
"Enhancing interaction with supplementary Supportive User Interfaces:

Meta-UIs, Mega-UIs, Extra-UIs, Supra-UIs ..."

Proceedings of the 1st International Workshop on

Supportive User Interfaces : SUI 2011
at the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems

Pisa, Italy - June 13, 2011

Edited by:

Grzegorz Lehmann,

 DAI-Labor, TU-Berlin.

Alexandre Demeure,

 University of Grenoble, INRIA, LIG

Mathieu Petit, Gaëlle Calvary

 University of Grenoble, CNRS, LIG

http://www.supportiveui.org

http://eics-conference.org/2011/index.php?content=1
http://www.supportiveui.org/

2

Copyright © 2011 for the individual papers by the papers' authors.

Copying permitted only for private and academic purposes.

This volume is published and copyrighted by its editors.

3

Table of Contents

~

Session 1 : Introduction

Enhancing interaction with supplementary Supportive User Interfaces:

Meta-UIs, Mega-UIs, Extra-UIs, Supra-UIs 5

Session 2 : Selected papers

Building Supportive Multimodal User Interfaces 8

Opening the Box - Meta-level Interfaces Needs and Solutions 13

A Classification of Self-Explanatory User Interfaces 17

Supportive User Interfaces in Adaptation 21

A Supportive User Interface for Customization of Graphical-to-Vocal

Adaptation 24

Design and Implementation of Meta User Interfaces for Interaction

in Smart Environments 28

The end-user vs. adaptive user interfaces 32

A classification for Supportive User Interfaces derived from

Collaborative User Interfaces 37

Appendix :

Workshop summary poster 41

4

5

Enhancing interaction with supplementary Supportive
User Interfaces (UIs): Meta-UIs, Mega-UIs, Extra-UIs,

Supra-UIs …
Alexandre Demeure

University of Grenoble, LIG
INRIA, 655 av. de l’Europe, 38334

St Ismier Cedex, France

First.Last@inrialpes.fr

Grzegorz Lehmann
DAI-Labor, TU-Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
First.Last@dai-labor.de

Mathieu Petit, Gaëlle Calvary
University of Grenoble, CNRS, LIG

385, av. de la bibliothèque

38400 St Martin d’Hères, France

First.Last@imag.fr

ABSTRACT

In order to improve the interaction control and
intelligibility, end-user applications are supplemented with
Supportive User Interfaces (SUI), like meta-UIs, mega-UIs,
helping or configuration wizards. These additional UIs
support the users by providing them with information about
the available functionalities, the context of use, or the
performed adaptations. Such UIs allow the user to supervise
and modify an application interactive behavior according to
her/his needs.

Given the rising complexity of interactive systems,
supportive UIs are highly desirable features. However,
there is currently no common understanding of types and
roles of supportive UIs. Enabling concepts and definitions
underlying the engineering of such UIs are also missing. In
order to fill this gap, the workshop seeks a discussion with a
broad audience of researchers, who have experience with
the design and development of supportive UIs.

Author Keywords

Supportive User Interfaces, UIs quality, explanative UIs,
help systems, awareness of the context of use, meta-UI,
mega-UI, supra UI.

ACM Classification Keywords

H.5.2 [User Interfaces]: Ergonomics, Graphical user
interfaces (GUI), Prototyping, User-centered design,
Evaluation/methodology. D.2.2 [Software Engineering]:
Design Tools and Techniques, User Interfaces.

General Terms

Design, Human factors, Algorithms.

INTRODUCTION

Enabling technologies make it possible to create more and
more complex systems in terms of functional core, new
interaction techniques and context-of-use dynamics.
Coming along with systems complexity, the users require a
better understanding and control of their applications.

In the aftermath of “pervasive intelligibility” researches [5],
this workshop focuses on human-computer interaction and
more specifically on the engineering of user interfaces to
foster intelligibility and control. User interface
intelligibility has been approached from different
perspectives. The concept of “Meta-UI” has been
introduced as a metaphorical UI to control and evaluate the
state of interactive ambient spaces [1]. Other works focus
on self-explanatory user interfaces, and make it possible for
the end-user to understand the design of the user interface
[4]. The Crystal tabletop prototype has been developed to
handle a complex platform composed of components like
TVs, robots, picture frames, etc. [3]. Crystal provides the
users with intelligible UIs to control the media distribution
and the component discovery.

