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Abstract—This paper tackles the VLSI circuit reverse engineer-
ing problem. Actual VLSI circuits are made of several millions of
transistors or hundreds of thousands of logical gates. Whether it
be for circuit verification, functional abstraction, or simply circuit
understanding, reverse engineering aims at building a hierarchy
from the transistor level, to gate level, to register level, up to more
complex components. The idea is to transform the circuit into a
target graph and to look for instances of sub-circuits as subgraph
patterns in the original graph. In this work, we propose to cast
the subgraph isomorphism as a constraint satisfaction problem,
where an isomorphism is expressed by a set of constraints and
filters.

I. INTRODUCTION

In this paper, we are interested in reverse engineering
of digital VLSI circuits. In the standard cell-based digital
circuit design [1], the term netlist refers to the graph that
describes the connectivity of VLSI design. A digital circuit
is generally designed using automated design tools, combined
with hardware description languages to generate a transistor
netlist. In many situations, one might need to guess and find
the functionality of a circuit from its transistor netlist. To
recover the original design through the reverse engineering
of circuit design, it is necessary to process the transistor’s
netlists in order to reach some more meaningful levels of
abstraction (transistors, gates, Inputs). Since the electronic
circuits are always represented as graph structures, therefor,
there is a need for graph pattern matching techniques that
can identify groups of transistors or gates based on their
electrical connections, rather than their physical layouts. Our
main contribution in this paper is to treat the sub-circuits
extraction as a subgraph isomorphism problem (SIP) [2]. SIP
is a well known NP-complete problem in general, and most
studied in graph theory research [3]. In other words, the run
time to detect a subgraph isomorphism between two graphs
is, in the worst case, exponential to the number of nodes of
these graphs. Subgraph isomorphism has already been used
in circuit design. In VLSI computer-aided design (CAD) [4],
one of the critical problems is that of determining whether the
layout of the circuit geometry corresponds to the requirements
of the circuit [5], especially to find the isomorphic sub-circuits
from a lager circuit using the process of reverse engineering.
In this paper, we mainly focus on this issue. We consider a
circuit for which we ignore the functionality and hence the
components that it is made of. This circuit is represented by

a target graph. We build a pattern graph incrementally from
elementary components (transistors than gates, to registers).
Then, we look for instances of a pattern graph in the target
graph [6]. In general, according to [7], algorithms for subgraph
isomorphism problems fall into two major categories:

• Dedicated algorithms: based on tree search approach as
Ullmann [8] and Vf lib presented in [9], these algorithms
quickly become ineffective when graph size becomes
larger, as predicted by the NP-completeness of SIP.
Thus, for some problems as sub-circuit verification, the
dedicated algorithms became obsolete.

• Constraint programming (CP): is the best way to
process this problem, since SIP is a classical constraint
satisfaction problem. This method provides a declarative
setting for the resolution. It induces the use of a generic
constraint solver. Among the most recent works in this
field, we cite Zampelli and Deville [10] who developed
an iterative filtering algorithm, based on the notion of ex-
tended neighborhood. Recently, Solnon [11] has improved
this algorithm with a much stronger filtering procedure.

Here, we opted for the constraint programming (CP) strategy
to solve the subgraph isomorphism problem. To do this, we
took back the main idea that was proposed in [10], which
we tried to adapt to our problem. We elaborate a resolution
model for the subgraph isomorphism problem formulated
as a constraint satisfaction problem, where the structure of
the pattern sub-circuit is translated into structural constraints
that are resolved by a constraint solver. We propose to this
model two configurations that use the edges-list for graph
representation. The remainder of this paper is organized as
follows. Section 2 provides relevant background and discusses
related work on reverse engineering of sub-circuits. Section 3
describes the CSP model that we propose for the resolution of
the subgraph isomorphism problem. It also describes the two
configurations of this model. The experimental results derived
from the implementation of the CSP model are reported and
discussed in section 4. Section 5 concludes the paper and
outlines possible future work.

II. BACKGROUND AND RELATED WORK

In this section, we review necessary background and discuss
relevant work.



A. Netlist

A netlist is a list of electrical components of a circuit and
their interconnections, generally represented as a hyper graph.
Each interconnection or “net” is assigned a unique label. The
netlist will list each component as well as every net to which
each of the terminals of each component is connected.

