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Abstract. Grid is one of the most e�ective new paradigms in large
scale distributed computing. Only recently Petri nets have been adopted
as a formal modeling framework for describing the speci�c aspects of the
Grid. In this paper we describe a Grid tool for High Energy Physics data
analysis, and we show how modeling its architecture with nets-within-
nets has led us to identify and solve a number of defects a�ecting the
current implementation.

1 Introduction

In the last decade the Grid computing [10, 9] approach to parallel and distributed
computing has de�ned a new path to enable high performance and throughput
applications. Grid infrastructures expose computational and storage resources
provided by di�erent computing centers as uniform families of services that can
be coordinated to create large scale e-Science work�ows.

Grand-challenge experiments, like those related to High Energy Physics, life-
science, and environmental science adopted the Grid as the tool for implementing
their software. In this paper we will consider a Grid distributed data analysis tool
developed to serve the community of the Compact Muon Solenoid (CMS) [19]
experiment at the CERN Large Hadron Collider (LHC) [20]. A speci�c software
tool has been developed to analyze physics data over the Grid, so that the users
are protected from the architectural complexities of the distributed infrastruc-
ture itself. This application, called CMS Remote Analysis Builder (CRAB) [7] is
released as open source software and has been adopted by the physics community
since 2005. Even though the code quality is being continuously improved thanks
to code analyzers (e.g., lint), the overall architecture has never been validated
with formal tools like Petri nets.

The aim of this work is to validate some relevant parts of the CRAB tool
using nets-within-nets [23]. In this paradigm the tokens of a Petri net can be
Petri nets themselves. As we will see, the hierarchical structure of the system
components is particularly suited for investigation with this formal framework.
The Renew tool [17] has been chosen as modeling platform, as it is the only
nets-within-nets tool that is mature enough to describe a real system like CRAB.
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In particular, the features of Renew used to model the system are such that the
obtained model is very similar to a hypernet [2].This is a class of high level Petri
nets which implements the nets-within-nets paradigm using a dynamic hierarchy,
and a bounded state space [3]. As detailed in Section 4, this approach allowed
us to isolate some problems in the CRAB implementation. Our approach do not
cover analysis yet: modeling and step-by-step simulation are the two means used
to unveil these problems.

In the literature high level Petri nets have been applied to di�erent contexts
related to Grid computing technologies. Most of the works in this �eld focus
on the usage of Petri nets as a tool for work�ows speci�cation and execution
[1, 13, 11]. A di�erent application of Petri nets to Grid is reported in [5]. Here
the resources exposed by the distributed computing infrastructure are modeled
directly with the aim of validating both properties like the soundness and the
fairness of their sharing for a process mining work�ow. As far as we know, high
level Petri nets, and in particular hierarchical nets, have been applied neither to
the Grid infrastructure, nor to the study of a classical Grid application pattern
like the distributed data analysis.

The remainder of the paper is organized as follows: Section 2 introduces
the basic notion of nets-within-nets we refer to, and the Renew tool. Section
3 describes the Grid architecture we are considering, while in Section 4 the
modeling of the system and the bugs found thanks to the formal approach are
presented. A discussion about the modeling choices used in our approach is made
in Section 5. Finally, some conclusions are reported in Section 6.

2 The Nets-Within-Nets Paradigm and Renew

According to the nets-within-nets paradigm, the tokens of a Petri net can be
structured as Petri nets themselves. This idea is due to Valk (see [21]), who
de�ned and studied the class of Elementary Object Nets (EOS) in [22]. Later on,
properties of EOS were studied in [15], and other classes of high level Petri nets
which uses the nets-within-nets paradigm were de�ned, like for example [12, 2,
14, 24, 18].

In all these models a system is usually modeled as a collection of nets. One
net is designated as the system net, the top level of the net hierarchy. All other
nets are assigned to an initial place, a place in which they reside initially. This
distribution of nets induces a hierarchy. The system evolves by moving tokens
from place to place through the �ring of autonomous transitions, or by synchro-
nizing transitions between nets at di�erent levels. The hierarchical structure of
the model is usually static, but in some models there can be interactions be-
tween nets at di�erent levels in the hierarchy which can dynamically change the
hierarchy itself. For example, in hypernets a net N can be moved from a place
belonging to a net A, to a place belonging to a distinct net B. The interaction
between nets A and B is only possible if they are close in the hierarchy.

