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Abstract. The notion of persistency, based on the rule “ctioa can disable
another one” is one of the classical notions inccorency theory. In this paper,
we deal with arbitrary place/transition nets, bah@entrate on their persistent
computations. It leads to an interesting decisioobiem: Is a given marking
reachable with a persistent run? In order to stingy persistent-reachability
problem we define a class of nets, called nonvi#enets. We show that
inhibitor nets can be simulated by the nonviolenets, and that reachability
and coverability problems are undecidable in tles<lof the nonviolence nets.
Then we prove more: nonviolence nets can be siedlay the inhibitor nets,
thus they are computationally equivalent to Tummachines.

1 Introduction

An action of a concurrent system is said to be igerst if, whenever it becomes
enabled, it remains enabled until executed. Thassital notion, introduced by
Karp/Miller [9], is one of the most frequently dissed issues in the Petri net theory
(papers [1,2,3,6,8,11,12] a.m.0.). A net is saibéqersistent if each of its actions is
persistent. And most of the papers about persigteleal with this subclass of
place/transition nets). In this paper, we deal vaithitrary place/transition nets, but
concentrate on their persistent computations. dddeto an interesting persistent-
reachability problems: Is a given marking reachgbteerable) with a persistent run?

It is well known that the classical versions o ghroblems (Is a given marking
reachable (coverable) in a given place/transitiet?n are decidable (coverability:
Karp/Miller [9], Hack [8]; reachability: Mayr [13]Kosaraju [10]). In order to study
the persistent-reachability problem we introducelass of nets, called nonviolence
nets (Definition 3.1). They differ from place/tréitn nets only by the execution rule.
Namely, only persistent executions are permitted. 3ow that inhibitor nets can be
simulated by nonviolence nets (Proposition 4.4)ingghis fact we prove that the
reachability and coverability problems are undegiean the class of the nonviolence
nets (Propositions 4.5 and 4.7, respectively). Tlerprove more: nonviolence nets
can be simulated by the inhibitor nets (Propositid), thus the both are
computationally equivalent to Turing machines.
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Many extensions of Petri nets are known to bergugowerful: inhibitor nets,
priority nets (Hack [7]), self-modifying nets (Valk7]), for instance. There is also
a Turing powerful model restricting the standardeaiion rules to maximal
concurrent steps (Burkhard [4], see also Starkp.[Bait all the models allow a fight
for sharing resources (tokens), whereas our moadeksvin a completely peaceful
way.

In the concluding section we notice that the ftheice nonviolence nets are
easy transformable to place/transition nets (hoessarily free-choice ones). Hence,
the coverability and reachability problems are dable in the class of the free-choice
nonviolence nets.

2 Petri Nets — Basic Definitions

The set of non-negative integers is denotedNbyGiven a setX, the cardinality
(number of elements) of is denoted by¥], the powerset (set of all subsets) BytRe
cardinality of the powerset id2 Multisets overX are members af%, i.e. functions
from X into N. For convenience, if the sé is finite, multisets ofN* will be

represented by vectors &,

2.1 Petri Nets and Their Computations
The definitions concerning Petri nets are mostlelaon Desel/Reisig [5].

Netis a tripleN = (P, T,F), where:
« P andT are finite disjoint sets, gflacesandtransitions respectively;
« FOPXTOTxPis a relation, called thigow relation
For alladT we denote: *a= {p/P | p,a[F} - the set obntriestoa

a" = {plP| @pLlF} - the set obxitsfroma
Petri nets admit a natural graphical representatiades represent places and
transitions, arcs represent the flow relation. &aare depicted by circles, and
transitions by boxes. The set of all finite strirgfstransitions is denoted bi*, the
empty string is denoted by, the length ofwT* is denoted byw], number of
occurrences of a transiti@ain a stringw is denoted bynl,.

