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Abstract. The quality of algorithms is often determined by benchmark-
ing, i.e., testing the algorithm on a predetermined data set. In contrast to
traditional benchmarking, with fixed data set, we present a way to gen-
erate random sets of test data. In this paper we present random classes
of Petri nets and a method to generate finite samples from such a class.
The classes may contain infinitely many Petri nets, each net with its own
probability to be generated. This generation method is based on stepwise
application of construction rules such as refinement rules. Each random
class of Petri nets has a probability distribution for each of its charac-
teristics. We illustrate the approach by estimating this distribution for
some simple characteristics.
Keywords: Petri nets, benchmarking, random graphs

1 Introduction

In computer science research we often lack a method to evaluate the quality of
an algorithm in an analytical way. The quality may concern the efficiency of the
algorithm (how fast is a solution found) or the effectiveness (how good is the
solution found). Although it is sometimes possible to give bounds for the worst
case behavior, it is seldom possible to determine the average-case behavior an-
alytically. What we normally do is fixing a set of test data as benchmark and
then we test the algorithm on that set, which is called benchmarking. Generally
a benchmark is either pre-defined or generated. Both have disadvantages [15].
Pre-defined datasets are designed to be representative examples in a particu-
lar domain. Researchers evaluate new algorithms with respect to such a fixed
benchmark, but how good are they if applied to other test data? In order to in-
crease the quality of benchmarking we will consider methods to generate random
benchmarks, which are samples from an infinite set of tests, each having its own
probability of being selected for a sample. Note that it is impossible to have an
infinite set of tests each having the same probability, so the probabilities of the
tests have to be non-uniform. Due to the fast increasing computing power we
are able to generate samples that are so big that all non-selected tests together
have a probability below some chosen bound. This allows us to obtain statistical
statements of the quality of an algorithm.

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 403–417.



In this paper we focus on Petri nets and algorithms to compute their char-
acteristic properties. Hence we define random classes of Petri nets. Such a class
contains Petri nets with some structural property, like free choice nets. There
may be infinite number of nets in one class. Each net in a class has its own
probability of being selected for a benchmark. Petri nets are used to model
complex processes [11], for example computational processes in a computer sys-
tem or business processes within or between enterprises. These models are often
produced by a stepwise refinement process (top-down approach) or by gluing to-
gether existing components (bottom-up approach). The generation method uses
two kinds of construction rules, refinement rules and bridge rules. The refine-
ment rules were firstly studied by Berthelot in [5] and Murata in [18] as reduction
rules, in this paper we use them in the inverse direction to expand Petri nets
by refinement. The bridge rules connect a pair of nodes in a Petri net, so we
can use them to glue components. In most cases these construction rules pre-
serve some property which means that if the initial Petri net has that property,
then all elements of the class have the same property. The generation method
determines, in a random way, (1) which construction rule will be applied in the
current Petri net, (2) to which part of the net and (3)if we continue or stop. So
the construction rules have weights. Rephrasing what we are doing, we define a
graph grammar with weights on the construction rules, such that each graph of
the graph language has a certain probability of occurring.

Although our generation method for benchmarks can be applied to all kinds
of algorithms on Petri nets, we use it here to determine characteristics of the
random classes of Petri nets. Simple examples of such characteristics are the
number of nodes, and the average fanin and fanout of nodes. More complicated
ones are the occurrence (or the number) of deadlocks or livelocks. Each charac-
teristic of a Petri net is expressed by a real number. In some cases we consider
only 0 and 1 and we consider them as ’false’ and ’true’. Since every Petri net in a
class has a certain probability of being selected in a benchmark, we may consider
every characteristic as a random variable having a probability distribution over
the class. For the given examples, we can speak of the expectation and variance
of the number of nodes in a class, or the probability of having a deadlock. We
have developed a software tool in the form of a plugin for ProM (cf [16]) to
realize our approach.