B. Isomorphism

Isomorphism is defined as having the “same form” or the
“same shape”. If two groups of elements are isomorphic, there
is a one-to-one relationship between the elements of one group
and the elements of another. Graph isomorphism signifies that
the two entire graphs are identical. Sub-graph isomorphism
implies that there is a one-to-one relationship between each
element of a small graph and the corresponding sub-graph of
another larger graph. Here, a small graph means a graph with
few nodes.

C. Sub-circuit extraction problem

An example of the sub-circuit extraction problem is shown
in Figures 1 and 2, where one tries to pull out a 1bit full adder
from a much bigger circuit. The sub-circuit extraction problem
is whether or not there is any instance of one-bit full adder in
the main circuit. Furthermore, if there are some, how many?
The problem of sub-circuit extraction can be transformed
to a subgraph isomorphism problem. Given a graph G, a
subgraph S, has all its nodes and its edges in G. The subgraph
isomorphism detection can be defined as: Given a graph S
and a larger graph G, find all the subgraphs of G that are
equivalent to S. Similarly, the sub-circuit extraction problem
is to identify all the sub-circuits in the main circuit that are
equivalent to the pattern circuit. The subgraph isomorphism
is a reliable technique of pattern matching that may be used
advantageously in this paper.

D. An illustrative Example

We present in this section an applicative example of the
sub-circuit extraction in the VLSI context, in order to spot the
functionality of the main circuit. By convention, the circuits
used in our implementation are from the same type, i.e. they
achieve the same elementary function. The sub-circuit that
we chose to extract, called the pattern graph, is the one-bit
full adder with carried propagation. This circuit is made of
18 transistors and 21 nets. The goal is to find the number of
instances of the pattern graph inside the target graph using
the principle of subgraph isomorphism, and identify each
instance in the target graph.

1) First example: Figure 1 describes the search of a one-bit
full adder inside five one-bit full adders. The correct outcome
is to find five instances of graphs that fulfill the isomorphism
condition.
Our tool manages to solve this instance by identifying the five
one-bit full adders, described by their main inputs and outputs,
that allow to recognize the functionality of the circuit that is
the binary addition of five bits.

Fig. 1. (A):1bit full adder, (B):Five 1bit full adders.

2) Second example: Figure 2 describes the search of a one-
bit full adder inside three two-bits full adders. The goal is
to find six instances of graphs that fulfill the isomorphism
condition.

Fig. 2. (C):1bit full adder, (D):Three 2bits full adders.

Our tool manages to solve this instance by identifying the six
one-bit full adders, described by their main inputs and outputs,
that allow to recognize the functionality of the circuit that is
the binary addition of six bits.

E. Related Work

Research in reverse engineering of digital VLSI circuits
started in the early 1990s with a main focus on formal
methods. Traditional simulation verification methods became
no longer adequate to circuit proprieties as complexity and
size, i.e. a 8-bit counter takes just 256 vectors to fully test the
state space, but a 32-bit counter takes over 4 billion vectors
to test the state space. So, the number of vectors required to
fully simulate a design made it impractical to use simulation
to verify synthesized logic designs, besides the fact that
these techniques relied on the specific characteristics of the
technology or circuits being extracted, and did not generalize
to allow arbitrary sub-circuits to be found, such as analog
circuits. Treating the sub-circuit extraction as a subgraph
isomorphism problem was the best alternative to achieve a
true technology-independent solution. Algorithms of subgraph
isomorphism can be used in many different contexts. They
include digital and analog circuits, using varying levels of
abstraction. Authors of [12] were the pioneers to solve the sub-
circuit extraction problem based on a solution to the subgraph
isomorphism. They proposed an algorithm which has been
implemented in a commercial software entitled SubGemini.
In this method, the pattern and the main circuit are labeled
alternately. Labels are based on matched neighbors. Thus, if
two nets have the same label, a match is possible. We opted
in the present work to the Zampelli [10] technique to resolve
the subgraph isomorphism problem while matching not nets



but edges between two adjacent devices, a technique which
we believe is the more efficient approach. Our method is
dedicated to recover the functionality of circuits and will be
amply presented in the following section.

