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Abstract. The notion of persistency, based on the rule “no action can disable 
another one” is one of the classical notions in concurrency theory. In this paper, 
we deal with arbitrary place/transition nets, but concentrate on their persistent 
computations. It leads to an interesting decision problem: Is a given marking 
reachable with a persistent run? In order to study the persistent-reachability 
problem we define a class of nets, called nonviolence nets. We show that 
inhibitor nets can be simulated by the nonviolence nets, and that reachability 
and coverability problems are undecidable in the class of the nonviolence nets. 
Then we prove more: nonviolence nets can be simulated by the inhibitor nets, 
thus they are computationally equivalent to Turing machines.  

 
 

1 Introduction 
 

An action of a concurrent system is said to be persistent if, whenever it becomes 
enabled, it remains enabled until executed. This classical notion, introduced by 
Karp/Miller [9], is one of the most frequently discussed issues in the Petri net theory 
(papers [1,2,3,6,8,11,12] a.m.o.). A net is said to be persistent if each of its actions is 
persistent. And most of the papers about persistency deal with this subclass of 
place/transition nets). In this paper, we deal with arbitrary place/transition nets, but 
concentrate on their persistent computations. It leads to an interesting persistent-
reachability problems: Is a given marking reachable (coverable) with a persistent run?  
 It is well known that the classical versions of the problems (Is a given marking 
reachable (coverable) in a given place/transition net?) are decidable (coverability: 
Karp/Miller [9], Hack [8]; reachability: Mayr [13], Kosaraju [10]). In order to study 
the persistent-reachability problem we introduce a class of nets, called nonviolence 
nets (Definition 3.1). They differ from place/transition nets only by the execution rule. 
Namely, only persistent executions are permitted. We show that inhibitor nets can be 
simulated by nonviolence nets (Proposition 4.4). Using this fact we prove that the 
reachability and coverability problems are undecidable in the class of the nonviolence 
nets (Propositions 4.5 and 4.7, respectively). Then we prove more: nonviolence nets 
can be simulated by the inhibitor nets (Proposition 4.8), thus the both are 
computationally equivalent to Turing machines.  
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 Many extensions of Petri nets are known to be Turing powerful: inhibitor nets, 
priority nets (Hack [7]), self-modifying nets (Valk [17]), for instance. There is also  
a Turing powerful model restricting the standard execution rules to maximal 
concurrent steps (Burkhard [4], see also Starke [16]). But all the models allow a fight 
for sharing resources (tokens), whereas our model works in a completely peaceful 
way. 
 In the concluding section we notice that the free-choice nonviolence nets are 
easy transformable to place/transition nets (not necessarily free-choice ones). Hence, 
the coverability and reachability problems are decidable in the class of the free-choice 
nonviolence nets.  
 
 

2 Petri Nets – Basic Definitions 
 
The set of non-negative integers is denoted by . Given a set X, the cardinality 
(number of elements) of X is denoted by |X|, the powerset (set of all subsets) by 2X, the 
cardinality of the powerset is 2|X|. Multisets over X are members of X, i.e. functions 
from X into . For convenience, if the set X is finite, multisets of X will be 
represented by vectors of |X|. 
 
2.1 Petri Nets and Their Computations 
 
The definitions concerning Petri nets are mostly based on Desel/Reisig [5]. 
 
Net is a triple N = (P,T,F), where: 
• P and T are finite disjoint sets, of places and transitions, respectively; 
• F ⊆ P×T ∪ T×P is a relation, called the flow relation. 
For all a∈T we denote: •a =  {p∈P | (p,a)∈F}  −  the set of entries to a 
 a• =  {p∈P | (a,p)∈F}  −  the set of exits from a 
Petri nets admit a natural graphical representation. Nodes represent places and 
transitions, arcs represent the flow relation. Places are depicted by circles, and 
transitions by boxes. The set of all finite strings of transitions is denoted by T*, the 
empty string is denoted by ε, the length of w∈T* is denoted by |w|, number of 
occurrences of a transition a in a string w is denoted by |w|a. 
 
Place/transition net (shortly, p/t-net) is a quadruple S = (P,T,F,M0), where: 
• N =  (P,T,F) is a net, as defined above; 
• M0∈ P is a multiset of places, named the initial marking; it is marked by tokens 

inside the circles, capacity of places is unlimited. 