The rest of this paper is organized as follows. Section 2 introduces the neces-
sary preliminaries. In Section 3 we represent our construction rules and discuss
our methodology of generating Petri nets. Section 4 presents some characteris-
tics. The software tool is introduced in Section 5 with characteristic examples.
Related work is discussed in Section 6. Finally Section 7 concludes this paper
and discusses some of our future researches on identifying class parameters.

2 Preliminaries

Let S be a set. With |S| we denote the number of elements in S. The empty set,
e.g., the set without any elements is denoted by ∅. Two sets S and R are disjoint
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if S ∩ R = ∅. We denote the set of all natural numbers as N = {0, 1, 2, · · ·}. A
sequence σ of length l ∈ N over S is a function σ : {1, · · ·, l} → S. We denote a
sequence by σ =< σ(1), σ(2), ···, σ(l) >, such that ∀i(1 ≤ i < l) : σ(i) ∈ •σ(i+1).

We write here this as n1
σ−→ nl. We denote the length of a sequence by |σ|. The

set of all finite sequences over S is denoted as Σ. Let ν, γ ∈ Σ be two sequences.
Concatenation, denoted by σ = ν ◦γ, is defined as σ : {1, · · ·, |ν|+ |γ|} → S, such
that for 1 ≤ i ≤ |ν| : σ(i) = ν(i), and for |ν|+1 ≤ i ≤ |ν|+ |γ| : σ(i) = γ(i−|ν|).
The Parikh vector of a sequence σ, denoted by −→σ , is a bag representing the
number of occurrences of each element in σ. A bag m (multiset) over S is a
function m : S → N. For s ∈ S, m(s) denotes the number of occurrences of s in
m. We denote a bay by square brackets. e.g., in a bag [a, b2, c], element a occurs
once, element b twice, and element c once. All other elements have a multiplicity
of 0. ≺ is the prefix operator, such that σ

′ ≺ σ if and only if ∃σ′′
: σ = σ′ ◦ σ′′ .

A Petri net is a tuple N = (P, T, F ) where P is the set of places, T is the
set of transitions, P and T are disjoint, and F ⊆ (P × T )∪ (T ×P ) is the set of
arcs. An element of P ∪ T is called a node. We call an element of P ∪ T ∪ F is
an element of N . A path in N is a sequence σ over the set P ∪ T . Graphically,
we denote places by circles, transitions by squares, and arcs as arrows between
places and transitions. The state of a Petri net, called a marking is a bag over
the places P of N . A marking is graphically represented by placing tokens in
each place. A marked Petri net is a pair (N,m0), where N is a Petri net and
m0 is a marking of N . A transition t ∈ T is enabled in (N,m0), denoted by

(N : m0
t−→) if •t ≤ m0. An enabled transition in (N,m0) can fire resulting in a

new marking m
′

= m0 − •t+ t•, denoted by (N : m0
t−→ m

′
).

A special class of Petri nets are workflow nets. A workflow net is a 5-tuple
W = (P, T, F, i, f) where (P, T, F ) is a Petri net, i ∈ P is the initial place, such
that •i = ∅, f ∈ P is the final place, such that f• = ∅, in graph of W each node
n ∈ P ∪ T is on a directed path from i to f . If for a workflow net W , we have
∀p ∈ P \ {i, f}, |p • | = | • p| = 1, |i • | = | • f | = 1, the workflow net is a T-net,
also called a marked graph workflow net. If ∀t ∈ T, |t • | = | • t| = 1, then it is
a S-net, also called a state machine workflow net. In a workflow net, two places
p, s ∈ P , if either p• = s• or p • ∩s• = ∅, then this workflow net is a free-choice
workflow net. A firing sequence or a trace is a sequence σ over T such that all
the transitions of σ can fire in that order starting from the initial marking. A
trace for a workflow net is complete if it leads to the final marking with only f
marked.