III. SOLVING APPROACHES

To achieve the reverse engineering of digital VLSI circuits,
in the context of the subgraph isomorphism problem, we
first introduce the specific data structure we use to represent
the graphs. Then, we express the wording of the subgraph
isomorphism problem as CSP model. Note that here we pick
up the outlines of the model that has already been developed
by Zampelli and al in [10], since our goal in this paper
was not to resolve the subgraph isomorphism problem but
rather to adapt the best solution to this problem for the sub-
circuit extraction process. At last, we describe minutely the
implementation that we propose to the CSP model which
differs slightly from the Zampelli and co algorithm.

A. Modeling the input circuit

In this paper, we use the structure of graphs to represent
the internal architecture of the circuits. Among several possi-
bilities that exist in graph theory to represent a simple graph,
we chose to use the representation as “edges list” in order
to minimize the amount of data to be stored in memory. This
structure permits to characterize a graph by only storing its
respective edges. This results in dramatically reducing the
amount of data to store in memory. To construct these edges
lists, we use an intrinsic property of the constraint solver called
Gecode [13], that supports this type of structure. Each edge of
the target graph (which represents the set of candidates edges)
is stored in a tuple that contains the identifiers of the two
ending vertices. In our Gecode implementation, the edges are
stored in a special structure called TupleSet.

B. Formulation as a constraints satisfaction problem (CSP)

The subgraph isomorphism problem between a pattern
graph Gp(Np, Ep) and a target graph Gt(Nt, Et) (where Np

and Nt refer to the set of respective pattern and target nodes,
Ep and Et refer to the sets of respective pattern and target
edges) can be formulated as a CSP model in a very simple
way. A variable xu is associated to every node u of the pattern
graph. Thus, we’ll get as many variables as nodes in the
target graph. The domain of every variable is the set of nodes
from the target graph. Then, we lay two constraints on these
variables that ensure the matching of edges of the two graphs.
We describe in the following the CSP model.

The CSP model: Let the CSP model of the subgraph
isomorphism problem defined by the triplet (X, D, C). This
triplet is defined as follows:

• X = {x1, . . . . . . , xnp}: is the set of the variables that
are assigned to the pattern graph nodes.

• D = D1 = D2 = . . . = Dnp = {1, . . . , nt}: it represents
the variable’s domain, the domain of every variable is the
set of the target graph nodes.

• C = {C1(x1, . . . , xnp), C2(x1, . . . , xnp)}: it represents
the two constraints submitted to the model which are:

C1(x1, . . . , xnp) = AllDiff (x1, . . . , xnp). C1 imposes that
every node from the pattern graph is only matched to one
node of the target graph. It assures that the matching function
is bijective.
C2(x1, . . . , xnp) : ∀ (u, v) ∈ Np × Np, c2(xu,xv) ≡ ((u,v)
∈ Ep ⇒ (xu,xv) ∈ Et). C2 imposes that every edge from
the pattern graph has a support in the target graph. We note
that np refers to the number of pattern graph nodes, and nt

refers to the number of target graph nodes. This concerns the
edges of the pattern and the target graphs. We present in the
following the implementation that we elaborated to the CSP
model.

C. Implementation of the CSP model

We propose to the CSP model a robust implementation. It
includes some integer variables in order to represent the data,
and two constraints: the first one is a difference constraint.
The second one is an isomorphism constraint that checks the
edge matching between the two graphs. The latter is set by the
well known CP constraint called extensional constraint. The
implementation also includes a “pre-processing procedure”
with respect to the variable’s domains. This pre-processing
step corresponds to the basic level of the ILF algorithm [10].
In this algorithm, the pre-processing procedure is run during
the filtering step. In our implementation, we choose to run
this procedure upstream of the filtering operation which could
affect the overall performances of the implementation. We
supply to this implementation two different configurations that
also may affect the performances of each one of them. In the
following, we describe the highlights of the pre-processing
procedure and its both configurations.

1) The pre-processing procedure: The role of this
procedure is to minimize the domains of variables before
they’re considered in the resolution process. This pre-
processing step is widely discussed in [10]. This procedure
greatly reduces the number of allowed values for each
variable. Consequently, the CSP model performance may get
improved especially in the running time. The pre-processing
procedure uses a widely-known property in graphs theory
that is the notion of labeling nodes. The idea is to associate
to each node of the graph an invariant property as the node
degree, then to define a partial order between these labels.
Thus, a node v of the target graph can be matched to a
node u of the pattern graph only if the pair (u, v) satisfies
the partial order. In this case, the nodes u and v are called
compatible. In this paper, we just reproduce the basic level of
the ILF algorithm. After this step, the search of the subgraph
isomorphism continues with variables whose domains have
been reduced.