The development of the Renew software tool [17], a Java-based high-level
Petri net simulator that provides a �exible modelling approach based on Refer-
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ence nets [16], allows the use of this paradigm to model real systems. Renew is
not only a nets-within-nets editor and simulator: it allows the use of high level
net concepts like arc inscriptions, transition guards, and coloured tokens. How-
ever, we only use a subset of the features of Renew. In particular, we choose to
model the system with a hypernet-like model [2] (we will discuss in section 5 why
the system is not a proper hypernet). The system is modeled as a collection of
net instances. Tokens are references to net instances. Therefore it is possible that
a net has more than one reference (token) in the system which refer to it. Arc
inscriptions contain single variables. When a transition is �red tokens are bound
to these variables. Transition inscriptions may contain channel names, used by
two or more nets when they need to synchronize. An uplink is used when a net
wants to synchronize with the net above it in the hierarchy, a downlink is used
when a net wants to synchronize with one of the reference tokens it contains.

From a syntactical point of view the Renew constructs we used in our model
are the following:

� A net instance is created by a transition inscription of the form var : new
netname, which means that the variable var will be assigned a new net
instance of type netname.

� An uplink is speci�ed as a transition inscription :channelname (expr). It
provides a name for the channel and a variable which is used for vertical
communication between nets.

� A downlink has the form netexpr :channelname (expr) where netexpr is an
expression that must evaluate to a net reference.

To �re a transition that has a downlink, there must be an input arc labelled
with a proper variable name (netexpr for the previous downlink example), and
this variable must evaluate to a net instance. The referenced net instance must
provide an uplink with the same name,and it must be possible to bind the
variables suitably so that the channel expressions evaluate to the same values on
both sides. The parameter is bound to a variable present in one of the input arcs
of the up(down)-link, and then it is bound to the parameter in the corresponding
down(up)-link. Then the transitions can �re simultaneously.

The exchange of (structured) tokens between nets, typical of hypernets, is
possible by means of parameters. Figure 1 shows an example. The only transition
enabled at the beginning is create (Figure 1(a)), which creates an empty child1
net, and a child2 net (Figure 1(b), and Figure 1(c) respectively). The di�erence
between using the parenthesis or not using the parenthesis in creating a new net is
that, if you use them, then the transition that is being �red must synchronize on
the channel new() in the child net. Therefore, transition create in the system net
synchronizes with transition create in the child1 net, which creates the ANet net.
Afterwards, transitions exchangeNet, moveANet, receiveANet can �re, moving
ANet to child2.

Let us notice that in our model the exchange of tokens between the two
children nets, child1 and child2, is made under the supervision of the system
net. This means that the system net in some way observes the token exchange
between its children.
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Fig. 1. A simple example

3 The Application Context: Grid distributed analysis

The CMS experiment at CERN produces about 2 Petabytes of data to be stored
every year, and a comparable amount of simulated data is generated. Data needs
to be accessed for the whole lifetime of the experiment, for reprocessing and anal-
ysis, from a worldwide community: about 3000 collaborators from 183 institutes
spread over 38 countries all around the world.