Such research projects exemplify the notion of supportive
UI . In a broader context this workshop aims to identify and
classify the supportive UIs that may enhance the interaction
(e.g., by rendering the workflow in e-government
applications or making it possible to the end-user to see the
available platforms in the surrounding and redistribute the
UIs him/herself). These include Meta-UIs [1], Mega-UIs
[2], self-explanatory UI, Supra-UIs and others. The goals of
the workshop are to:

 Define the concept of supportive UI, Elicit the dimensions of supportive UIs through a
taxonomy that would cover both the abstraction
and presentation of supportive UIs, Discuss the properties supportive UIs should
convey, Explore how to integrate supportive UIs into
development processes and Model-based UI
development, Identify the key research stakeholders for further
research.

To that end, examples of points of discussion could be:

 What is the added-value for the users? Which one
is the border between UI and supportive UI? Do
UIs for help, personalization or end-user
programming belong to supportive UIs?

Copyright is held by the author/owner(s).
EICS’11, June 13–16, 2011, Pisa, Italy.
ACM 978-1-4503-0670-6/11/06.

mailto:First.Last@inrialpes.fr
mailto:First.Last@dai-labor.de
mailto:First.Last@imag.fr

6

 Are supportive UIs parts of the original UI? Are
they generic or do they require application-specific
features or rendering? How to take benefit from model-based approaches
to integrate supportive UIs by design? How to evaluate supportive UIs?

The relevance of the workshop is two-fold: first, to improve
the quality of UIs, and to reconcile research areas (e.g.,
model-based approaches, end-user programming).

ORGANIZATION

Alexandre Demeure is assistant professor at the University
of Grenoble. His main research interests include plasticity
of UIs, software architecture for HCI, multitouch
interaction and creativity support. Grzegorz Lehmann is a
PhD student at the Technische Universität Berlin. His
research focuses on the utilization of runtime and
executable models for developing ubiquitous UIs. Mathieu
Petit is a post doctoral fellow at the University of Grenoble.
His current research focuses on model description and
automated transformation to design plastic UIs. Gaëlle
Calvary is professor at the University of Grenoble. Her
research area is about UI plasticity to ensure UI quality
along the variations of the context of use. She mostly
explores model-driven engineering.

FORMAT

We propose a one-day workshop with six working hours,
excluding the breaks. Our goal is to facilitate a combination
of presentations, demonstrations, discussions and
community building.

Candidate participants must submit a short paper or a
position statement. The short paper describes experiences,
ongoing work or results related to the workshop’s topic. We
encourage submissions including video demonstrations. A
position statement describes requirements or issues the
participant encounters when designing and/or implementing
supportive UIs, as well as desirable solutions from the
author’s point of view.

In order to focus the discussion on supportive UIs concepts
and design, the organizers will select the most prominent
themes relative to the workshop topic from the set of
accepted papers. The authors will be asked to mainly focus
their presentations on these relevant themes.

At first, the participants will introduce themselves. Each
introduction should include a short statement about the
favorite problem to tackle during the workshop. After the
introductions, Jérémie Melchior, from Université
Catholique de Louvain (Belgium) will give an introduction
speech about quality properties for intelligent UIs. The
workshop will then focus on reviews and discussions of
topics emerged from the position papers. The selected
papers will be presented in two one-hour slots.

