader: given a numReader, display his firstName and
his name, and for each loan, display the dateBorrow and the title and
author.

UC3 list of the books of the library: for each book in the library,
display its isbn, title, authors, keywords and category of the book.

UC4 readers of a book: for a given book (identified by its isbn) display
its borrowed copies; for each copy, display its numCopy and its reader
(numReader, firstName, lastName).

UC5 new book: create a new book. UC6 new copy: create a new copy.

UC7 new reader: create a new reader. UC8 new loan: create a new
loan.

UC9 update book: modify the keywords and/or the category of a book.

These user requirements are rewritten in the following ISIS
UC. The first four UC are Sel-UC and the last five are Up-UC.
For each query of a UC the designer identifies the concepts it
concerns and annotates them as input or output concepts.

UC1: in{numReader}, out{title, author, isbn}; UC2: in{numReader},

out{firstName, lastName, dateBorrow, isbn, title, author}; UC3: out{isbn,

title, author, keyword, category}; UC4: in{isbn}, out{numCopy,
numReader, firstName, lastName}; UC5: in{book}; UC6: in{copy};
UC7: in{reader}; UC8: in{loan}; UC9: {(in{isbn}, out {book}); (in {book},

rel {keywordOf, categoryOf})}.

From Sel-UC to Critical Relations. The first step in the
identification of the concepts of an OD that must belong to the
sub-ontology is the identification of the input and output
concepts of the queries of Sel-UC. All the relations of the
subgraph of a critical query are marked as critical. For
example, to enter UC4 in the ISIS tool, the designer annotates
the input concepts (downward arrow) and the output concepts
(upward arrow). The ISIS system calculates the paths between
the input and the output concepts and marks the intermediate
concepts with flags (Fig. 4).

The subgraph of this UC is made of three paths: (isbn, book,

copy, numCopy), (isbn, book, copy, loan, reader, name) and (isbn,

book, copy, loan, reader, firstName).

Fig. 4. Part of the subgraph of UC4 (readers of a book).

In this example, the relations (isbn, book), (book, copy),

(copy, numCopy) etc. are critical. When several paths are
possible between an origin and an end concept, the designer
must choose intermediate concepts (by annotating them with a
flag) in order to ensure the semantics of the query. When

several candidate relations have the same pair of domain and
range concepts, the user can select one of them.

Definition: the sub-ontology needed for the IS is represented
by the smaller subgraph containing the subgraphs of all the Sel-
UC. It contains all the binary relations (and their corresponding
domain and range concepts) marked as critical.

When none of the relations of an association is marked as
critical, two solutions are proposed by ISIS: remove the
association or make critical one of its relations. Removing an
association usually leads to removing concepts from the OD.
For example, if the query presented in Fig. 4 is the only
selection query of the IS, the relations of the associations book-
category and book-keywords are deduced as not critical. Thus,
the designer must decide either to suppress the association or to
make one of its relations critical. When a concept becomes
disconnected from the others concepts of the OD, it is
suppressed. This constitutes the first phase of the simplification
process.

From Up-UC to Modifiable Relations. The second step in the
ISIS methodology is the enrichment of the OD with the Up-
UC. Again, the user must identify the concepts of the update
queries of each Up-UC, and, for modifiable queries, the
relations that must be changed. ISIS deduces which relations
are modifiable. For example, UC6 (new copy) enables ISIS to

deduce that the relation copyOfbook 5 is modifiable.

Considering the critical modifiable relations, ISIS deduces
which concepts should be represented as values or as objects,
and among the latter which ones are proposed to become
indexes of the generated database. In the library example,
based on UC1-UC9, the ISIS proposals are:

Object concepts: book, copy, loan, reader, keyword, category6.

Potential indexes: isbn, numCopy, numReader.

Value concepts: title, author, dateBorrow, firstName, Name.

Generation of Software Artifacts. In the last step ISIS
generates the application, i.e., the database, the code of the
queries of the use cases and a prototype GUI. Fig. 5 shows the
GUI corresponding to UC2 (loans of a reader) in the PHP-
MySQL application that is automatically generated.

Fig. 5. Screen copy of the window generated for UC2

The generated GUI has Spartan ergonomics: first the
monovalued attributes are presented in alphabetical order, then

5 Relation with domain book and codomain (range) copy.
6 Note that keyword and category are primary, i.e., non-structured,

concepts.

the multivalued attributes. In spite of these basic ergonomics, it
enables the users to verify the presented items and their type.
They can also check whether the dynamics of the windows
corresponds to the needs of their business process

Import of a domain ontology. When a domain ontology is
imported into ISIS, its concepts are rewritten in terms of the
ISIS meta-concepts. Thus, for a class C we create a secondary
concept C and as many primary concepts as C has attributes.
For example, the OD representing a class PERSON with two
attributes hasName and hasAge is defined by a secondary
concept PERSON and two primary concepts NAME and AGE,
created to represent the domains of these attributes (cf. Fig.1).
Each primary concept is linked to a predefined concept.

IV. CONCLUSION AND PERSPECTIVES

The ISIS project has been designed to support the reuse of
the knowledge expressed in a domain ontology and favor an
active collaboration between end-users and analysts, in order to
produce a system compliant with the real needs of a company.
We have chosen a binary relational model, with a limited
number of meta-concepts, thus making it easier to apprehend
by end-users

To enable the reuse of an existing domain ontology we
propose an approach that takes an ontology, transforms it into
the ISIS internal format and enriches it with knowledge
implied by user requirements. From the input and output
concepts of the use cases, ISIS can identify the critical and the
modifiable relations. In a first simplification phase it proposes
to suppress the binary associations where both constituent
relations are non-critical, and then the isolated concepts. The
resulting concepts and relations constitute the sub-ontology of
the IS. Some of these concepts can still bear non-pertinent
information for the business processes and can be eliminated in
a second simplification phase, which is not presented in this
paper.