Multisets of places are named markings. In the context of place/transition nets, they 
are mostly represented by nonnegative integer vectors of dimension |P|, assuming that 
P is strictly ordered. The natural generalizations, for vectors, of arithmetic operations 
+ and −, as well as the partial order ≤, all defined componentwise, are well known and 
their formal definitions are omitted.  
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A transition a∈T is enabled in a marking M whenever •a≤M (all its entries are 
marked). If a is enabled in M, then it can be executed, but the execution is not forced. 
The execution of a transition a changes the current marking M to the new marking 
M'= (M−•a)+a• (tokens are removed from entries, then put to exits). We shall denote: 
Ma for “a is enabled in M ” and MaM' for “a is enabled in M and M' is the resulting 
marking”. Then we say that MaM' is a step. This denotation we extend to strings of 
transitions: the empty string ε is enabled in any marking (always MεM), a string w=au 
(a∈T, u∈T*) is enabled in a marking M whenever MaM' and u is enabled in M'. 
Predicates Mw and MwM' are defined like those for single transitions. If MwM' then 
we say that MwM' is a computation from M to M'. Note that any computation MwM' 
unambiguously defines all intermediate markings between M and M'.  
 
If  MwM', for some w∈T*, then M' is said to be reachable from M. The set of all 
markings reachable from M is denoted by [M〉. Given a place/transition net 
S=(P,T,F,M0), the set [M0〉 of all markings reachable from the initial marking M0 is 
called the reachability set of S, and markings in [M0〉 are said to be reachable in S.  
 
We assume that the notions of reachability and coverability graphs are known to the 
reader. Their definitions can be found in any monograph or survey about Petri nets 
(see [5,16] or arbitrary else). Let us recall only that reachability graphs represent 
completely behaviours of nets, but are mostly infinite, while coverability graphs 
represent behaviours only partially, but are always finite. In Examples 2.2 and 2.3 we 
also use a notion of persistency graph – the reachability graph restricted to persistent 
steps. 
 
2.2 Persistent Computations of Place/Transition Nets 
 
The notion of persistency, proposed by Karp/Miller [9], belongs to the most important 
notions in concurrency theory. It is based on the behaviourally oriented rule “no action 
can disable another one”, and generalizes the structurally defined notion of conflict-
freeness. 
 

Let S=(P,T,F,M0) be a place/transition net, and let M be a marking. The step MaM' is 
persistent  iff  (∀b≠a) if Mb then M'b. The empty computation MεM is persistent; the 
computation MaM'uM" is persistent iff the step MaM' is persistent and the 
computation M'uM" is persistent. [In words: A computation is said to be persistent if 
any transition once enabled during this computation remains enabled until executed.] 
A p/t net is said to be persistent if it admits only persistent computations.  
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Example 2.1.  Non-persistent and persistent nets 
 
 
 
 
 
 
 

 
Fig. 1. A non-persistent (left) and persistent (right) place/transition nets 

 
 
2.3 Persistent Reachability Problem 
 
The problem of persistency (“Is a place/transition net persistent?”), raised by 
Landweber and Robertson in [11], has been proved to be decidable by Grabowski [6] 
and Mayr [12]. Most of p/t-nets, however, are not persistent, but some of their 
computations are persistent. In this paper, we are interested in markings that are 
reachable with persistent computations. 
 

Let S=(P,T,F,M0) be a place/transition net, and let M∈ P be a marking.  

Reachability Problem: Is there a computation M0wM?  
In other words: Is the marking M reachable in the net S? 
 
The Reachability Problem has been proved to be decidable by Mayr [13] and 
Kosaraju [10], after years of many author’s efforts. A broad discussion, with a detailed 
proof, can be found in the book [15] of Reutenauer. 
 

Let S=(P,T,F,M0) be a place/transition net, and let M∈ P be a marking.  

Persistent-Reachability Problem: Is there a persistent computation M0wM?  
In other words: Is the marking M reachable in the net S with a persistent run? 
 
Obviously, if a p/t-net is persistent, then the persistent-reachability problem is 
equivalent to the classical one, thus decidable. We shall study the problem in general, 
for arbitrary p/t-nets. The following examples show difference between complete 
behaviours and persistent behaviours. 
 

c a c a b 
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Example 2.2.  Comparison of the complete and persistent behaviours 

 
 
 
 
 
 

 

Fig. 2. A place/transition net and its reachability and persistency graphs 
 
The above net is bounded (i.e. its reachability set is finite) and has infinite set of 
persistent computations. The example below shows an unbounded net (i.e. with 
infinite reachability set) with finite set (a singleton) of persistent computations. 
 