A workflow net is k sound, for k ∈ N if for each marking m that is reachable
from an initial marking m0 with only k tokens in the initial place i, the final
marking with only k tokens in the final place f can be reached. A workflow net
is generalized sound if it is k-sound for all k ≥ 1 ([14]). Note that 1-sound is
usually called sound ([1]). Soundness can be considered as a general sanity check
for workflow nets.
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3 Net Generation

In this section we firstly define the construction rules. The rules enable us to
generate all Petri nets, here we focus upon workflow nets. Moreover, we show that
different subclasses of workflow nets can be generated by different construction
rules. Finally, we discuss our method of randomly generating Petri nets.

3.1 Construction Rules

Based upon how they can modify the structure of Petri nets, the construction
rules are divided into two classes, refinement rules and bridge rules. The refine-
ment rules ([5], [8], [12], and [18]) were firstly studied by Berthelot and Murata
as abstraction rules to reduce Petri nets, here we use them in the inverse direc-
tion to expand Petri nets. The bridge rules connect a pair of nodes in Petri nets,
so we can use them to glue components. Let N be the original net and R be one
of the construction rules. If we apply R to N then we get the generated net N

′
.

If we use R in the opposite direction, then we can get N again by reducing N
′
.

In such a case we say (N,N
′
) ∈ ϕR. Based upon such a relationship, we define

the rules as follows.
Refinement rules. Figure 1 is an example of the refinement rules.

Fig. 1. Refinement Rules

Definition 1 (Place refinement rule R1). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR1

if and only if there exist
places s, r ∈ P

′
, s 6= r and a transition t ∈ T

′
such that: •t = {s}, t• = {r},

s• = {t}, •s 6= ∅, •s 6⊆ •r. The net N satisfies: P = P
′ \ {s}, T = T

′ \ {t},
F = (F

′ ∩ ((P × T ) ∪ (T × P ))) ∪ (•s× t•).
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Definition 2 (Transition refinement rule R2). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR2

if and only if there exist
a place s ∈ P ′

and transitions t, u ∈ T ′
, t 6= u such that: •s = {u}, s• = {t},

•t = {s}, t• 6= ∅, u• 6⊆ t•. The net N satisfies: P = P
′ \ {s}, T = T

′ \ {u},
F = (F

′ ∩ ((P × T ) ∪ (T × P ))) ∪ (•u× s•).

Definition 3 (Arc refinement rule R3). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR3

if and only if there ex-
ist two nodes m,n ∈ P

′ ∪ T ′
, such that: | • m| = 1, m• = {n}, |n • | = 1,

•n = {m}, (•m×n•)∩F ′
= ∅. The net N satisfies: P ∪T = (P

′ ∪T ′
) \ {m,n},

F = (F
′ ∩ ((P × T ) ∪ (T × P ))) ∪ (•m× n•).

Note that in Figure 1, R3 shows only one instance of the arc refinement rule.
We can also refine any arc with a place as its source node and a transition as its
target node. This case is not shown in Fig 1.

Definition 4 (Place duplication rule R4). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR4 if and only if there exist

two places s, r ∈ P
′
, s 6= r such that: •s = •r, s• = r•. The net N satisfies:

P = P
′ \ {s}, T = T

′
, F = F

′ ∩ ((P × T ) ∪ (T × P )).

Definition 5 (Transition duplication rule R5). Let N = (P, T, F ) and
N

′
= (P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR5

if and only if there
exist two transitions t, u ∈ T

′
, t 6= u such that: •t = •u, t• = u•. The net

P = P
′
, T = T

′ \ {u}, F = F
′ ∩ ((P × T ) ∪ (T × P )).

Definition 6 (Loop addition rule R6). Let N = (P, T, F ) and N
′

= (P
′
, T

′
, F

′
)

be two Petri nets. We say (N,N
′
) ∈ ϕR6

if and only if there exists a place s ∈ P ′

and a transition t ∈ T
′

such that: •t = {s}, t• = {s}. The net N satisfies:
P = P

′
, T = T

′ \ {t}, F = F
′ ∩ ((P × T ) ∪ (T × P )).

Bridge rules. Figure 2 is an example of the bridge rules.