After the lunch break, participants will be split into groups
structured around the core topics provided in the papers and

statements. Afterwards, the groups will report back to the
plenary forum. The following is a tentative schedule for the
workshop, time given in working hours, excluding breaks:

0:00-0:15 Introduction by the organizers
0:15-45 Brief introduction talk by each

participant, using predefined template (e.g.,
background, experience, favorite problem)

0:45-1:15 Invited talk : “Quality properties of intelligent
interfaces” by Jérémie Melchior

1:15-2:15 Selected paper presentations
2:15 Break
2:15-3:15 Selected paper presentations
3:15-3:30 Summary and presentation of afternoon works
3:30 Lunch
3:30-5:00 Breakout groups – initiation
5:00-6:30 Plenary discussion on group results, future

agenda and follow-up activities

PROGRAM COMMITTEE Jean Vanderdonckt Gerrit Meixner Joëlle Coutaz Kris Luyten Peter Forbrig Marco Blumendorf Melanie Hartmann Natalie Aquino

 Oscar Pastor Victor Lopez Dominique Scapin Philippe Palanque Marco Winckler Audrey Serna Dirk Roscher

WEBSITE AND CONTACT

http://www.supportiveui.org/ ; chairs@supportiveui.org

REFERENCES
[1] Coutaz, J. Meta-User Interfaces for Ambient Spaces. In

Proc. of the 5th Int. Ws. on Task Models and Diagrams for
Users Interface Design: TAMODIA 2006, pp 1-15, Coninx,
K., Luyten, K. and Schneider, K. A. (eds.), Springer LNCS
4385. Hasselt, Belgium, October 23-24, 2006.

[2] Sottet, J-S., Calvary, G., Favre, J-M. and Coutaz, J.
Megamodeling and Metamodel-Driven Engineering for
Plastic User Interfaces: MEGA-UI . In Human-Centered
Software Engineering, pp 173-200, Seffah, A., Vanderdonckt,
J. and Desmarais, M. C. (eds.), Springer Human-Computer
Interaction Series. 2009.

[3] Seifried, T., Haller, M., Scott, S. D., Perteneder, F. Rendl, C.,
Sakamoto, D. and Inami, M. CRISTAL. Design and
implementation of a remote control system based on multi-
touch system. In Proc. of the 4th Int. Conf. on Interactive
Tabletops and Surfaces: Tabletops 2009. ACM. Banff,
Canada, November 23-25, 2009.

[4] Garcia Frey, A., Calvary, G. and Dupuy-Chessa, S. Xplain: an
editor for building self-explanatory user interfaces by
model-driven engineering. In Proc. of the 2nd Int. Symp. on
Engineering Interactive Computing Systems: EICS 2010, pp
41-46, ACM. Berlin, Germany, June 19-23, 2010.

[5] Vermeulen, J., Lim, B. Y. and Kawsar, F. Proc. of the Int.
Ws. on Intelligibility and Control in Pervasive Computing.
Held in conjunction with the 9th Int. Conf. on Pervasive
Computing : Pervasive 2011. St Francisco, CA, USA, June
12-15, 201.

http://www.supportiveui.org/
mailto:chairs@supportiveui.org

7

8

Building Supportive Multimodal User Interfaces

José Coelho
LaSIGE, University of Lisbon

Campo Grande Edifício C6 Piso 3 1749-016
Lisboa, Portugal

+351 21 750 05 32
jcoelho@lasige.di.fc.ul.pt

Carlos Duarte
LaSIGE, University of Lisbon

Campo Grande Edifício C6 Piso 3 1749-016
Lisboa, Portugal

+351 21 750 05 19
cad@di.fc.ul.pt

ABSTRACT
In this paper, we describe and discuss solutions capable of
helping in the development of supportive multimodal user
interfaces. Based on the specifications and design of
European Union funded project GUIDE (Gentle User
Interfaces for Elderly People), we show how it is possible
to use several modalities of interaction as well as adapting
UIs, as a mean of providing users with ideal interaction in
every application, and preventing or resolving errors
resulting from missed or wrong user-device inputs.
Keywords
Supportive multimodal user interfaces, adaptation, GUIDE,
UI translation.
INTRODUCTION
In this paper we are going to introduce some mechanisms
present in the ongoing GUIDE project and which are
intended to help developers in the implementation of
supportive user interfaces.
GUIDE Project
GUIDEi aims to offer multimodal interaction to elderly
(and disabled) users with the goal of simplifying interaction
with a television (TV) and set top box (STB) based system.
By pointing to the screen, making gestures, issuing speech
commands, interacting with a Tablet PC, using the remote
control, interacting with an Avatar or simply making use of
user intuition for combined interaction with several of these
modalities, the GUIDE framework makes fitting interaction
to users’ characteristics and preferences, possible and also
for impaired users to interact with the TV.
In what concerns supportive interaction, the use of Avatars
is explored with the goal of offering users, a persona with
whom they can relate to, while interacting with the system.
The Avatar will work like someone who explains to users
the interaction steps to be done in order to execute tasks,
and will help them getting out of “trouble” after an error
has been generated while using the system. More, the
existence of generic, as well as content-specific, speech
commands as a possibility of interaction makes intuition a