 
Example 2.3.  Unbounded p/t-net with finite persistency graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. A place/transition net and its reachability, coverability and persistency graphs 

 
 
 

3 Nonviolence Petri Nets 
 
In this section, we introduce the notion of nonviolence Petri nets. They differ from 
place/transition nets only by the execution rule. Namely, an enabled transition can be 
executed only if it is executable persistently (i.e. if its execution does not disable any 
other enabled transition). Therefore, we have to distinguish the notion “enabled” and 
“executable”, that are synonymic in place/transition nets, but not in nonviolence nets. 
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Definition 3.1.  Nonviolence Petri Nets 
Nonviolence net is a quadruple S = (P,T,F,M0), exactly the same as in definition of 
place/transition nets. It differs from p/t-net by execution rules: A transition a∈T is 
enabled in a marking M whenever •a≤M (all its entries are marked). A transition a∈T 
is executable in M if it is enabled in M, and moreover the step MaM' is persistent. The 
execution of a leads to the resulting marking M'= (M−•a)+a• (exactly same as in p/t-
nets). We shall denote: Ma for “a is executable in M” and MaM' for “a is executable 
in M and M' is the resulting marking”. Then we say that MaM' is a nonviolent step. 
This denotation is naturally extended to strings w∈T*. If MwM' then we say that 
MwM' is a nonviolent computation. Only nonviolent steps and computations are 
permitted in the nonviolence nets.  
 
And now we can formulate the reachability and coverability problems for the 
nonviolence nets. 

Let S = (P,T,F,M0) be a nonviolence net, and let M∈ P be a marking.  

NV-Reachability Problem:   
Is there a nonviolence computation M0wM in S?  

NV-Coverability Problem:    
Is there a marking M' ≥ M and a nonviolence computation M0wM' in S? 
 
 
3.2 From Place/Transition Nets to Nonviolence Nets 
 
We shall show that every p/t-net can be simulated by a nonviolence net. It will be 
done by joining an external control to each transition of the net.  
 
Let us consider an arbitrary p/t-net S. We transform it to the nonviolence net S' in the 
following way. To each transition a in the net S we join a switching transition a' and 
two new places pa and qa. We add the place qa to the set of entries to a and to the set 
of exits from a'. We also add the place pa to the set of exits from a and to the set of 
entries to a'. In initial marking we add one token to the place pa. One can treat the 
constructed loop as a preparation of the transition a to execution. 
 
 
 Net S: Net S': 
 
 
 
 
 

 Fig. 4. Transforming a place/transition net into a nonviolence net 
 
Let us also define, for every marking M in the net S, the marking 10M in the net S' as 
follows. For each place p in the net S we set 10M(p)=M(p), for each new place pa we 

a 

pa 

qa 

a' a 
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set 10M(pa)=1 and for each new place qa we set 10M(qa)=0. With such definition, the 
initial marking in the net S' is 10M0, where M0 is the initial marking in S. An obvious 
observation is that if transition a is executable in a marking M in the net S, then the 
sequence a'a is executable in the marking 10M in the net S'. 
 
Proposition 3.2. A marking M is reachable in a place/transition net S if and only if the 
marking 10M is reachable in the nonviolence net S'. 
Proof. (⇒) Let M0wM be a computation in S. Then replacing each a in w by a'a we 
get a computation 10M0w'10M in the nonviolence net S'.  
(⇐) Let 10M0w'10M in the nonviolence net S'. The only difference between 
behaviours of S and S' is that before every transition a a transition a' must be 
executed. Subsequent execution of two (or more) primed actions may sometimes 
disable the nonviolence execution of actions that were executable in S. However, it 
would not make any new action executable. Therefore, erasing all primed actions in 
w', we get a computation w such that M0wM is a computation in the p/t-net S. � 
 
 

4 Comparison of Nonviolence Nets and Inhibitor Nets 
 
In this section, we recall the notion of inhibitor nets and some of their properties 
(undecidability of the the reachability and coverability problems). Then we show that 
their computational power is equal to that of the nonviolence nets.  
 
Definition 4.1.  Inhibitor Petri Nets 
Inhibitor net is a quintuple S = (P,T,F,I,M0), where (P,T,F,M0) is a place/transition net 
and I ⊆ P×T is the set of inhibitor arcs (depicted by edges ended with a small empty 
circle). Sets of entries and exits are denoted by •a and a•, as in p/t-nets; the set of 
inhibitor entries to a is denoted by °a={ p∈P | (p,a)∈I}.  

A transition a∈T is enabled in a marking M whenever •a≤M (all its entries are 
marked) and (∀p∈°a) M(p)=  0 – all inhibitor entries to a are empty. And 
“executable” means “enabled”, like in p/t-nets. The execution of a leads to the 
resulting marking M'= (M−•a)+a•.  
 