After its enrichment with behavioral properties and the sub-
ontology deduction, model transformations enable the
automatic generation of the database, the API and a prototype
GUI of the IS. These software artifacts enable the end-users to
verify the adequacy of the IS to their needs and refine them if
necessary.

The ISIS tool has been developed in Java with a dynamic
web interface; the OD are stored as XML files. It currently
produces a PHP-MySQL application. Future work
encompasses the establishment of two-way relationships
between ISIS diagrams and UML diagrams, and the use of the
ISIS methodology for the integration of heterogeneous
databases.

REFERENCES

[1] J.R. Abrial, Data Semantics, in J.W. Klumbie and K.I. Koffeman (Eds),
Database Management, North-Holland, Amsterdam, 1-59, 1974.

[2] S.Bauer, S. Grossmann, M. Vingron & P. N. Robinson, Ontologizer 2.0:
a multifunctional tool for GO term enrichment analysis and data
exploration, Bioinformatics, 24(14), 1650-1651, 2008.

[3] M. Bhatt, A. Flahive, C. Wouters, W. Rahayu , D. Taniar & T. Dillon, A
distributed approach to sub-ontology extraction, 18th International
Conference on Advanced Information Networking and Applications,
Vol 1, pp 636-641, 2004.

[4] A.Burton-Jones, P. Meso, Conceptualizing Systems for Understanding:
An Empirical Test of Decomposition Principles in Object-Oriented
Analysis, Information Systems Research, vol 17, No1, pp 38-60, 2006.

[5] B. Butler, A. Fitzgerald, A case study of user participation in
information systems development process, 8th Int Conf on Information
Systems, pp 411-426, Atlanta, 1997.

[6] R.G.G. Cattell, T. Atwood, J. Duhl, G. Ferran, M. Loomis, D. Wade,
Object Database Standard: ODMG-93, Morgan Kaufmann Publishers,
1994.

[7] A. Cavaye, User Participation in System Development Revisited,
Information and Management (28) pp 311-323, 1995.

[8] T. Dillon, E. Chang, M. Hadzic, P. Wongthongtham, Differentiating
Conceptual Modelling from Data Modelling, Knowledge Modelling and
Ontology Modelling and a Notation for Ontology Modelling, Proc 5th
Asia-Pascific Conf on Conceptual Modelling, 2008.

[9] Ch. Fankam, L. Bellatreche, H. Dehainsala, Y. Ait Ameur, G. Pierra,
SISRO : Conception de bases de sonnées à partir d’ontologies de
domaine, Revue TSI, vol.28 pp1-29, 2009.

[10] A. Flahive, W. Rahayu, D. Taniar , B. O. Apduhan , C. Wouters & T.
Dillon, A service oriented architecture for extracting and extending sub-
ontologies in the semantic grid, 21st International Conference on
Advanced Networking and Applications, pp 831-838 , 2007.

[11] N.Guarino, The Ontological Level: Revisiting 30 Years of Knowledge
Representation, In: Conceptual Modeling: Foundations and
Applications, Essays in Honor of John Mylopoulos, A. Borgida et al.
(eds.), Springer Verlag, pp 52-67, 2009.

[12] D. Moody , A.R. Kortink, From Enterprise Models to Dimensional
Models: A Methodology for Data Warehouse and Data Mart Design,
Proc. Int. workshop on Design and Management of Data Warehouses
(DMDW’2000), 2000.

[13] R. Navigli, Automatically extending, pruning and trimming general
purpose ontologies, IEEE International Conference on Systems, Man
and Cybernetics, Tunisy, 2002.

[14] G.M. Nijssen, Current Issues in Conceptual Schema Concepts. In G.M.
Nijssen (Ed), Architecture and Models in Data Base Management
Systems, North-Holland, Amsterdam, pp 31-65, 1977.

[15] J. Park, S. Ram, Information Systems: What Lies Beneath, ACM
Transactions on Information Systems, Vol. 22, No. 4 pp 595–632, 2004.

[16] V. Ranwez, S. Ranwez, S. Janaqi, Extraction de sous-ontologies
autonomes par fermeture des opérateurs hyponymie et hyperonymie.
Journées francophones sur les ontologies JFO 2009, ACM 978-1-60558-
842-1, pp. 45-55, 2009.

[17] C. Rolland, From Conceptual Modelling to Requirements Engineering.
ER’2006, LNCS 4215, pp5-11, 2006.

[18] A. Simonet, Automatic Production of an Operational Information
Ssytem from a Domain Ontology Enriched with Behavioral Properties,
1st Int. Conf. on Model & Data Engineering (MEDI’2011), LNCS 6918
pp 4-17, 2011.

[19] P. Spyns, R. Meersman., M. Jarrar, Data modeling versus Ontology
engineering. SIGMOD Record, vol 31, no 4, pp 12-17, 2002.

[20] V. Sugumaran, V. C. Storey, The role of domain ontologies in database
design: An ontology management and conceptual modeling
environment, ACM Trans. Database Syst., vol. 31, ACM Press, New
York, NY, USA, pp 1064-1094, 2006.