Definition 7 (Place bridge rule R7). Let N = (P, T, F ) and N
′

= (P
′
, T

′
, F

′
)

be two Petri nets. We say (N,N
′
) ∈ ϕR7 if and only if there exist one place

s ∈ P ′
and two transitions u, t ∈ T ′

such that: •s = {u}, s• = {t}. The net N
satisfies: P = P

′ \ {s}, T = T
′
, F = F

′ ∩ ((P × T ) ∪ (T × P )).

Definition 8 (Transition bridge rule R8). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR8 if and only if there exist

one transition t ∈ T ′
and two places s, r ∈ P ′

such that: •t = {s}, t• = {r}.
The net N satisfies: P = P

′
, T = T

′ \ {t}, F = F
′ ∩ ((P × T ) ∪ (T × P )).

Definition 9 (Arc bridge rule R9). Let N = (P, T, F ) and N
′

= (P
′
, T

′
, F

′
)

be two Petri nets. We say (N,N
′
) ∈ ϕR9

if and only if there exist two nodes
s, r ∈ P

′ ∪ T ′
, such that (s, r) ∈ F

′
. The net N satisfies: P = P

′
, T = T

′
,

F = F
′ \ {(s, r)}.
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Fig. 2. Bridge Rules

Note that in Figure 2, R9 merely shows one instance of the arc bridge rule.
We can also bridge a place and a transition with an arc. This case is not shown
in Figure 2.

In R8, if s and r are the same place, it becomes R6. Thus the loop addition
rule R6 is a special case of the transition bridge rule R8. All the refinement rules
(R1,...,R6) preserve liveness and boundedness properties of Petri nets (with re-
spect to a given marking) (proofs can be found in [12]). Although without formal
proof, it is still easy to observe that all the bridge rules (R7,...,R9) generally do
not preserve those properties. In fact, the bridge rules can break any good struc-
tures. For instance, the transition bridge rule can model the goto structure in
programming languages, and the danger of such a structure is discussed in [9].

3.2 Structural Classes of Generated Nets

In this part we study different classes of the generated Petri nets based on their
structures. We focus on workflow nets and their subclasses, namely, Jackson
nets, state machine workflow nets, marked graph workflow nets, and free-choice
workflow nets. These workflow nets without Jackson nets are defined in Section
2, so firstly we define a Jackson net as follows. For a formal description and
analysis of Jackson nets see [12].

Definition 10 (Jackson net). A Jackson net is a workflow net that can be
generated, from one single place, by applying the rules R1, R2, R4, R5, and R6
recursively. However, only the rule R1 can be applied in the first step, and no
rules can be applied to the initial place and the final place after the first step.
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In order to generate all workflow nets (starting with two places), it is sufficient
to use the arc refinement rule R3 and the bridge rules R7, R8, R9 only. To prove
that, we give the following definition.

Definition 11 (Copy of a net). Let N be a workflow net. N
′

is a copy of N
if and only if there is a bijection ϕ such that ϕ(P ) = P

′
, ϕ(T ) = T

′
, ϕ(F ) = F

′

and ∀(x, y) ∈ F : ϕ((x, y)) = (ϕ(x), ϕ(y)).

A path taken from a Petri net defines a new Petri net, so copying a path can
be treated as copying its corresponding Petri net.

Lemma 1. Given two nodes, m1, m2 ∈ P ∪ T , and a path σ, such that m1 =
σ(1), m2 = σ(|σ|), and ∀i ∈ dom(σ) : −→σ (i) = 1. Then we can copy σ by firstly
applying a bridge rule on (m1,m2) and afterwards repeating the arc refinement
rule.

Lemma 2. We have a path σ in a Petri net, if there is some node n such that−→σ (n) > 1, then there is a path σ
′

= σ1 ◦ σ3 if and only if σ = σ1 ◦ σ2 ◦ σ3 and

n
σ2−→ n.