It is known that the inhibitor nets are computationally equivalent to Turing machines 
and the reachability problem in them is undecidable (Minsky [14], Hack [7]).  
 
Fact 4.2.  Reachability Problem is undecidable in the class of inhibitor nets. 
 
Also the coverability problem is known to be undecidable in the class of inhibitor 
nets. We recall here the proving construction. 
 
Let S = (P,T,F,I,M0) be an arbitrary inhibitor net with P =  {p1, … , pk}, and let  
M = [i1, … , ik] be a marking to be checked to be reachable. We extend it to an 
inhibitor net S', as follows: We add three new places p0, pk+1, pk+2 and two new 
transitions x, y, connected p0→x→pk+1→y→pk+2 (see figure 5). Moreover, we join the 
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place p0 with every transition of the net S by a self-loop (it is depicted symbolically on 
Figure 5), we add the arcs from pn to x, weighted by in (for n=1,…,k), [We use here 
the weighted arcs; see remark below.] and the inhibitory arcs from all original places 
of S to y. And the initial marking M'0 in S' is the following: M'0(p0)=1, M'0(pn)=M0(pn) 
for n=1,…,k and M'0(pk+1)=M'0(pk+2)=0. 
 
 Net S:  Net S': 
 
 
 
 
 
 
 
 
 
 

 Fig. 5. Checking reachability with coverability in inhibitor nets 
 
Remark. In this construction, we have used weighted (multiple) arcs. They are not 
mentioned, for simplicity, in our definitions; we assume that the notion is commonly 
known. Moreover, (place/transition or inhibitor) nets with multiple arcs can be 
transformed to the equivalent nets without them (Hack [8], Starke [16]). 
 
Clearly, the marking M = [i1, … , ik] is reachable in S if and only if the marking 
M'(p0)=M'(p1)=…=M'(pk)=M'(pk+1)=0 and M'(pk+2)=1 is coverable in S'. Hence, 
because of Fact 4.2, we have got  
 
Fact 4.3.  Coverability Problem is undecidable in the class of inhibitor nets. 
 
 
4.1 From Inhibitor Nets to Nonviolence Nets 
 
Let us consider an arbitrary inhibitor net S. In the transformation to the nonviolence 
net S' we will use the same idea as in the previous transformation. Like in that one, to 
each transition a, we add a transition a' and places pa and qa. Moreover, to each place 
p, in the net S, belonging to °a (i.e. being an inhibitor entry to a), we add a new 
transition ap. Both places, p and qa, are joined by self-loops with the new transition ap. 
Finally, we remove all inhibitor arcs. 
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 Net S:  Net S': 
 
 
 
 
 
 
 
 
 
 

 Fig. 6. Transforming an inhibitor net into a nonviolence net 
 
Similarly to the construction of figure 4, for every marking M in the net S we define 
the marking 10M in the net S', in the same way. And the initial marking in the net S' is 
10M0, where M0 is the initial marking in the net S. In the same manner as in the 
previous case, if the transition a is executable in the marking M in the inhibitor net S, 
then the computation a'a is executable in the marking 10M in the nonviolence net S'. 
 
Proposition 4.4. The marking M is reachable in the inhibitor net S if and only if the 
marking 10M is reachable in the nonviolence net S'. 
Proof. The proof is similar to that of Proposition 3.2. Remark that if an action a' is 
executed while a token resides in the place p (so a is not enabled in S), then a token 
will stuck in the place qa and no marking of the form 10M will be reachable. � 
 
Corollary 4.5. The NV-Reachability Problem is undecidable. 
Proof. Directly from Proposition 4.4 and Fact 4.2.  � 
 
Proposition 4.6. The marking M is coverable in the inhibitor net S if and only if the 
marking 10M is coverable in the nonviolence net S'. 
Proof. (⇒) If M is coverable in S then there is a marking M' ≥ M reachable in S. 
Hence, by Proposition 4.4, the marking 10M' is reachable in the nonviolence net S'. 
And clearly, 10M' covers 10M.  
(⇐) Notice that any marking (reachable in S') covering 10M is of the form 10M'. And 
then M' ≥ M and M' is reachable in S (Proposition 4.4). So M is coverable in S. � 
 
Corollary 4.7. The NV-Coverability Problem is undecidable. 
Proof. Directly from Proposition 4.6 and Fact 4.3.  � 
 
 

p 

a 

ap 

qa 

pa 

a' 

p 

a 

Persistent reachability Petri Nets & Concurrency – 381



 

4.2 From Nonviolence Nets to Inhibitor Nets 
 
The inverse construction, transforming a nonviolence net into an inhibitor net, is more 
involved. Once more, we use the idea of predicting an executablement of transitions.  
 