The CMS computing model uses the infrastructure provided by the World-
wide LHC Computing Grid (WLCG) Project [6] through the supporting projects
EGEE, OSG and Nordugrid. Grid analysis in CMS is data driven. A prerequi-
site is that data is already distributed to some remote computing centers, and
correspondingly published in the CMS data catalogue, so that users can discover
available datasets. Parallelization is provided by splitting the analysis of large
data samples into several jobs. The output data produced by the analyses are
typically copied to the storage of a site and registered in the experiment spe-
ci�c catalogue. Small output data �les are returned to the user. In the CMS
experiment the CRAB tool set has been developed in order to enable physicists
to perform distributed analysis over the Grid. The role of CRAB is to allow
the user to run over distributed datasets the very same analysis she/he ran lo-
cally, and collect the results at the end. CRAB interacts with the distributed
environment and the CMS services, hiding as much of the complexity of the
system as possible. CMS community members use CRAB as a front-end which
provides a thin client, and an Analysis Server which does most of the work in
terms of automation, recovery, etc. with respect to the direct interactions with
the Grid. The Analysis Server enables full work�ow automation among di�er-
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ent Grid middlewares and the CMS data and workload management systems.
Indeed, the main reasons behind the development for the Analysis Server are:

� automating as much as possible the whole analysis work�ow;
� reducing the unnecessary human load, moving all possible actions to server

side, keeping a thin and light client as the user interface;
� automating as much as possible the interactions with the Grid, perform-

ing submission, resubmission, error handling, output retrieval, post-mortem
operations;

� allowing better job distribution and management;
� implementing advanced use cases for important analysis work�ows

The server architecture adopts a completely modular software approach.
In particular, the Analysis Server is comprised of a set of independent com-
ponents (purely reactive agents) implemented as daemons and communicating
asynchronously through a shared messaging service supporting the �publish &
subscribe� paradigm. Most of the components are themselves implemented as
multi-threaded systems, to allow a multi-user scalable system, and to avoid bot-
tlenecks. The task analyses are completely handled during their lifetime by the
server through di�erent families of components: there are components devoted
to monitoring the Grid status of the single jobs in a task, other groups of agents
coordinate to manage the output retrieval and the recovery of the failed jobs by
scheduling their resubmission automatically. A relevant part of the agents is de-
signed in order to handle the submission chain of user tasks to the Grid. As the
Analysis Server internal architecture is a natural candidate for being analyzed
with the nets-within-nets paradigm, as aforementioned, we decided to model
and study the Grid submission chain. The aim of this study is to check that
the involved agents behave correctly and e�ciently with respect to the foreseen
submission work�ow. We decided to consider the system at the component-task-
job level, as it represents a good compromise between the e�ects perceived by
the tool �nal users and the large number of technical details that a complete
representation of the Grid would require.

4 Modeling the submission use-case

In this Section we describe in detail the process of submitting jobs to the Grid
through the CRAB Analysis Server. For each relevant component of the sys-
tem its net representation is discussed. In addition, the bugs that have been
discovered thanks to the net models are presented with the solutions that the
actual code has adopted in order to solve the issues. The CRAB analysis suite
was modeled using nets in a hierarchical fashion, as shown in Figure 2. A ver-
tical line with multiplicity n, indicates the presence of n nets in the higher one
(e.g.: the CRABClient net contains from 1 to N Task nets); a horizontal dashed
line indicates that the linked nets are references to the same net. In our mod-
eling we consider one client just for the purpose of simplicity. Of course, the
discussed functionalities and use cases still hold when a larger number of clients
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Fig. 2. The Nets hierarchy for the CRAB suite.

is considered, as the client server model assumes no direct interactions among
the clients. In addition, for the use case that will be discussed, the server code
separates properly the session of work for every task.

The OverallSystem net, which is the system net, contains three nets which
respectively model the behavior of the client who is using the CRAB server
(CRABClient net), the TaskRegister component which is a thread running on
the CRAB server (TaskRegister net), and the CRABServerWorker which is also
a thread running on the server (CRABServerWorker net). Tasks are the objects
a client creates, and deals with. They are composed of jobs, the single units of
work that need to be performed. The TaskRegister component is responsible
for registering tasks, i.e. creating some data structures on server disks, check-
ing if each task has all the inputs it needs to be executed, and checking if the
Grid can access the proper security credentials to execute it. The CRABServer-
Worker component continuously receives jobs, schedules them for execution on
the Grid infrastructure, and creates a SubmissionWorker thread which monitors
the lifecycle of each job on the Grid. The clients interact with the server, and
can initiate some operations like: submitting jobs, killing them if needed, and
asking for the results.