Theorem 1. Let N be a workflow net. Then N can be copied into N
′

by only
using the bridge rules and the arc refinement rule, starting with only two places.

Proof. Initially P
′

= {i′ , f ′}, T ′
= ∅, F ′

= ∅, i′ = ϕ(i), and f
′

= ϕ(f). We
select an arbitrary node n from N such that n ∈ P ∪ T and n 6∈ P ′ ∪ T ′

. In N ,
from n we find two paths, n1

σ1−→ n and n
σ2−→ n2, such that n1, n2 ∈ P

′ ∪T ′
and

all other nodes on σ1 and σ2 are not in P
′ ∪ T ′

. This is always possible by the
definition of a workflow net. By Lemma 2 we can reduce σ1 and σ2 by removing
all internal loops along the paths.

Consider case (1): suppose σ1 and σ2 have no common internal nodes, then
we may apply Lemma 1 by adding the path σ1 ◦ σ2 from n1 to n2, and add
n

′
= ϕ(n) to the copy.
Consider case (2): suppose σ1 and σ2 have common internal nodes, e.g.,

∃i, j : σ1(i) = σ2(j) 6= n, then there is a loop. We then look for the first node m

on σ1 which is also on σ2. Then ∃σ3, σ4, σ5, σ6 : n1
σ3−→ m

σ4−→ n∧n σ5−→ m
σ6−→ n2

where σ1 = σ3◦σ4 and σ2 = σ5◦σ6. Now we have found n1
σ3−→ m and m

σ6−→ n2,
and σ3 and σ6 have no internal nodes in common as m is the first common node
on σ1. We replace n with m, then we apply Lemma 1 by adding the path σ3 ◦σ6
from n1 to n2, and we add node m

′
= ϕ(m) to the copy.

In each step, therefore, we add at least one node. We repeat this procedure
until all the nodes of N are copied into N

′
. Finally, we add all arcs F \ϕ−1(F

′
)

by arc bridge rule. Now N
′

is a copy of N . ut

Now let us consider which rules allow us to generate the subclasses of work-
flow nets. Based upon Theorem 1, it is easy to prove that we only need the
transition bridge rule and the arc refinement rule to generate all state machine
workflow nets, and we need the place bridge rule and the arc refinement rule to
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generate all marked graph workflow nets. They yield Corollary 1 and Corollary
2. As defined in Definition 10, Jackson nets are generated by the rules R1, R2,
R4, R5, and R6. For a free-choice workflow net, the rules R1, R2, R4, and R5
can always preserve its properties.

Corollary 1. If N is a state machine workflow net, then N can be copied into
N

′
by only using the transition bridge rule with the arc refinement rule.

Corollary 2. If N is a marked graph workflow net, then N can be copied into
N

′
by only using the place bridge rule with the arc refinement rule.

Theorem 2. The place refinement rule, the transition refinement rule, the place
duplication rule, and the transition duplication rule preserve the free-choice work-
flow net property.

[12] proves that each Jackson net is a sound net. From [6] we can derive
that each generated state machine workflow net is sound as well. All free-choice
workflow nets are sound. The generated marked graph workflow nets cannot be
sound as the rules applied do not preserve the properties.

3.3 Generation of Nets

Our approach of generating Petri nets has two determinants, construction rules
and probabilities of the rules. We have discussed the necessary rules to generate
different classes of workflow nets. In this part, we focus on the probability-based
rule selection.

Given two nets N and N
′
, we say that N generates N

′
if and only if N

′
can

be obtained from N by applying zero or more times a rule from our construction
rules. To generate a workflow net we adopt a stepwise refinement technique
starting with one single place. In the first step we apply the place refinement
rule to generate the initial place and the final place. For any subsequent steps,
we select a rule from all the rules whose conditions hold (we say those rules are
enabled). For the initial and the final places there are some restrictions such
that the place refinement rule, the place duplication rule, the loop addition rule
cannot be applied to the initial and the final places, and for the transition bridge
and the arc bridge rules, the initial place cannot be the target place (i.e., r in
Definition 8 and 9), and the final place cannot be the source place (i.e., s in
Definition 8 and 9). Figure 3 depicts an example of net refinement.