Place/transition nefshortly,p/t-ne) is a quadrupl&= (P,T,F,M), where:

« N= (P,T,F is a net, as defined above;

«  MoON® is a multiset of places, named tinétial marking; it is marked bytokens
inside the circles, capacity of places is unlimited

Multisets of places are namedarkings In the context of place/transition nets, they
are mostly represented by nonnegative integer x@aiodimensionH|, assuming that
P is strictly ordered. The natural generalizatidos,vectors, of arithmetic operations
+ and-, as well as the partial ordsr all defined componentwise, are well known and
their formal definitions are omitted.
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A transition adT is enabledin a markingM whenever*a<M (all its entries are
marked). Ifa is enabled irM, then it can bexecutedbut the execution is not forced.
The execution of a transitioa changes the current markimg to the new marking
M'=(M—"a)+a" (tokens are removed from entries, then put taspxWe shall denote:
Ma for “a is enabled irM” and MaM' for “a is enabled irM andM' is the resulting
marking”. Then we say thaflaM' is astep This denotation we extend to strings of
transitions: the empty strirgis enabled in any marking (alwap&EM), a stringw=au
(adT, uOT*) is enabled in a markinlyl wheneverMaM' andu is enabled inM'.
PredicatesMw andMwM' are defined like those for single transitionsMiM' then
we say thaMwM' is acomputationfrom M to M'. Note that any computatiddwM’
unambiguously defines all intermediate markingsveenM andM'.

If MwM', for somew/7T*, thenM' is said to beeachable fromM. The set of all
markings reachable fronM is denoted by Nl). Given a place/transition net
S=(P,T,F,My), the set My of all markings reachable from the initial markikty is
called thereachability sebf S, and markings inNly) are said to besachablein S

We assume that the notionsrefichability andcoverability graphsare known to the
reader. Their definitions can be found in any meaph or survey about Petri nets
(see [5,16] or arbitrary else). Let us recall otitat reachability graphs represent
completely behaviours of nets, but are mostly itdinwhile coverability graphs
represent behaviours only partially, but are alwfayige. In Examples 2.2 and 2.3 we
also use a notion of persistency graph — the rédlilgegraph restricted to persistent
steps.

2.2 Persistent Computations of Place/Transition Net

The notion of persistency, proposed by Karp/Mil@ belongs to the most important
notions in concurrency theory. It is based on thledviourally oriented rule “no action
can disable another one”, and generalizes thetstally defined notion of conflict-
freeness.

Let S=(P,T,F,Mo) be a place/transition net, and Mtbe a marking. The stéjaM' is
persistentiff (Ob#a) if Mb thenM'b. The empty computatioMeM is persistentthe
computation MaM'uM" is persistent iff the step MaM' is persistent and the
computationM'uM" is persistent. [In words: A computation is saicbtpersistentif
any transition once enabled during this computat@mnains enabled until executed.]
A p/t net is said to bpersistenif it admits only persistent computations.
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Example 2.1. Non-persistent and persistent nets

®
¥\
[a] [al|

4

Fig. 1. A non-persistent (left) and persistent (right)ggléransition nets

2.3 Persistent Reachability Problem

The problem of persistency (“Is a place/transitioat persistent?”), raised by
Landweber and Robertson in [11], has been provdxktdecidable by Grabowski [6]
and Mayr [12]. Most of p/t-nets, however, are nargistent, but some of their
computations are persistent. In this paper, weirterested in markings that are
reachable with persistent computations.

Let S=(P,T,F,Mo) be a place/transition net, and MEN" be a marking.

Reachability Problem: Is there a computatiadowM?
In other words: Is the markirlg reachable in the n&?

The Reachability Problem has been proved to beddbkd by Mayr[13] and
Kosaraju [10], after years of many author’s effoAdroad discussion, with a detailed
proof, can be found in the book [15] of Reutenauer.

Let S=(P,T,F,Mo) be a place/transition net, and MEIN" be a marking.

Persistent-Reachability Problem:ls there a persistent computatidgvM ?
In other words: Is the marking reachable in the n&with a persistent run?

Obviously, if a p/t-net is persistent, then the spgent-reachability problem is
equivalent to the classical one, thus decidable sl study the problem in general,
for arbitrary p/t-nets. The following examples shalifference between complete
behaviours and persistent behaviours.
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Example 2.2. Comparison of the complete and persistent behasiour
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Fig. 2. A place/transition net and its reachability andspgtency graphs

The above net is bounded (i.e. its reachabilityisedtnite) and has infinite set of
persistent computations. The example below showsurdbounded net (i.e. with
infinite reachability set) with finite set (a siegbn) of persistent computations.