2) The pre-processing CSP model: The enforcement of
algorithm1 that implements the pre-processing CSP model is
as follows: For each edge (u, v) of the pattern graph, TupleSet



provides the set of edges that can be matched to this edge.
Formally, the constraint “Extensional ((u, v), TupleSet)” is
going to put the fact that the target edge (xu, xv) matches
the pattern edge (u, v) (it exists in the target graph whose
edges are stored in TupleSet). The pre-processing CSP model
is shown in algorithm 1. Note that (u, v) refer to the edge
belonging to the pattern graph, and TupleSet provides the
set of the candidate edges of the target graph.

Algorithm 1 pre-processing CSP model
C1:alldiff (x1, . . . , xnp).

for each node u ∈ Np do
D(u) ⇐ D(u) ∩ {v ∈ Nt — deg(u) ≤ deg(v)}

end for

for u = 0 to u = np do
for v = 0 to v = np do

if (u,v) ∈ Ep then
C2: Extensional((u,v), TupleSet).

end if
end for

end for

3) Optimized pre-processing CSP model: In this implemen-
tation, we use a different configuration of the pre-processing
CSP model that may specially improve the running time, but
at the cost of an enough excessive use of the memory. In
the first model shown in III-C1, we use for each node of
the pattern graph a temporary array that contains the whole
of its compatibles nodes. Then, this array is assigned to the
definition domain of this pattern node. For the following
pattern node, this array will not be drained. It’ll contain the
whole of compatibles nodes of the second pattern node, plus
the set of compatibles nodes of the previous pattern node.
Then, as previously, this updated array will be assigned to
the definition domain of the second pattern node. Arriving
at the last pattern node, the array will contain all nodes
from the target graph that are compatibles with those of the
pattern graph. In the optimized pre-processing CSP model,
the temporary array is drained after each assignation of the
definition domain to the corresponding pattern node. By this
way, the definition domain of each node will only contain
the set of nodes that are compatible with this one, which
will dramatically reduce the number of candidate nodes in the
matching process of each pattern node. Consequently, there
will be fewer associations and therefore a better running time
of the constraint’s solver. In return, the memory usage will be
very excessive due to the draining operations performed after
each new assignment of the definition domain for each pattern
node, which requires many treatments and therefore a large
memory allocation. We’ll see in the next section a comparative
survey between the performances of both configurations to the
pre-processing models that have already been discussed.

IV. EXPERIMENTATION

The pre-processing CSP model was implemented on the
Gecode[13] C++solver. The experiments were run on a Win-
dows laptop with Intel Core2Duo CPU and 2GB RAM. The

experiments have the goal of finding structural isomorphism in
large designs. To generate interesting examples, we generated
synthetically different types of only full adders ranging from
1bit to 32bits giving us a large panel of graphs. We considered
in the experimentations two different instances of graphs: the
first instance included a one-bit full adder regarded as the
pattern graph, and several one-bit full adders regarded as the
targets graphs. The second instance also included a one-bit full
adder regarded as the pattern graph, and this time several two-
bit full adders regarded as the targets graphs. We also fixed
a maximum running time (Max) to 2 hours and 30 minutes.
In the following, we first present the results obtained by the
pre-processing CSP model called (CSP+P), followed by the
results got by the optimized pre-processing CSP model called
(CSP+O).

A. Pre-processing CSP model (CSP+P)

Table I describes the performances of the (CSP+P) model in
the search for an isomorphism between a one-bit pattern graph
and several one-bit target graphs. The pattern graph contain 18
nodes (transistors). The first line of table I shows the number
of adders used in the experiment, and considered as target
graphs. These graphs contain 180, 1800, 9000, 27000 nodes
(or transistors) respectively, since one full adder is composed
of 18 transistors. These last are illustrated in the second line.
The third line shows the running time (Run) in seconds. The
fourth line shows the number of failed nodes (Fail), i.e. nodes
in the search tree that do not lead to any solution in a Depth-
first search (DFS) (DFS is a search algorithms used for graphs
and trees. One starts at the root and explores as far as possible
along each branch before backtracking). Line five shows the
memory usage (Mem) in megabyte (MB).