In order to select a rule from all the enabled rules, we attach a rule weight
to each rule. A rule weight is a random number ranging from 0 (least likely)
to 100 (most likely). Therefore, a rule is randomly selected based on the rule
weight. Similarly, we also attach an element weight (also ranging from 0 to 100)
to each of the elements (each of the places, transitions, and arcs) in a net. Hence
each rule can randomly select an element or a pair of them based on the element
weight to expand a net. Because we always start with an initial net to generate
another net, for all the elements in the initial net, we give each of them a default
element weight. When we apply rules, new elements are added into the net. In

8

410 Petri Nets & Concurrency van Hee and Liu



Fig. 3. An Example of Workflow Net Refinement

order to determine weights of the newly added elements, we define three type
parameters (ranging from 0 to 1) for each element type, namely, place parameter,
transition parameter, and arc parameter. Each rule can have some or all of the
type parameters based on what kinds of elements it can introduce. For instance,
as the place refinement rule can introduce two places, a transition, and two arcs,
the rule has all the type parameters. While, the place bridge rule can add a place
and two arcs, so it only has the place parameter and the arc parameter. All the
refinement rules (R1,...,R6) only refine one element, so the weight of the newly
added elements are determined by the multiplication of the weight of the refined
element and the type parameters. For example, if we refine a place having a
weight of 50, and we let the place parameter be 0.2, the transition parameter be
0.5, and the arc parameter be 0.1, then any newly added place has a weight of
(0.2 x 50 =) 10, any newly added transition has a weight of (0.5 x 50 =) 25, and
any newly added arc has a weight of (0.1 x 50 =) 5. On the other hand, all the
bridge rules bridge a pair of nodes, so the weight of the newly added elements
are determined by the multiplication of the sum of the bridged nodes and the
type parameters. For instance, if we bridge two transitions having a weight of
50 and 70, respectively, then any newly added place has a weight of ((50 + 70)
x 0.2 = ) 24, and any newly added arc has a weight of ((50 + 70) x 0.1) = 12.

Therefore, such a mechanism makes net generation random. We are currently
considering other mechanisms besides this one as well.

4 Characteristics of Net

Characteristics of Petri nets in different classes are decidable with the generated
benchmarks. Such characteristics we consider currently consist of length of the
shortest path (number of transitions in a path is the length of this path), number
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of nodes, average number of fanin and fanout of nodes, deadlock and livelock,
and coverage. We use a real number to express each characteristic, in some
cases we use 1 for true and 0 for false. Each Petri net in a class has a certain
probability of being selected in a benchmark, and each characteristic can be
considered as a random variable having a probability distribution over that class.
For instance, with the given samples from a class, we can speak of the expectation
and variance of the number of nodes in the class, or the probability of having a
deadlock. Therefore, we can estimate the characteristics of any new nets from the
same class with ceratin confidence. In this section, we focus on the characteristic
coverage and give two examples to illustrate how it can help in testing.

We restrict ourselves to a Petri net with an initial node such as a workflow
net. Each transition in the net is attached with a label. The goal of the coverage
test is to find all the transitions with a certain label. The coverage is measured
by trace coverage and transition coverage. We start a path with the initial node,
at each choice point we select one of the enabled transitions at random. As soon
as we find a transition with the label that we look for, we stop and start a new
trace from the initial node again. Therefore, the trace coverage is the number of
traces that we need to find all the transitions with the label, and the transition
coverage is the number of transitions fired to find all the transitions with the
label. We show two applications of how to use the coverage in testing.