4.1 CRABClient, Tasks, and Jobs

The �rst component we are going to discuss is the CRAB client, which is modeled
with the net in Figure 3. This component is what enables all the action sequences
that the users can do on their Grid analyses.

The �rst thing a client does is to create a new task on the client machine.
The typical usage pairs a unique task with a CRAB analysis session. For this
reason we assume that the tasksPool can contain a �nite number of tokens. After
the task has been locally created on the client machine, the client can perform
a submit operation, which is of course the most important one as it starts the
submission chain. The �rst time a task is submitted to the server, it is also regis-
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:csf(task)
tasksPool

submittedTaskPool

Fig. 3. The CRABClient net.

tered by the TaskRegister component. Subsequent submits are handled directly
by the CRABServerWorker component. In our model the di�erence between the
two types of submits is modeled as two di�erent transitions. In particular crab
-submit(first) transition has an uplink (:csf(task)), which means that it must be
synchronized with the upper level. As a result the task reference is copied to the
TaskRegister component by the Overall System net. After creation, the main
operations a user can do are submit, resubmit, kill, getoutput, and clean. All
these operations require an interaction with the server, but since we have focused
on the submission use case, these interactions have not been explicitly modeled.
For example the getOutput command is modeled as an interaction between the
client and the job by means of two inscriptions. Handling all the possible inter-
actions between the actors involved in the system would have resulted in a very
big model, making it impossible to describe in this paper.

A task, see Figure 4, is a bag of jobs (the system allows to collect up to 4000
jobs into a singe task) and it is a representation that CRAB uses to perform
collective actions on the Grid processes. Places notRegistered, registering, regis-
tered of the Task net contain information about the state of a task itself. These
places control the enabledness of transitions crab -submitFirst, and taskRegis-
tered, which are respectively called by the CRABClient when a job is submitted,
and by the TaskRegister component when the task has been successfully reg-
istered after a submit �rst operation. The submit transition is called when a
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Fig. 4. The Task net. Only four jobs are considered in order to exemplify the
relation with the job net.

CRABClient performs a submit subsequent action. In our model both taskReg-
istered, and submit transitions send upward two jobs through a synchronous
channel, and make the job move to the submission request state.

The net representing the state of Grid jobs and their allowed actions is re-
ported in Figure 5. This net has been modeled combining the �nite state machine
reported in the CRAB o�cial documentation with the information extracted di-
rectly from the portion of code devoted to the Grid job state handling. Several
transitions of this net contain uplinks, and therefore have to be synchronized
with some other net. Transitions with a :crs() uplink (CRAB Resubmit) are
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resubmit
:crs()

gridabort

Fig. 5. The Job net.

transition enabled only if the job is in a state where a resubmit is possible, and
are synchronized with the crab -resubmit transition of the CRABClient net, or
the resubmit transition of the SubmissionWorker net. In the same way killings
(channel :ck()), failures (channel :f()), submission (channel :s()), and output re-
trieving (channel :cg()), have to be synchronized with a correspondent transition
in another net.

The integration of the documentation and the code with the formalism of
the nets has allowed us to identify a bug in the way job states are modi�ed.
In particular, the net allows some transitions that are not actually activated by
any event observed by the system (bug 1, b1). For example let us consider the
unlabeled transition between the sub.success and the cleaned places in Figure
5: the latter denotes that a job has been abandoned because the user security
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credentials are expired and the Grid will not manage processes whose owner
cannot be recognized. A malicious code interacting with the clients in place of
the proper server could move jobs arbitrarily to this terminal state. The �x for
this bug consisted in a review of the code managing the job state automata in
accordance with what is stated by the presented Job net. Also, the pre-conditions
that allow a client to perform a kill request over the jobs are not granted properly
(b2): jobs can be killed when they are in states where the killing is dangerous.
For example, a user could run into a condition where a failed job cannot be
resubmitted as the system requires to kill it. That means the job is in a deadlock,
as a failed job cannot be killed on the Grid.

