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Abstract—Tasks assignment in grid computing is a challenge

for most researchers and developers of these types of systems.
This is due to characteristics inherent to grid infrastructures,
namely, heterogeneity, dynamicity and scalability. It becomes much
more complex when it comes to assign tasks with precedence
constraints represented by a Directed Acyclic Graph. The task
assignment problem is well known to be NP-complete.
In this paper, we present and evaluate a dependent task assign-
ment strategy for Grids. Our goal is two folds: first we reduce ,
whenever possible, the average response time of tasks submitted
to the grid, and secondly, we reduce the transfer cost inducing
by the tasks transfer respecting the dependency constraints.

Index Terms—Dependent Tasks; Grid Computing; Tasks Assign-
ment; Directed Acyclic Graph; Grid Model; Gridsim

I. INTRODUCTION

Computational Grids [1] are emerging as next generation
parallel and distributed computing platforms for solving large-
scale computational and data-intensive problems in science,
engineering, and commerce. They enable the sharing, selec-
tion, and aggregation of a wide variety of geographically dis-
tributed resources including supercomputers, storage systems,
databases, data sources, and specialized devices owned by
different organizations.

Task assignment is an important issue in grid computing
systems, which provides a better exploitation of the system
parallelism and improves its performance. The so called task
assignment problem is a combinatorial optimization problem
which consists of assigning a given computer program formed
by a number of tasks to a number of processors/machines,
subject to a set of constraints, and in such a way a given
cost function to be minimized. The constraints of the task
assignment problem are usually related to the resources avail-
able for the processors in the system. The cost function for
a task assignment problem usually involves the minimization
of completion time of the entire program, the minimization of
the communication time among tasks or the minimization or
the processors load [2].

In general, scheduling applications in a distributed system
is a NP-hard problem even when the tasks are independent.
The problem is much more difficult when the tasks have
dependencies because the order of task execution as well as
task-machine pairing affects overall completion time[3].
Tasks assignment policies for distributed systems can be
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generally categorized into static tasks assignment policies and
dynamic tasks assignment policies [4] :

« Static tasks assignment policies use some simple system
information, such as the various information related to av-
erage operation, operation cycle, and etc., and according
to these data, tasks are distributed through mathematical
formulas or other adjustment methods, so that every
node in the distributed system can process the assigned
tasks until completed. The merit of this method is that
system information is not required to be collected at all
times, and through a simple process, the system can run
with simple analysis. However, some of the nodes have
low utilization rates. Due to the fact that it does not
dynamically adjust with the system information, there is
a certain degree of burden on system performance.

o Dynamic tasks assignment policies refer to the current
state of the system or the most recent state at the system
time, to decide how to assign tasks to each node in a dis-
tributed system. If any node in the system is over-loaded,
the over-loading task will be transferred to other nodes
and processed, in order to achieve the goal of a dynamic
assignment. However, the migration of tasks will incur
extra overhead to the system. It is because the system has
to reserve some resources for collecting and maintaining
the information of system states. If this overhead can be
controlled and limited to a certain acceptable range, in
most conditions, dynamic tasks assignment policies out
perform the static tasks assignment policies.

In this paper, we will form a set of clusters from an initial
collection of nodes using a distributed clustering algorithm
noted DCA. Each clusterhead will use a static assignment
strategy to place an application modeled by a dependent task
graph on a heterogeneous computing platform. This algorithm
is called HEFT (Heterogeneous Earliest FinishTime).

The rest of this paper is organized as follows. In section
2, we present the tasks assignment algorithms. Section 3,
describes Tasks assignment in Grid computing environments.
A Preliminaries and problem definition is done in Section
4. In section 5, we will describes the main steps of the
proposed assignment strategy. We evaluate the performance of
the proposed scheme in Section 6. Finally, Section 7 concludes
the paper.



II. TASK ASSIGNMENT ALGORITHMS

Assignment algorithms focus on the number of factors to
be considered, when scheduling resources to tasks. Some
algorithms consider a single factor, while others consider
multiple factors. Different algorithms are suitable for different
applications. Consequently, each characteristic and suitable
domain should be considered in selecting a proper scheduling
algorithm [11], [12].