Finding labels. We may attach labels to transitions in a workflow net. In this
application we need to find all the transitions with a special label. We start in the
initial state. A transition is randomly fired when there are two or more enabled
transitions. After a transition has fired, we test whether it has the special label.
If so we remove this label and we start a new trace from the initial state again.
Otherwise we continue until we reach the final state and then we start from
the initial state again. We stop if all the transitions with the label have been
found. The coverage returns the number of traces followed and the number of
transitions fired in order to find all the labeled transitions. Algorithm 1 describes
this application. In this algorithm all transitions have a label either 0 or 1. We
are looking for the transitions with label 1.

As labeling can be associated with different concepts, this algorithm can be
used in model-based software testing as done in [7]. In this application we use
a workflow net to model a software system, where each transition represents a
software component. A software component either behaves correctly or has an
error that can only be detected by firing the transition. Only transitions with
an error are labeled.

Finding causal pairs. In this example we test how long (measured in coverage)
it takes to cover all the causal pairs, i.e., a possible pair of consecutive transitions,
in a workflow net. For process miners, i.e., the alpha algorithm [2], we need
complete logs, i.e., log with a set of complete traces. This means that we need
so many complete traces that every causal pair has occurred. We can get all
the possible causal pairs for a given net by static analysis, i.e., by using the
technique of reachability graph. Equipped with this result, we use Algorithm 2
to get the coverage for each given sound workflow net. This means that we have
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Algorithm 1: Finding Labels

input : a sound N = (P, T, F, i, f)
output: pathCoverage, transitionCoverage

1 var A,B : A ⊆ T,B ⊆ T
var pathCoverage, transitionCoverage : int
var stop : boolean
var m : P −→ N
begin

2 A := ∅;B := ∅; pathCoverage := 0; transitionCoverage := 0; stop :=
false;m0 := [i];
while |A| < |T | do

3 pathCoverage := pathCoverage + 1;m
′

:= m0;
4 repeat

5 B := {t ∈ T |(N : m
′ t−→)};

6 (N : m
′ t−→ m

′′
), for some t ∈ B;

7 m
′

:= m
′′

; transitionCoverage := transitionCoverage + 1;
A := A ∪ {t};

8 if transitionLabel(t) 6= 0 then
9 transitionLabel(t) := 0; stop := true;

10 endif

11 until m
′

= [f ] or stop = true

12 end

13 end

an estimate of the length of a log in order to be complete for random classes of
Petri nets.

Finally, we show the result of an empirical study we did. We used the tool we
developed (see Section 5) to randomly generated 3000 well-structured workflow
nets. Those nets were used as benchmarks to get the results in Table 1.

5 Tool Implementation

We realized a supporting tool for our methodology. The tool is developed as a
plugin for the ProM framework [10] in Java, the distribution can be downloaded
from [16]. The tool has the following relevant features:

Graphical user interface. Figure 4 is a snapshot of the tool interface.This
graphical user interface is easy to use. For example, it lists all the rules visually
so that it is very intuitive for the user to select a particular rule. The generated
nets can be visualized using the viewer provided by ProM. Testing results are
output in a table for the user.

Selection of net class. The interface contains all the classes of the workflow
nets that the user can generate. Once a particular class has been selected, all the
rules which are not allowed in such a class are disabled automatically by giving
their probabilities a value of zero.

11
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Algorithm 2: Finding Causal Pairs

input : a sound N = (P, T, F, i, f), a set C of all the causal pairs in N
output: pathCoverage, transitionCoverage

1 var A,B : A ⊆ C,B ⊆ T
var pathCoverage, transitionCoverage : int
var u : u ∈ T
var m : P −→ N
begin

2 A := ∅;B := ∅; pathCoverage := 0; transitionCoverage := 0;u :=
null;m0 := [i];
while A 6= C do

3 pathCoverage := pathCoverage + 1;m
′

:= m0;

4 B := {t ∈ T |(N : m
′ t−→)};

5 (N : m
′ t−→ m

′′
), for some t ∈ B;

6 u := t;m
′

:= m
′′

; transitionCoverage := transitionCoverage + 1;
7 repeat

8 B := {t ∈ T |(N : m
′ t−→)};

9 (N : m
′ t−→ m

′′
), for some t ∈ B;

10 transitionCoverage := transitionCoverage + 1;

11 A := A ∪ {(u, t)};u := t;m
′

:= m
′′

;

12 until m
′

= [f ]

13 end

14 end

Random weight of rules. The user can change the weight of any enabled rule
using the sliding bar under the rule image, the probability of the rule is calculated
and displayed next to the sliding bar.