4.2 TaskRegister

The TaskRegister component, shown on the left of Figure 6, duplicates the task
and jobs structures that have been created at the client side and alters all the ob-
ject attributes in order to localize them with respect to the running environment
of the server, taking care also of security issues (like user credentials delegation)
and �les movement (check the existence of input). We modeled this cloning by
means of the reference semantics: the TaskRegister component receives from the
client a copy of the reference which points to the Task.

The component is able to handle more tasks simultaneously thanks to a pool
of threads implementing the net of Figure 6. The �rst transition that is �red is
submission, which is synchronized with the transition in the system net that re-
ceives the task reference from the CRABClient. Then four operations which can
fail are executed on the task. These include local modi�cation of the task with
respect to the server environment, the user's credential retrieval (also known as
delegation), the setting of the server behavior according to what the credentials
allow to do and, �nally, the checking that the needed input �les are accessible
from the Grid. If the registration fails the only possible operation available is
archiveTask which deletes the reference to the task from the task register com-
ponent. If the user has the privileges to execute the jobs in the task, and if the
inputs needed by the task are available, then a range of jobs is selected from
the task and passed to the CRABServerWorker by �ring the toCSW transition
(again under the supervision of the system net). The modeling and the simu-
lation of the TaskRegister net has highlighted some relevant defects and bugs.
In case of failure the TaskRegister component was not able to set properly the
status of the jobs in a task to fail. This macroscopic lack in the system design
implied di�erent side e�ects. The server was not able to discriminate whether
to retry automatically the registration process or to give up and notify the user
about the impossibility to proceed (b3). In addition, the system could not tell
if the registration has been attempted previously. This implies that the client
transfers the input data every time a registration failure appears, with a waste
of network resources (b4). Both the defects have been solved by introducing the
proper synchronization between the fail transition in the component with sub-
mission failed in the job net. Mapping the synchronization into the server code
has granted that the status of the jobs is set to the correct failure state and that

276 Petri Nets & Concurrency Mascheroni and Farina



fail

x

fail

task

task

fail

fail

task

task

task

task

task

task

task

task

task:csf()
:csf(task)

archive task

local action

delegate

local action

check input

submission

task

task:registered(j1,j2)
:mcsw(j1,j2)

toCSW

task

task

task

task

task

task

task

task

j

j:f()

j

j

j

j

j

j

j

j

j:f()
fail

j

21 3

[] [] []

:init(j)

j

j

j

j

j

j

j

submit

j

j

j:crs()
resubmit

j

j:f()

j:f()
fail

fail

fail

fail

j:s()

fail
j:f()

clean
:clean()

evaluateOutcome

listMatch

loadGridData

preSubmCheck

Fig. 6. TaskRegister and SubmissionWorker nets respectively

the submission counters are properly incremented (being implementative details
the counter is not reported in the Job net). With this modi�cation the server
becomes aware that a �rst try has been executed and also network transfers are
exploited more e�ciently. A second bug has been identi�ed thanks to the study
of the synchronization among the transitions for the client, the jobs and the
TaskRegister nets. In detail, the handling of the kill commands presents some
issues. If a user requires to kill some jobs while the task is being registered, the
system cannot distinguish properly which jobs have to be killed and therefore it
applies an over-killing strategy by halting the whole task (b5). This happens be-
cause the code performs some sort of synchronization with the Task net instead
of having rendezvous with the related transitions into the lists of killing jobs.

The killing of Grid jobs is a demanding action, both in terms of network
communications and in terms of coordination among the di�erent services in-
volved in a Grid. Furthermore the killing of an analysis job is a permitted but
infrequent action. For these reasons the CRAB developers have decided to sup-
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press this early job termination feature in order to avoid the bug. Now users are
allowed to kill jobs only once they have been actually submitted to the Grid.