Example 2.3. Unbounded p/t-net with finite persistency graph
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Fig. 3. A place/transition net and its reachability, caslity and persistency graphs

3 Nonviolence Petri Nets

In this section, we introduce the notion of noneiae Petri nets. They differ from
place/transition nets only by the execution rulaniély, an enabled transition can be
executed only if it is executable persistently.(iféts execution does not disable any
other enabled transition). Therefore, we have #tirdjuish the notion “enabled” and
“executable”, that are synonymic in place/transitieets, but not in nonviolence nets.
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Definition 3.1. Nonviolence Petri Nets

Nonviolence nets a quadruples= (P, T,F,M), exactly the same as in definition of
place/transition nets. It differs from p/t-net byeeution rules: A transitio@OT is
enabledin a markingM whenevera<M (all its entries are marked). A transitiaT

is executablén M if it is enabled irM, and moreover the stéppaM' is persistent. The
execution ofa leads to the resulting markindg'=(M—"a)+a° (exactly same as in p/t-
nets). We shall denotdla for “a is executable itM” and MaM' for “a is executable
in M andM' is the resulting marking”. Then we say tihaM' is anonviolent step
This denotation is naturally extended to stringsST*. If MwM' then we say that
MwM' is a nonviolent computatianOnly nonviolent steps and computations are
permitted in the nonviolence nets.

And now we can formulate the reachability and cakdity problems for the
nonviolence nets.

Let S= (P,T,F,Mo) be a nonviolence net, and MEIN" be a marking.
NV-Reachability Problem:
Is there a nonviolence computatibigwM in S?

NV-Coverability Problem:
Is there a markin!' = M and a nonviolence computatibiwM' in S?

3.2 From Place/Transition Nets to Nonviolence Nets

We shall show that every p/t-net can be simulatgdh monviolence net. It will be
done by joining an external control to each tramsiof the net.

Let us consider an arbitrary p/t-r@tWe transform it to the nonviolence r&tin the
following way. To each transitioa in the netSwe join a switching transitioa' and
two new placep, andg,. We add the place, to the set of entries ®and to the set
of exits froma'. We also add the plag® to the set of exits frora and to the set of
entries toa'. In initial marking we add one token to the plgge One can treat the
constructed loop as a preparation of the transéitmexecution.

(®ra
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Fig. 4. Transforming a place/transition net into a norefiae net

Let us also define, for every markiyin the netS the markinglOM in the netS' as
follows. For each placp in the netS we setlOM(p)=M(p), for each new placp, we
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set10M(p,)=1 and for each new placg we setlOM(g,)=0. With such definition, the
initial marking in the ne&'is 10M,, whereMy is the initial marking irS. An obvious
observation is that if transitioa is executable in a marking in the netS then the
sequenca'ais executable in the markid@M in the netS.

Proposition 3.2.A markingM is reachable in a place/transition 8t and only if the
marking10M is reachable in the nonviolence &t

Proof. (=) Let MowM be a computation i Then replacing each in w by a'a we
get a computatiohOMyw'10M in the nonviolence n&.

(O) Let 10Mw'10M in the nonviolence net. The only difference between
behaviours ofS and S' is that before every transitioa a transitiona’ must be
executed. Subsequent execution of two (or morahewi actions may sometimes
disable the nonviolence execution of actions thatewexecutable s However, it
would not make any new action executable. Thereferasing all primed actions in
w', we get a computation such thaMywM is a computation in the p/t-ngt ]

4 Comparison of Nonviolence Nets and Inhibitor Nets

In this section, we recall the notion of inhibitoets and some of their properties
(undecidability of the the reachability and covéligbproblems). Then we show that
their computational power is equal to that of tbewviolence nets.

Definition 4.1. Inhibitor Petri Nets

Inhibitor netis a quintuple&s= (P,T,F,I,My), where P,T,F,M) is a place/transition net
and| O PxT is the set of inhibitor arcs (depicted by edgedednwith a small empty
circle). Sets of entries and exits are denotedabgind a’, as in p/t-nets; the set of
inhibitor entriesto a is denoted bya={p/P | (p,a)/4}.

A transitionalT is enabledin a markingM whenevera<M (all its entries are
marked) and [p0°a) M(p)=0 — all inhibitor entries to a are empty. And
“executable” means “enabled”, like in p/t-nets. Tégecution ofa leads to the
resulting markind'= (M—"a)+a".