A. Single factor assignment algorithm

In this method, only a single factor is considered, such as
node resource or task execution demand. Based upon this
knowledge, this assignment method is simpler and does not
increase the system load in practical applications. Because
only one factor is considered, this method is suitable for pure
and stable environments. It is not suitable for complex and
multi-variant environments like grids.

1) First come first served assignment algorithm: First come
first served is the simplest form of a assignment algorithm.
It is based on the theory that resources are assigned to the
primary proposed tasks. After the first task is completed, the
resource is re-assigned to the next proposed task. This method
uses the order of executed tasks in the order of submission.
If a significant amount of time is required to complete the
first task, the same amount of time is spent waiting for the
execution of the next task. Therefore, a convoy effect is
created and the entire system performance will be reduced.

2)  Priority-assignment algorithm: Priority-assignment
algorithms give priority to the order of task execution.
If more than two tasks have the same priority, then the
First come first served method will be applied. Since the
order of execution is defined by the order of priority,
the priority order decision is the biggest problem in the
priority-assignment algorithm. If the priority order decision is
incorrect, then the resources will be continuously occupied by
a high priority task, causing unlimited deadlocks or starvation.

B. Multiple factors assignment algorithm

The characteristics of this approach are the significance of
simultaneous considerations of nodes and resource demand
loads. Although multiple factors concurrently considered and
tasks are efficiently completed, a greater load will be placed
on the system. Therefore, this approach is more suitable for
complex and volatile environments.

1) Opportunistic Load Balancing: assigns each job in
arbitrary order to the processor with the shortest schedule,
irrespective of the expected time to compute on that processor.
Opportunistic Load Balancing is intended to try to balance
the processors, but because it does not take execution times
into account it finds rather poor solutions.

2) Minimum completion time : Minimum completion time
assigns each task, to the node, in an arbitrary order with
the minimum expected completion time for that task. This
method causes assignment of some tasks to nodes that do not
have the minimum execution time for that task.

3) MinMin: Minmin establishes the minimum completion
time for every unscheduled task. It then assigns the task to the
node that offers the minimum completion time. Minmin uses
the same intuition as Minimum completion time algorithm,
but since it considers the minimum completion time for all
tasks; it can schedule at each iteration, the task that will least
increase the overall make-span, to help balance the nodes
better than Minimum completion time algorithm.

4) Max-min: Max-min is very similar to Min-min. Again
the minimum completion time for each job is established,
but the job with the maximum minimum completion time is
assigned to the corresponding processor.

III. TASKS ASSIGNMENT IN GRID COMPUTING
ENVIRONMENTS

Tasks assignment systems for Traditional distributed envi-
ronments do not work in Grid environments because the two
classes of environments are radically distinct. Tasks assign-
ment in Grid environments is significantly complicated by the
unique characteristics of Grids:

o Heterogeneity of the grid resources
Heterogeneity exists in two categories of resources. First,
networks used to interconnect these computational re-
sources may differ significantly in terms of their band-
width and communication protocols. Second, computa-
tional resources may have different hardware, computer
architectures, physical memory size, CPU speed and so
on and also different software, such as different operating
systems, cluster management software and so on. This
characteristic complicates the system workload estima-
tion because the heterogeneous resources could not be
considered uniformly.
o Grid resources are dynamic

In traditional distributed systems, such as a cluster, the
pool of resources is assumed to be fixed or stable.
In the Grid, this character is not verified because of
computational resources and communication networks
dynamicity. Both computational resources availability and
capability will exhibit dynamic behaviour. On one hand
new resources may join the Grid and on the other
hand, some resources may become unavailable due do
problems such as network failure. This pose constraints
on applications such as fault tolerance. A resource that
connects or disconnects must be detected and taken into
account by the system.



IV. PRELIMINARIES AND PROBLEM DEFINITION
A. Grid Model

We model a grid (Fig. 1 (a)) by an undirected graph G
= (VE) in which V , |V| = n, is the set of nodes and there
is an edge {u, v} € E if and only if u and v can mutually
receive each others’ transmission (this implies that all the links
between the nodes are bidirectional). Due to the dynamicity
of the grid, the graph can change in time.