4.3 CRABServerWorker, and SubmissionWorkers

In our model the result of a submit operation is that the CRABServerWorker
component, shown in Figure 7, receives a structured token in the place accepted.
If the submit was the �rst, transition newTaskRegistered is �red after the task has
been registered by the TaskRegister component by means of transition toCSW,
which is synchronized with transition newTaskRegistered through the overall
system. If the submit is not the �rst, the task has been already registered,
therefore transition subsequentSubmission is �red. After receiving the range of
jobs, the CRABServerWorker component schedules these jobs for the execution
on the Grid infrastructure. The practical e�ect of this component is to break
the task into lists of jobs in order to improve the performance thanks to bulk
interactions with the Grid middleware. The Submission Worker thread spawned
by the component monitors the actual submission process of the jobs. We have
modeled this fact by creating a Submission Worker net for each one of the jobs in
the list. Indeed, transition triggerSubmissionWorker creates a new Submission
Worker assigned to the variable sw and synchronizes it with a transition labeled
init.

schedule
j j

sw

:acceptTR(j1,j2)
newTaskRegistered

acceppted

triggerSubmissionWorker

:clean()
clean

subsequentSubmission
:subsequentSubmission(j1,j2)

j

sw: init(j)
sw: new SubmissionWorker

j1 j2

j2j1

Fig. 7. The CRABServerWorker Net

The thread is responsible both for tracking the submission to the Grid in-
frastructure, and for resubmitting jobs when a failure occurs. Failures can occur
for di�erent reasons: network communication glitches, unavailable compatible
resources, etc. Some types of failures are recoverable and in those cases the Sub-
mission Worker automatically tries to resubmit the job a three times. This value
can be con�gured in the code, but in the model we only used the actually em-
ployed value of three. If the failure persists the job is permanently marked as
failed. The net shown on the right in Figure 6 is our model of the submission
worker component.
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The study of the synchronization between the job and the Submission Worker
nets allowed us to identify another bug in the code. The submission success
transition in the job net (Figure 5) synchronizes with the submit Submission
Worker's transition (right of Figure 6). This means that the CRAB Server marks
the submission as successful just after the interactions with the Grid. Actually
the network latencies could delay the propagation of the job failure message (b6)
and, therefore, the correct rendezvous should be enacted between submission
success and evaluateOutcome.

It is relevant to observe that the approach followed for the modeling of the
CRAB Server submission chain is a particular case for a quite general class
of Grid systems. All the Grid middlewares rely on jobs that are represented by
�nite state automata and that are concurrently managed by the di�erent services
involved in the Grid. In addition, the intermediate action of a broker like the
CRAB Server is becoming a common pattern with the di�usion of scienti�c
gateways: programmatic portals that abstract the user applications from the
complexities of the distributed infrastructures acting as back end.

The adoption of the nets-within-nets paradigm has provided a natural and
e�ective way to model subtle interactions among the di�erent net levels. It would
have required a signi�cantly greater e�ort to discover the same problems with
a �at net approach. In the following subsection details about the process of
deriving the models from the documentation and the code are given.

4.4 Details on the model derivation process

The model was derived from the code by analyzing both the o�cial documenta-
tion and the source code of the system. The Job net is directly built from the doc-
umentation. A �nite state automata which describes the Job is reported explic-
itly. After that, simply by using pattern matching we analyzed the source code
relevant for the submission use case by searching for interaction with jobs. Each
source module is modeled as a net (e.g.: CRABClient, TaskRegister, CRAB-
ServerWorker etc), and the interactions with the Job nets are modeled using the
Renew uplink/downlink mechanism. A modi�cation of the status of a job in
the code is modeled as a pair of synchronized transitions in the model itself: one
in the job net and one in the net that models the component changing the job
status.

To ensure that the model is an accurate representation of the software, we
made several task submissions with the CRAB tool and monitored the status
of the jobs during the evolution. The request parameters were set up so that
di�erent behaviours of the system are tested. For example, jobs lacking of input
�les, job submitted by users with expired credentials, and jobs killed before the
completion of task registration process are test cases that have been considered.
After that, we simulated each submission on the model, taking care that the
simulation of the status of the job net was consistent with the actual job status
in the system.
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5 Discussion

In the study we have just presented, a formal approach was used to validate
a system that has already been implemented. Simulating the behavior of the
system by means of a computer aided tool was what allowed us to �nd problems
in the implementation of the CRAB server. However, another great advantage
of modeling a system with formal methods is the possibility to apply automatic
analysis techniques to extract information about the system, like invariant anal-
ysis, and model checking.