 
  Net S:   Net S': 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Transforming a nonviolence net into an inhibitor net 
 
Let S be a nonviolence net; we extend it to an inhibitor net S', as follows. First, we add 
one global place s, called the switch, which is an exit from every transition of the net 
S. Then, for every transition a of the net S, we add a transition a'; the switch place s is 
an entry to each of these primed transitions. An execution of a transition a' means a 
belief in the executablement of transition a in the nonviolence net S. After executing 
the transition a', the net S' checks, if the transition a was really executable in the 
nonviolence net S. It means that transition a is enabled and no other transition blocks 
its execution. In order to check it, we add, for every pair (p,b) such that b≠a and the 
place p is a common entry to the transitions a and b, the places xapb and yapb and the 
transition tapb, as depicted on figure 7 above. The transition tapb is able to move the 
token from xapb to yapb only if at least two tokens reside in the place p. [We use here 
the weighted arcs; see remark after figure 5.] By the nonviolence rules, a transition b 
blocks nothing if it is not enabled; it means that one of its entries is empty. In order to 
check it, we add the transitions taqb, for every entry q to transition b, different from p. 
Each of the transitions has one entry xapb, one exit yapb and one inhibitor arc from the 
place q, checking if q is empty. This construction allows to check, whether the 
transition b blocks the execution of a or not. If not, then a token moves from xapb to 
yapb, enabling a in S' if and only if it was executable in S. 
 
For every marking M in the nonviolence net S we define a marking 10M in the 
inhibitor net S' as follows. For each place p inside the net S we set 10M(p)=M(p). For 
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additional switch place s we set 10M(s)=1 and for every place r added by the 
construction (i.e. for all places xapb and yapb) we set 10M(r)=0. Directly from our 
construction, if a transition a is executable in a marking M in nonviolence net S then it 
is potentially executable in the marking 10M in inhibitor net S' (before executing a 
transition a we execute a transition a' and positively check all conditions to fill all 
places yapb). The initial marking of S' is assumed to be 10M0. 
 
Proposition 4.8.  The marking M in the nonviolence net S is reachable if and only if 
the marking 10M is reachable in the inhibitor net S'. 
Proof. (⇒) In the net S' we can reach marking 10M, from the initial marking 10M0, by 
executing a transition a' before each transition a and checking the conditions. 
(⇐) Executing any transition a from the original net S is possible only by predicting 
this execution by executing the transition a'. If we do a mistake, making wrong 
prediction, our net S' would reach a dead marking and stops. It means that if a marking 
10M in the inhibitor net S' is reachable, then the only scenario of reaching that 
marking is correctly predicting and executing transitions from the net S. The 
correctness of our process of predicting means that we could just execute these 
transitions in the original, nonviolence net S, reaching marking M. Finally, marking M 
is reachable in the nonviolence net S, which ends the proof. � 
 
 

Conclusions 
 
We have proved (Propositions 4.4 + 4.8) that nonviolence nets are equivalent (in the 
marking reachability sense) to inhibitor nets. As the latter are Turing powerful, one 
can say that the former allow to do everything what possible without any fight. It is 
quite surprising, because persistent executions are only a part of arbitrary executions. 
But the price for the peace is undecidability. We have shown (Corollary 4.7) that even 
coverability, decidable in many extensions of place/transition nets, is undecidable in 
the class of the nonviolence nets.  
 
Notice that free-choice (if •a∩•b ≠ ∅ then •a = •b) nonviolence nets can be simulated 
by place/transition nets (Figure 8), thus the classical decision problems (reachability, 
coverability) are decidable in the class of free-choice nonviolence nets.  
 
 Net S:  Net S': 
 
 
 
 

Fig. 8. Transforming a free-choice nonviolence net into a place/transition net 
 
Let S be a free-choice nonviolence net. We replace every arc from a place, being  
a common entry of two (or more) transitions and is not a part of a self-loop, by two 
arcs: an arc from the place to the transition, weighted with 2, and an arc from the 
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transition to the place, weighted with 1. And self-loops remain not changed. And the 
initial marking remains the same. Clearly, the place/transition net S' built this way 
works exactly as the free-choice nonviolence net S. A case of the free-choice 
nonviolence net is shown by Example 2.2. The above construction does not work for 
non-free-choice nonviolence nets, see Example 2.3, for instance. 
 
It would be interesting to study some other subclasses of the class of nonviolence nets. 
Especially, to find a subclass of the class of nonviolence nets, computationally 
equivalent to the class of place/transition nets. 
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