Every node v in the network is assigned a unique identifier
(ID). For simplicity, here we identify each node with its ID
and we denote both with v. Finally, we consider weighted
networks, i.e., a weight w, (a real number > 0) is assigned
to each node v € V of the network. In this paper The width
correspond to the MIPS of the node.

Clustering [S] a network means partitioning its nodes into
clusters, each one with a clusterhead and (possibly) some
ordinary nodes. The choice of the clusterheads is here based
on the weight associated to each node: the bigger the weight of
a node, the better that node for the role of clusterhead. In order
to meet the requirements imposed by the wireless, mobile
nature of these networks, a clustering algorithm is required
to partition the nodes of the network so that the following
clustering properties are satisfied:

1) Every ordinary node has at least a clusterhead as neigh-

bor (dominance property).

2) Every ordinary node affiliates with the neighboring

clusterhead that has the bigger weight.

3) No two clusterheads can be neighbors (independence

property).

The DCA algorithm is required to be executed at each
node (i.e., the algorithm should be distributed ) with the sole
knowledge of the topology local to each node. Fig 1. (b)
illustrates a correct clustering for the ad hoc network of Fig.
1 (a) (the clusterheads of each cluster are the squared nodes).

Fig. 1. (a) A network G with nodes v and their weights (wy), 1 < v < 8,
and (b) a correct clustering for G.

B. Tasks Model

Before explaining the proposed strategy, some definitions
be given in the following paragraph.

1) Definition 1 (Task graph): An application can be repre-
sented by a directed acyclic graph (DAG) D= (V, E), where
V is a set of v nodes and E is a set of directed e edges. A
node in the DAG represents a task which in turn is a set of
instructions which must be executed sequentially without pre-
emption in the same processor. The edges in the DAG, each
of which is denoted by (n;, n;), correspond to the precedence
constraints among the nodes. The weight of an edge is called
the communication cost of the edge and is denoted by Cj;.
The source node of an edge is called the parent node while
the sink node is called the child node. A node with no parent
is called an entry node and a node with no child is called an
exit node[6].

Figure2, shows a task precedence graph constituted by five
tasks, with one entry task 77and three exit tasks 75,74,75.

(%)

Directed Acyclic Graph

Fig. 2.

The objective of DAG scheduling is to minimize the
overall program finish-time by proper allocation of the tasks
to the processors and arrangement of execution sequencing
of the tasks. Scheduling is done in such a manner that
the precedence constraints among the program tasks are
preserved. The overall finish-time of a parallel program is
commonly called the schedule length or makespan. Some
variations to this goal have been suggested. For example,
some researchers proposed algorithms to minimize the mean
flow-time or mean finish-time, which is the average of the
finish-times of all the program tasks [7].

2) Definition 2 (Tasks properties): We consider that tasks

arrive randomly with a random computation length, an arrival
time and precedence constraints. In our work, we generate
randomly precedence constraints between tasks. Also, we
believe that tasks can be executed on any computing element
and each CE can only execute one task at each time point, the
execution of a task cannot be interrupted or moved to another
CE during execution.
We also assume that a task cannot start execution before
it gathers all of the messages from its parent tasks. The
communication cost between two tasks assigned to the same
processor is supposed to be zero.



V. PROPOSED STRATEGY

Step 1 : Clustering
Each node execute the DCA algorithm (proposed by [5]) with
the sole knowledge of the executing node’s unique identifier,
ID, its weight, and the IDs and the weights of its neighbors
(namely, the algorithm is distributed and relies only on local
information).

DCA (Fig. 3) algorithm use only two types of messages:

1) Ch(v): used by a node v to make its neighbors aware
that it is going to be a clusterhead,

2) Join(v; u): with which a node v communicates to its
neighbors that it will be part of the cluster whose
clusterhead is node u.

Every node starts the execution of the algorithm at the same
time, running the procedure Init. Only those nodes that have
the biggest weight among all the nodes in their neighborhood
will send a Ch message (init nodes).