TABLE I
1BIT PATTERN GRAPH AND ONE-BIT TARGETS GRAPHS

CSP+P 10 100 500 1500
Nodes 180 1800 9000 27000
Run 0.094 3.719 92 901
Fail 77 797 3997 11997

Mem 0.1 MB 0.786 MB 5.48 MB 12.65 MB

We notice that the (CSP+P) model solves quickly instances
that contain a few adders, but running time degrades as the
number of adder increases over 1000. Table II describes the
performances of the (CSP+P) model in the search of an
isomorphism between a one-bit pattern graph and several two-
bits target graphs. The pattern graph also contain 18 nodes
(transistors). The first line of table II shows the number of
adders used in the experiment, and considered as target graphs.
These graphs contain 360, 3600, 18000, 54000 nodes (or
transistors) respectively. These last are illustrated in the second
line. We use in the other lines the same table structure.
We notice that the (CSP+P) model generates very few failure
nodes, thanks to the pre-processing procedure that permitted to
reduce upstream the number of the values that can be assigned
to the variables. We’ll see in the second configuration that
this number will be even smaller. When running the (CSP+P)



TABLE II
1BIT PATTERN GRAPH AND 2BIT TARGETS GRAPHS

CSP+P 10 100 500 1500
Nodes 360 3600 18000 54000
Run 0.266 13.75 378 2622
Fail 157 1597 7997 23997

Mem 0.2 MB 1.68 MB 8.67 MB 22.06 MB

model, 9175 seconds of running time (Max) allow to process
100008 nodes (transistors).

B. Optimized pre-processing CSP model (CSP+O)

Table III describes the performances of the (CSP+O) model
in the search for an isomorphism between a 1 bit pattern graph
and several 1 bit target graphs.

TABLE III
1BIT PATTERN GRAPH AND ONE-BIT TARGETS GRAPHS

CSP+O 10 100 500 1500
Run 0.063 1.625 36.84 353
Fail 0 0 0 0

Mem 0.1 MB 2.11 MB 36.81 MB 296.27 MB

Table IV describes the performances of the (CSP+O) model in
the search for an isomorphism between a 1 bit pattern graph
and several 2 bits target graphs.

TABLE IV
1BIT PATTERN GRAPH AND 2BIT TARGETS GRAPHS

CSP+O 10 100 500 1500
Run 0.156 5.18 156 941
Fail 0 0 0 0

Mem 0.3 MB 6.78 MB 133 MB 1219 MB

We notice from tables III and IV that the (CSP+O) model
is in average 2.6 times faster than the (CSP+P) model, but it
also consumes 30 times more memory. The other difference
is that it generates no failure nodes thanks to the draining
operations of arrays that ensure for each pattern node to have
only compatibles nodes with it. The advantage of the (CSP+O)
model is that it permits to process 67500 nodes (transistors) in
only 1418 seconds. Beyond, this configuration cannot follow
because of the memory usage problem briefly described in
III-C3. In summary, regarding both configurations that we
proposed to the CSP model, our preliminary implementations
works reasonably well but it has not been fine-tuned in terms
of quality of results and runtime. However, the results are
encouraging, demonstrating that a basic reverse engineering
of large circuits can be performed as a subgraph isomorphism
problem.

V. CONCLUSION AND FUTURE WORK

The objective of this paper was to study the reverse en-
gineering problematic of digital VLSI circuits, in the con-
text of a subgraph isomorphism problem by the constraints
programming approach. The problem consisted in recovering
instances of a pattern graph in a much larger target graph

and containing several instances of the pattern graph. The
recent works of [10] were at the origin of our choice to use
the constraints programming approach to solve this problem,
as this technique is up to now the state-of-the-art method
according to [10], [11]. Our contribution was a CSP model
permitting to express the sub-circuits extraction as a subgraph
isomorphism problem. The implementation that we proposed
to the CSP model allowed us to process graphs of large
size that contain 5556 one-bit full adders such in 2 hours
and 32 minutes. This last result is enough promising. We
propose, as a continuation of this work, the adaptation of the
implementations so that it can deal with huger graphs in less
running time (or to improve its scalability). Also, it would be
interesting to exploit other types of combinational circuits in
the process of sub-circuits extraction.
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