In order to apply some of these techniques, the formal model must respect
speci�c prerequisites. For example, most algorithms for model checking a con-
current system require a bounded state space. Nets-within-nets models which
satisfy this last requirement are hypernets [2] and their generalization [4], which
can both be expanded to 1-safe Petri nets [3, 18]. This expansion guarantees the
possibility of applying all the analysis techniques of this well known class of Petri
nets to hypernets.

The �rst idea was to use such a class of nets to model the CRAB server,
but because of the absence of modeling limitations and veri�cation features in
Renew, and because of the high complexity of the system, we preferred to
use a slighty more powerful version of hypernets. To come back to the class
of hypernets, having therefore the certainty that the state space is limited, the
following �xes are necessary:

� Transitions which create or delete tokens must be deleted in some way. For
example, transition crab -create of the CrabClient net cannot create an un-
bounded number of tasks anymore, but an input place which contains as
many tokens as the maximum number of allowed tasks must be added.
This is not a big problem. As a matter of fact the computers disks space is
limited, and consequently so are the number of tasks which can be created
by a user.

� Hypernets use a value semantics, which means that a net cannot have two
references to it. Nevertheless, in our model some transitions duplicate the
references to a net. Duplication of references is somehow dangerous if the
intention is to keep the state space bounded. Loosely speaking, the risk is
of an uncontrolled grow of the references of a net without a corresponding
deletion of these references. In our model the use of the value semantics can
be achieved by deleting these duplications of references, and using simple
tokens to communicate the intention to modify the referenced net.

Even though analysis of properties is not available with the current version
of the model because of the issues just discussed, the more practicality of the
reference semantics from a modeling point of view helped us �nding several
design defects in the implementation of the CRAB server. In the future we plan
to restrict the model to a hypernet in order to be able to verify properties like
invariants, or to do model checking 1. In our opinion, as a �rst step it was

1 Restricting the model to hypernets is not the only way to have a limited state space,
but a formal proof is available using hypernets thank's to the 1-safe expansion
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important to use a powerful formalism to avoid getting lost in the details of the
model, even though that meant sacri�cing the analysis capabilities.

6 Conclusions

In this paper, we discuss a large scale Grid application used to perform dis-
tributed data analysis in High Energy Physics experiments. Because of the com-
plexity of the architecture, the software tool has been modeled using the nets-
within-nets paradigm in order to validate the correctness of its behavior using
simulation. In particular we considered the fundamental use case of the submis-
sion of user data analysis to the Grid. Every component of the CRABServer
involved in this use case has been modeled in the hierarchy of the nets and
compared to the behavior expected by its users.

From the simulation of the model a number of bugs and design defects
emerged. This has led the developers to improve the overall quality of system
implementation in the subsequent releases that the users now adopt. Two groups
of bugs have been identi�ed: bugs related to wrong coding of the expected be-
haviors and bugs where the speci�c adoption of nets-within-nets formalism has
highlighted synchronization problems among the entities .

In addition, the approach followed to model the CRAB tool set has shown
its generality in order to model most of the Grid applications in which an or-
chestration entity drives the nets representing both the �nite state machines of
the jobs running on the distributed infrastructure and the services exposing the
resources themselves.

The class of nets used to model this system is a more powerful version of
hypernets, using the reference semantics instead of the value semantics, and
allowing creation/deletion of tokens. As discussed in Section 5, it is possible
to restrict the model to a proper hypernet by sacri�cing its readability (some
places and transitions must be added). Then, by means of hypernets and their
expansion to 1-safe nets, it will be possible to use all the techniques de�ned for
the class of 1-safe nets for analyzing the system.

A plugin of Renew that allows to draw and to analyze a hypernet is being
developed. We plan to use this plugin to make automatic veri�cation of properties
of the system.
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