All the other nodes just wait to receive a message.

e On receiving a Ch message from a neighbor u, node v
checks if it has received from all its neighbors z such
that w, > w,, a Join(z; x) message. In this case, v
will not receive a Ch message from these z, and u is
the node with the biggest weight in v’s neighborhood
that has sent a Ch message. Thus, v joins u, and quits
the algorithm execution (it already knows the cluster to
which it belongs, i.e., its clusterhead). If there is still at
least a node z, w, > w,, that has not sent a message
yet, node v records that u sent a Ch message, and keeps
waiting for a message from z.

e On receiving a Join(u; t) message, node v checks if it
has previously sent a Ch message. If this is the case, it
checks if node u wants to join v’s cluster (v = t). Then, if
all v’s neighbors z such that wz ; wv have communicated
their willingness to join a cluster, v quits the execution
of the DCA. Notice that, in this case, node v does not
care about its neighbors y (if any) such that wy; > w,,
because these nodes have surely joined a node x such
that w, > w, (thus permitting v to be a clusterhead).
If node v has not sent a Ch message, before deciding
what its role is going to be, it needs to know what all the
nodes z such that w, > w, have decided for themselves.
If v has received a message from all such nodes, then it
checks the nature of the messages received. If they are all
Join messages, this means that all those neighbors z have
decided to join a cluster as ordinary nodes. This implies
that now v is the node with the biggest weight among the
nodes (if any) that have still to decide what to do. In this
case, v will be a clusterhead. At this point, v also checks
if each neighbor y such that w, < w, has already joined
another cluster. If this is the case, v quits the algorithm
execution: it will be the clusterhead of a cluster with a
single node. Alternatively, if v has received at least a Ch
message from z, then it joins the cluster of the neighbor
with the biggest weight that sent a Ch message, and quits
the execution of the DCA.

t Initialize the number of resources.

i v

k Execute the Jniz procedure.

\

Broadcasta Ch message to the clusterhead neighbor.

v

; Join a neighboring clusterhead.

Fig. 3. Distributed Clustering Algorithm

Step 2 : Tasks Scheduling
Each clusterhead will use a static assignment strategy to
place an application modeled by a dependent task graph on
a heterogeneous computing platform. This algorithm is called
HEFT (Heterogeneous Earliest FinishTime) and was proposed
by [8].
Heterogeneous Earliest Finish Time heuristic has been one
of the most often cited and used, having the advantage of
simplicity and producing generally good schedules with a short
makespan. HEFT is essentially a list scheduling heuristic that
constructs first a priority list of tasks and then makes locally
optimal allocation decisions for each task on the basis of the
tasks estimated finish time [9].
The HEFT (Fig. 3) algorithm consists of 3 phases [10]:

1) Weighting: it assigns weights to the nodes and edges in
the graph;

2) Ranking: it creates a sorted list of tasks, ordered by their
priorities;

3) Mapping: it assigns tasks to resources.

In phase 1, the weights assigned to nodes correspond
to the predicted execution times of the tasks, while the
edge weights correspond to the predicted data transfer times
between the resources. HEFT assumes these times to be
known. In environments with homogeneous resources, the
weights directly reflect the predicted times. In heterogeneous
environments, the weights must be adjusted considering
variances in execution times on different resources, and
different data transfer times on data links. Several adjustment
methods were proposed and compared. Each of them provides
another accuracy with respect to the considered scenario. The
common method is to take the arithmetic average over all
resources.



In the ranking phase 2, the workflow graph is traversed
backward, and a rank value is assigned to each of the tasks.
The rank value denotes the tasks priority, thus a higher rank
means a greater priority. The rank of a task is equal to the
tasks weight plus the maximum successive weight. This
means for every edge leaving the task, that the edge weight
is added to the previously calculated rank of the adjacent
node, and that the maximum of the summations is chosen. In
the end, the tasks are sorted by decreasing rank order. This
results in an ordered ranking list.

In the mapping phase, tasks from the ranking list are
mapped to the resources one after the other, and each task
is assigned to that resource which minimizes the tasks earliest

expected finish time.