It is known that the inhibitor nets are computadilyn equivalent to Turing machines
and the reachability problem in them is undecid@blmsky [14], Hack [7]).

Fact 4.2. Reachability Problem is undecidable in the cte#dshibitor nets.

Also the coverability problem is known to be undiedile in the class of inhibitor
nets. We recall here the proving construction.

Let S=(P,T,F,I,M) be an arbitrary inhibitor net wit? = {py, ... ,p}, and let
M =Tiy, ..., k] be a marking to be checked to be reachable. Wendxit to an
inhibitor net S, as follows: We add three new plac@s py+1, Pc+2 and two new
transitionsx, y, connecteg, — X - Py+1— Y - Prs2 (Se€ figure 5). Moreover, we join the
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placepy with every transition of the n&by a self-loop (it is depicted symbolically on
Figure 5), we add the arcs frgop to x, weighted by j (for n=1,...,k), [We use here
the weighted arcs; see remark below.] and the itamibarcs from all original places
of Stoy. And the initial markingV'y in S'is the following:M's(pg)=1, M'o(pPr)=Mo(Pr)
for n=1,....k andVl'g(Px+1)=M'o(Pk+2)=0.

~-

Fig. 5. Checking reachability with coverability in inhibitnets

Remark.In this construction, we have used weighted (migjimrcs. They are not
mentioned, for simplicity, in our definitions; wessaume that the notion is commonly
known. Moreover, (place/transition or inhibitor) teewith multiple arcs can be
transformed to the equivalent nets without themc{{8&], Starke [16]).

Clearly, the markingM =iy, ... , i] is reachable inS if and only if the marking
M'(po)=M'(p1)=...=M'(p)=M'(px+1)=0 and M'(px+2)=1 is coverable inS. Hence,
because of Fact 4.2, we have got

Fact 4.3. Coverability Problem is undecidable in the clasmhibitor nets.

4.1 From Inhibitor Nets to Nonviolence Nets

Let us consider an arbitrary inhibitor r@tin the transformation to the nonviolence
netS'we will use the same idea as in the previous ftoamstion. Like in that one, to
each transitioa, we add a transitioa' and placep, andg,. Moreover, to each place
p, in the netS belonging to°a (i.e. being an inhibitor entry ta), we add a new
transitiona,. Both placesp andg,, are joined by self-loops with the new transitagn
Finally, we remove all inhibitor arcs.
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Fig. 6. Transforming an inhibitor net into a nonviolena n

Similarly to the construction of figure 4, for eyamarkingM in the netS we define
the markinglOM in the netS;, in the same way. And the initial marking in thet 8'is
10M,, whereMy is the initial marking in the nées. In the same manner as in the
previous case, if the transiti@nis executable in the markird in the inhibitor nes,
then the computatioa'a is executable in the markiri@M in the nonviolence n&.

Proposition 4.4. The markingM is reachable in the inhibitor n&tif and only if the
marking10OMis reachable in the nonviolence &t

Proof. The proof is similar to that of Proposition 3.2erRark that if an actioa’ is

executed while a token resides in the plpdsoa is not enabled if%), then a token
will stuck in the place, and no marking of the forOM will be reachable. ]

Corollary 4.5. The NV-Reachability Problem is undecidable.
Proof. Directly from Proposition 4.4 and Fact 4.2. ]

Proposition 4.6. The markingM is coverable in the inhibitor n&if and only if the
marking1OM s coverable in the nonviolence rgt

Proof. (=) If M is coverable inS then there is a markiniyl'> M reachable irS,
Hence, by Proposition 4.4, the markih@M' is reachable in the nonviolence &t
And clearly,10M' covers10M.

(O) Notice that any marking (reachableSh coveringlOM is of the formlOM'. And
thenM' = M andM' is reachable is (Proposition 4.4). SM is coverable irs. ]

Corollary 4.7. The NV-Coverability Problem is undecidable.
Proof. Directly from Proposition 4.6 and Fact 4.3. ]
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4.2 From Nonviolence Nets to Inhibitor Nets

The inverse construction, transforming a nonviogenet into an inhibitor net, is more
involved. Once more, we use the idea of prediciingxecutablement of transitions.