reality in GUIDE. Additionally, pointing interaction using a
video based gesture tracking sensor is helped by cursor
adaptation techniques which makes easier the selection of
content on the screen, also helping in supporting
interaction.
This diversity of devices and modalities of interaction, will
offer users the flexibility to use whatever medium they find
more appropriate given a specific context, at the same time
as they benefit from visual (text, images, video and
animations), audio (speech, and other sounds) and haptic
feedback (vibration). These multimodal capabilities are in
fact, the first step to a supportive interaction.
Considering the variety of differences present in elderly
users and their preferences when using a system like this,
GUIDE will cluster it’s users in different User Profiles
(UPs) - transparent to every user - where data concerning
preferences and constraints of interaction are saved. By
making use of each UP, GUIDE will try to adapt User
Interface (UI) elements to fit every user.
In addition to providing supportive use, GUIDE framework
supports UI adaptation for every application running.
Moreover it aims at providing this support requesting
reduced extra effort from developers. Since it is not
expectable to have developers providing different versions
of applications for users with different characteristics
GUIDE will develop tools to “translate” a “standard” UI
into tailored UIs for every type of user. The extra effort
asked of developers consists in identifying each UI
interactive component using WAI-ARIAii semantic tags.
With that information, GUIDE will abstract UI
characteristics, and save them in an Application Model
(AM) (one for every application), making adaptation of UI
components possible at run-time.
Problem Description
Nowadays, most UIs lack capability in guiding users to an
adequate and efficient interaction [1], when ideally “the UI
must guide the user in accomplishing a task the application
was designed for” [4] by providing help and appropriate
feedback about features, tasks, modalities and contexts of
interaction. If a user is not capable of perceiving an
application and reacting to errors while interacting, more
sooner than later he or she is going to abandon its use, and
adopt a more usable application. Unsatisfied users are
going to prefer a better supportive interface which can fit

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

9

and adapt to his or her characteristics. If this is true for the
so called typical users, for elderly users this is even more
relevant. Because these users are usually characterized by
having one or multiple impairments (example: hearing
difficulties, visual incapacity, motor constraints, etc.),
adequate interaction is only possible when the system is
capable of adapting its UI components and modalities of
interaction to these users’ specific characteristics.
Therefore, in the development of supportive multimodal
user interfaces for elderly or impaired users, several
questions need to be answered so that an appropriate
application and interaction can be implemented:

 How to let your users know how to interact? How to know your users? How to help users after a mistake has been
identified? How to present content and interaction
possibilities in the most suitable way to the users?

In the remainder of this paper, we describe the approaches
followed in GUIDE to try to offer solutions to the questions
identified above, by supporting multimodal interaction and
UI adaptation for elderly users when using a TV and STB
based system. Special interest also goes to the way this
framework provides every application with the possibility
of adapting to different contexts of interaction, and to the
presentation of ideas on how it could be possible for these
types of users to personalize UI presentation and interaction
while preserving usability.
ANSWERING THE QUESTIONS
How to let your users know how to interact?
For an efficient interaction to be a reality, users need to
have knowledge about the available ways for performing
each task. They have to know to the full extent all the
possibilities and modalities when confronted with different
difficulties and contexts of interactions. Only by
understanding how they can interact, they can make the
most of the interface being presented and understand how
to use all the features provided by the application. For
example, if a visual interface with a menu is presented on
the screen, and the user doesn’t know he or she can speak
the name of a specific button for making a selection, a lot
of time can be lost by performing the task using alternative
modalities (the only ones the user has knowledge about)
like selecting the button by pressing remote control keys in
a certain sequence or by pointing to the screen with the
remote control.
GUIDE will try to instruct the users before they start
interacting with any of the framework applications. For
this, it will use an application called the User Initialization
Application (UIA) to give the user a clear understanding of
the possible ways of interaction. Users will be guided
through the experimentation of the various modalities of
interaction available in the framework, like pointing to the
screen, issuing speech commands, pressing remote control
buttons, etc.. For this purpose, the UIA will present on the
screen a tutorial with scripted animations of how to