Table 1. Mean number, standard deviation, 25th percentile (Q1), Median (Q2), 75th
percentile (Q3) of the characteristics of 3000 well-structured workflow nets.

Characteristics Avg. Std.dev. Q1 Q2 Q3

length of the shortest path 2.525 1.882 1.000 2.000 4.000

number of nodes
place 7.186 2.408 6.000 7.000 9.000
transition 8.649 2.797 7.000 8.000 10.000

avg. fanin/out of nodes

place fanin 1.575 0.491 1.250 1.500 1.800
place fanout 1.578 0.494 1.250 1.500 1.800
transition fanin 1.283 0.332 1.000 1.200 1.400
transition fanout 1.282 0.335 1.000 1.200 1.400

soundness 1.000 0.000 1.000 1.000 1.000

coverage
path coverage 15.032 10.125 8.400 12.100 18.500
transition coverage 45.655 31.909 24.000 38.350 57.975
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Specification of sample size and net size. The user can specify the number
of nets to generate and the number of times to apply rules to generate a net.
The sizes of all nets have a poisson distribution, the user only needs to input
the average number, then the tool is able to calculate the size of each individual
net.

Selection of characteristics. The user can select the characteristics introduced
in Section 4 to investigate the nets.

Reusability of samples. The tool saves all the generated nets in PNML for-
mat in a dedicated folder on disk. This enables the user to reuse or share any
benchmarks.

[13] proposed a systematic approach to design software in coloured Petri
nets and transfer the CPN models into Java code, we practised the approach in
the design and implementation of this tool. The tool currently runs on a single
processor thus it is not possible to generate a very large size of benchmarks.
In order to overcome this limit, we are considering to distribute the tool over
multiple processors (e.g., over grid) in the future.

Fig. 4. Interface Snapshot

6 Related Work

In [4] the authors proposed a method to generate Petri net benchmarks. They
start with a Petri net containing two places and two transitions with all nodes
connecting to each other, and make use of the refinement rules given by Murata
in [18]. Whereas in our approach we use not only the Murata rules, but other
rules as well, this makes our rules more extensive and more general. We focus
on generating workflow nets, and start with a much simpler net with only one
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single place. They use a weighted random selection of rules to control the number
of transitions and places. Such a probability mechanism is also realized in our
approach, and we investigate more characteristics of nets besides the number of
nodes.

In [3] the authors developed a tool to generate process models in Petri nets
and log of business processes. They use a set of workflow patterns in [17] and add
probabilities to the patterns. In our approach we do this for graph grammars.
Both can get a probability distribution on the set of graphs.

7 Conclusion

In this paper, we defined a graph grammar with weights on the construction
rules, such that each graph of the graph language has a ceratin probability
of occurring. We consider graphs in the form of Petri nets, and the generated
Petri nets can be used as benchmarks. By extensive studies, we have a set of
construction rules to generate all Petri nets with different starting nets using a
stepwise refinement approach. Based upon structures, the nets can be classified
into different classes. Each Petri net in a class has a certain probability to be
selected in a benchmark. Moreover, we distribute weights to the rules and all
elements in a net, this makes the generation random. We have determined a
number of characteristics used in the random classes of Petri nets, and we are
able to get probability distributions of each characteristic over the classes. We
focused upon an interesting characteristic called coverage, and presented two
possible applications of it. A tool has been developed in ProM to realize our
methodology.

In future research, we would like to identify the probability parameters based
upon a concrete set of process models in a statistical way. If we have the param-
eter we can do better benchmarking. Also we would like to distribute our tool
over grid so that we can generate a large number of benchmarks.
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