[ Initialize the tasks number.
)
l_ Browse tasks in reverse order. J
, v ,
[ Consider the cost of each task on all processors. J
)
{ Consider the cost of communication between each two J
v
L Calculate and sort the rank of each task in descending
order.
v

o S
Is the task
scheduled

. Calculate the end of execution date of the task on all
ETOEQE:SOI'S.

|

Assign the task to the machine that minimizes it end of J

execution date.
.

=~y

{ X

~ -

Fig. 4. Heterogeneous Earliest FinishTime

VI. EXPERIMENTAL STUDY

To test and evaluate the performance of our model, we
developed our strategy under the GridSim[13] simulator. In
GridSim, application tasks/jobs are modelled as Gridlet objects
that contain all the information related to the job and the
execution management details, such as:

1) Resources parameters These parameters give informa-
tion about computing elements, clusters and networks. A
node is characterized by its capacity, speed and networks
bandwidth sizes.

2) Tasks parameters These parameters include the number
of tasks queued at every node, task submission date,

number of instructions per task, cumulative processing
time, cumulative waiting time and so on.
As performance measures, we are interested in average
response time of tasks.
To obtain results that are as consistent as possible, we
repeated the same experiments more than ten 5 times.
All these experiments were performed on a PC 1.7 GHz
Pentium IV, with 1GB of memory and running on Windows
XP.

The tasks sizes was generated randomly between 1000
and 200000 MI (Million of Instructions). For each node we
generate randomly associated speed varying between 5 and
30 MIPS.

The results presented are for 400 nodes.

We compared the performance of our strategy with:
1) Random Strategy : Tasks are affected randomly to

resources.

2) Heft Strategy : Tasks are affected using HEFT algorithm,
without use of DCA algorithm.

3) Strategy based on meta-tasks : The initial precedence
graph is divided into several graphs, including each one
a number of dependent tasks called meta-tasks. note
that there is no precedence relations between the meta-

tasks[14].
670000 /’
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u i3
£ /
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a X

HeftStrategy

- sl

100 200 400 800 1000
Tasks

270000 —r—dcatheft

strategy

170000

Fig. 5. Experimental Results

We note that :

o The Random strategy gives the worst results.

o The heft Strategy gives better results than Random strat-
egy.

o Our strategy is better than the strategy based on meta-
tasks except the cases of 400 and 800 nodes. This leads
to the following conclusion: if the grid is stable, the
strategy based on meta-tasks is favorable, in other cases
it is preferable to use the proposed strategy.

o By increasing the number of tasks, the gains of the
proposed approach increases compared to the random
strategy.



VII. CONCLUSION

Grid computing architectures are developing rapidly.
They are hardware and software infrastructures that provide
dependable, consistent, pervasive, and inexpensive access
to high-end computational capabilities. This technology is
a type of distributed system which supports the sharing
and coordinated use of resources, independently from their
physical type and location, in dynamic virtual organizations
that share the same goal.

Grid computing have the potential to provide low cost
and high-performance computing whenever computational
applications can be broken into tasks that can be distributed to
the various machines for parallel execution. A grid computing
system has potential advantages over homogeneous systems
because some tasks run faster on one type of machine while
other types of tasks may run faster on a different machine.

Tasks assignment systems for Traditional distributed
environments do not work in Grid environments because
the two classes of environments are radically distinct. Tasks
assignment in Grid environments is significantly complicated
by the unique characteristics of Grids : Heterogeneity of the
grid resources and Grid resources are dynamic.

In this paper, we formed a set of clusters from an initial
collection of nodes using a distributed clustering algorithm
noted DCA. Each clusterhead will use a static assignment
strategy to place an application modeled by a dependent task
graph on a heterogeneous computing platform. This algorithm
is called HEFT (Heterogeneous Earliest FinishTime).

To test and evaluate the performance of our model, we
developed our strategy under the GridSim simulator written
in Java. We have randomly generated nodes with different
characteristics and a set of dependent tasks.

The first experimental results are encouraging since we can
significantly reduce the average response time

As future work, we plan to extend this strategy and test it
on other existing simulators of grid. we want also to improve
the proposed strategy by integrating the multi-agent systems.
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