perform different gestures, informing the user of the set of
speech commands he or she can issue for achieving typical
tasks, and providing instructions about how to interact with
other components of the system like the Avatar engine, the
Table PC, etc.. In all this process the user has an active
role, learning by experimentation of every interaction
modality and device.
How to know your users?
For the users to understand an interface and know how to
interact with it, it really helps that the interface knows the
user in advance. Only knowing beforehand what are the
users preferred ways of interacting as well as the users’
impairments and difficulties makes it possible to build or
adapt the interface for appropriate and efficient user
interaction. For example, if the system doesn’t have enough
information about the user to know that he or she is blind
and presents a visual interface to him or her, no interaction
will occur at all, and the system will not be used. In a
second example, if the user prefers to interact using
pointing and the system presents a simple visual interface
that only receives remote control input, he or she will be
less motivated to use and adopt that system (and a higher
probability of making errors during interaction exists).
GUIDE will try to collect information about its users before
they get to interact with any of the system’s applications.
To this end, the UIA will also be used for collecting data
about users. Every time a new user starts using the system,
the UIA is presented on the screen combined with audio
output (covering possible situations of severe audio or
visual impairments) and the user is asked to perform a
series of tasks concerning his or her capabilities. In a first
instance, the user is “registered” in the application using
name, and facial and vocal characteristics, so that from that
point on, every time he or she wants to use the system the
correspondent UP can be loaded based on these properties.
Next, the application tries to understand if the user has
some visual impairment by presenting text on the screen
and asking for user feedback (figure 1) (e.g. presenting a
sentence and expecting for user to adjust the font until he
feels comfortable reading, and then asking user to read the
sentence out loud to make sure he is in fact seeing it well).
If the user passes this test, different configurations of text
font and buttons, as well as several background and text
colors, are tested out to understand his or her preferences
regarding visual interfaces. If the user fails the test, the text
font size is raised in a screen-by-screen basis until there is
the understanding of how severe is the user visual
impairment.

10

Figure 1: UIA prototype. Example of visual test where the
user has to read out loud the text presented on the screen,
and increase or decrease the text size to his or her
preferences.
For every other modality of interaction, similar tests are
presented to the user, and data about user impairments and
preferences is collected. For example, the user is asked to
perform different gestures, or asked to point to different
locations on the screen to understand motor capabilities, to
repeat out loud what he heard to understand hearing
capabilities (figure 2 top), and asked to play memory and
interpretation “games” with the goal of testing his or her
cognitive capabilities (figure 2 bottom).

Figure 2: UIA prototype. Examples of audio (top) and
cognitive (bottom) tests presented to GUIDE users.
From the results obtained in GUIDE user trials and from
discussions with developers, we also know to be extremely
important that UIA application must be presented to users
in form of a simple and quick tutorial, so that elderly don’t
feel like they are being evaluated. If UIA takes too long,