N

Yapb

Fig. 7. Transforming a nonviolence net into an inhibitet n

Let Sbe a nonviolence net; we extend it to an inhibietS', as follows. First, we add
one global placs, called the switch, which is an exit from evergrisition of the net
S. Then, for every transitioa of the netS, we add a transitioa’; the switch placs is
an entry to each of these primed transitions. Aecetion of a transitiom' means a
belief in the executablement of transitiann the nonviolence ned. After executing
the transitiona’, the netS' checks, if the transitiom was really executable in the
nonviolence nef. It means that transitiomis enabled and no other transition blocks
its execution. In order to check it, we add, foemvpair 0,b) such thab#a and the
placep is a common entry to the transitioasindb, the placex,,, andya, and the
transitiont,p, as depicted on figure 7 above. The transitignis able to move the
token fromxgpp t0 Yapy, ONly if at least two tokens reside in the placgWe use here
the weighted arcs; see remark after figure 5.] iy rionviolence rules, a transitibn
blocks nothing if it is not enabled; it means thae of its entries is empty. In order to
check it, we add the transitiohg, for every entryq to transitionb, different fromp.
Each of the transitions has one emgy, one exity,,, and one inhibitor arc from the
place q, checking ifg is empty. This construction allows to check, wketlhe
transitionb blocks the execution a or not. If not, then a token moves frogy, to
Yapt» €nablinga in S'if and only if it was executable B

For every markingM in the nonviolence ne$ we define a markindOM in the
inhibitor netS' as follows. For each plageinside the ne§ we setlOM(p)=M(p). For
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additional switch places we set10M(s)=1 and for every place added by the
construction (i.e. for all places,,, and yap,) we setlOM(r)=0. Directly from our
construction, if a transitioa is executable in a markirlg in nonviolence ne§then it
is potentially executable in the markid@M in inhibitor netS' (before executing a
transitiona we execute a transitioa' and positively check all conditions to fill all
placesy,p). The initial marking of5'is assumed to KEOM,.

Proposition 4.8. The markingM in the nonviolence ned is reachable if and only if
the markinglOM is reachable in the inhibitor n8t

Proof. (=) In the netS'we can reach markintOM, from the initial markindLOM,, by
executing a transitioa' before each transiticemand checking the conditions.

(O) Executing any transitioa from the original neB is possible only by predicting
this execution by executing the transitiah If we do a mistake, making wrong
prediction, our ne$'would reach a dead marking and stops. It meansfthanarking
10M in the inhibitor netS'is reachable, then the only scenario of reachivag t
marking is correctly predicting and executing tifoss from the netS The
correctness of our process of predicting means weatcould just execute these
transitions in the original, nonviolence r&treaching marking/. Finally, markingM

is reachable in the nonviolence ®ivhich ends the proof.

Conclusions

We have proved (Propositions 4.4 + 4.8) that ndewice nets are equivalent (in the
marking reachability sense) to inhibitor nets. Ae tatter are Turing powerful, one
can say that the former allow to do everything whadsible without any fight. It is
quite surprising, because persistent execution®sea part of arbitrary executions.
But the price for the peace is undecidability. Véedrshown (Corollary 4.7) that even
coverability, decidable in many extensions of plaeasition nets, is undecidable in
the class of the nonviolence nets.

Notice that free-choice (ffan°b # O then®a ="b) nonviolence nets can be simulated
by place/transition nets (Figure 8), thus the @atatslecision problems (reachability,
coverability) are decidable in the class of freeich nonviolence nets.

Fig. 8. Transforming a free-choice nonviolence net inflage/transition net

Let S be a free-choice nonviolence net. We replace easecyfrom a place, being
a common entry of two (or more) transitions anaas a part of a self-loop, by two
arcs: an arc from the place to the transition, hieid with 2, and an arc from the
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transition to the place, weighted with 1. And detips remain not changed. And the
initial marking remains the same. Clearly, the plgansition netS' built this way
works exactly as the free-choice nonviolence 8etA case of the free-choice
nonviolence net is shown by Example 2.2. The almmrestruction does not work for
non-free-choice nonviolence nets, see Examplef@:3stance.

It would be interesting to study some other sulsala®f the class of nonviolence nets.
Especially, to find a subclass of the class of mmewce nets, computationally
equivalent to the class of place/transition nets.
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