users will also lose interest, and will not want to use the
system.
User information can be collected explicitly with the UIA,
but also implicitly through run-time analysis of the user
interaction logs. After the user has gone through all the
UIA process, he or she starts interacting with different
applications. Information concerning every task performed
and modality used is saved by the system in logs. A rule-
based inference motor will analyze this data and makes
conclusions about user preferences and difficulties (for
example, if the user makes consecutive errors when
pointing to the screen for selection of a menu button, the
system concludes he or she has difficulties using that
modality and tries to increase the size of the buttons before
suggesting a change in the modality of interaction). These
conclusions enrich the data collected in the first process.
All data collected by the UIA and run-time processes are
saved in a user model and used to adapt every application
running on the framework [2].
How to help users after a mistake has been identified?
A supportive UI is one which tries to be aware at all times
if a user is lost in the interaction, or if he or she is having
too many interaction errors to be enjoying an efficient use
of the application. Accordingly, one of the biggest
challenges when guiding the user in the interaction, it’s
how to identify or perceive that the he or she is lost and
when is the application or interaction generating errors.
Only after identifying that, the application can then try to
help the user and suggest alternative ways to achieve a
desired goal. This is, however, a difficult task because at
run-time a lot of dimensions are involved. If the user
mistakes or misinterprets the interface structure and
meaning, it can by itself result in interaction mistakes.
There are also a lot of possible errors caused by changes in
the context of the interaction, like the physical and social
aspects of the environment. For example, if a user is
interacting using speech input and the noise in the room
increases, the system can fail to interpret the command
issued because of the background noise, or a wrong
command can be recognized instead (this can also happen
when another person is speaking to the user at the same
time of interaction).
Interaction mistakes will be identified in GUIDE by
analyzing the interaction in run-time and by watching for
unrecognized inputs. Because in this framework users can
interact with UIs through different modalities (and
devices), in a singular way or in a combined fashion, the
system has to be alert for many different errors like:

 Unrecognized commands issued when speech
input is performed. Selection of meaningless coordinates (coordinates
not related with any UI interactive content) when
pointing with finger. Unrecognized gestures performed by the user. Errors resulting from remote control commands.

11

 Repeated errors when interacting with each
device or modality (consecutive errors could
suggest a switching of modalities is required). Long periods with no selection registered but with
screen navigation occurring (may suggest that the
user is lost, or doesn’t know what to do). Errors resulting from incomplete fusion of input
modalities. Contradictory instructions from simultaneous
input of different modalities. No input received after system started a task
requiring user feedback.

Additionally, every time a change in context of interaction
occurs, the system has to be alert for periods of inactivity or
for unexpected inputs, and using the interaction logs the
system tries to prevent some errors from happening when
there is clear understanding of what are the causes.
A supportive UI has to be capable of helping the users
every time there is a mistake in the interaction [4].
However, in modern applications help is a capacity
“created ad-hoc” [4] meaning it was previously generated
and it does not cover run-time situations not originally
foreseen by the designers. For this reason, UI design does
not cover every situation where a user needs help for
responding to UI or interaction difficulties. Therefore
helping the user is not something easy to do in a predefined
manner before the user starts using the system, and requires
some run-time “intelligence” from the supportive system or
interface. For example, if a user is using speech input for
menu navigation and his or her dog enters the room and
starts barking, the system will receive a series of
consecutive unrecognized inputs and the user will be in a
situation that was not taken care off in the design process,
which can result in aborting the interaction with the
application.
As it is strongly based on multimodal interaction, one of
GUIDE’s ways of helping users after a mistake has been
identified will rely on suggesting to the user a change in the
modality of interaction. This change is however, based on
each user preferences and characteristics firstly identified
by the UIA and logs of interaction, as well as it is based in
the context of interaction and task being performed at that
moment[2]. So, as the user has already “ranked” modalities
of interaction by preference (and based on constraints),
every time an error results from repeated errors interacting
with one single modality, another is suggested to the user,
who accepts it (or rejects it) in order to continue the
interaction. This will also be the procedure every time a
change in the context of interaction happens [2] (for
example, when the dog starts barking, the system won’t
recognize the barks as speech commands – rather, barks
will be interpreted as background noise - and will suggest
to the user continuing interacting using pointing).
Another way of helping users is to present to them relevant
information related with the context of the error they have
just made, like presenting alternative modalities of

interaction and showing how to use them when a change in
the context of interaction happens, showing information
related with the task they are performing every time there
are errors in the recognition of modalities or long pauses in
the interaction (for example when the user is pointing and
trying to select an area on the screen where there are no
interactive UI items, show him or her where the buttons are
by highlighting them). However, GUIDE main focus is
helping users proceed with the interaction in an alternative
way even when it’s not possible to detect the cause of the
error.
Finally, every time an error occurs, the Avatar engine will
also be called for a more “personal” interaction between the
system and the user (meaning, the Avatar presents the
explanation of the error to the user, shows how changing
modalities can solve the problem or just points the user to
using an alternative modality when an error arises). In this
way, it’s almost like together they can find a solution to the
problem or “find a way out” of the mistake.
How to present content and interaction possibilities in
the most suitable way to the users?
The main problem with developing interfaces for elderly or
disabled users is the great diversity existing in terms of user
characteristics and user impairments. It is common for an
elderly user to have more than one impairment (for
example, poor hearing and poor vision), as it is usual to
observe a lot of differences between each of these users.
This means that what is good for one user can also, and at
the same time, be inappropriate for several others. For
example, an elderly user with hearing difficulties can
interact with a visual interface without any problem, but
one with severe visual impairments cannot, and need an
interface with audio input and output for efficient
interaction. However it is not expectable that developers
will implement different versions of the same application,
so the framework has to ensure the ways of interaction are
adapted to the user characteristics.
GUIDE will offer elderly users adaptation mechanisms
capable of adapting UI elements to each user
characteristics. After the user has gone through the UIA
and the system has collected enough information, the user
is assigned to one UP [1]. Using the information about each
user, GUIDE adapts each UI to fit the UP interaction
patterns. This is only possible because GUIDE asks for
extra information in each application development, so
every UI is implemented using HTML, JavaScript, and
CSS languages to what the developers add WAI-ARIAii
annotations providing semantic information about UI
components. In this way, for every application, GUIDE
will derive and keep an Application Model (AM), which is
nothing more than an abstract interface that saves
information about the structure of the UI and identifies
each UI element present. This facilitates adaptation to
different interaction contexts as well as to different types of
users (users that belong to different UPs), because every
time a user calls for an application, the system uses its
application model and considering the interaction context

12

and user characteristics, modifies UI elements not
appropriate for the user. For instance, when a user with
visual impairments calls for an application formed by a
visual menu and some text content, GUIDE consults its
AM and “knowing” the user characteristics as well as
“observing” no change in the interaction context, loads the
UI increasing the size of the buttons originally defined and
uses audio and visual output modalities.
In what concerns the developers control over this UI
adaptation, GUIDE will adopt one of three adaptation
schemes depending on the level of freedom given by the
developer to change the application original properties
(CSS and HTML): In “Augmentation”, GUIDE won’t be
able to change any UI components, only making some
overlay of output modalities (for example, adding audio
output to a visual interface); in “Adjustment” GUIDE has
permission to adjust UI component parameters as well as
also making “augmentation” (for example, adding audio
output to a visual interface and also changing UI colors for
a higher-contrast); and finally in “Replacement” the
developer gives total control to GUIDE, making possible
the substitution of UI components as well as
“augmentation” and “adjustment” (for example, adding or
removing buttons, as well as adjusting colors and adding
audio output to a visual interface).
Additionally, all interfaces must be capable of listening for
user commands at any time of the interaction so that
modifications to the interaction and presentation can be
done at run-time, if the user is not satisfied with the current
configuration. For example, if a user says “bigger buttons”
or makes a gesture to increase the volume, the interface
must adapt and reflect these changes (by reloading the UI
or modifying output parameters).

CONCLUSIONS
For the development of supportive multimodal user
interfaces to be a reality, we have to make sure that the
user’s characteristics are known to the application. As well,
the application has to be capable of instructing the users
about all the ways of interacting with it, and make sure that
adaption and UI help is presented to users in a personalized
fashion. GUIDEs UIA, multimodal interaction and UI
translation and adaption, were presented in this paper as
possible solutions which can help in the deployment of
supportive user applications without asking much more
additional effort from the developers.

REFERENCES
1. Biswas, P., Langdon, P.: Towards an inclusive world –

a simulation tool to design interactive electronic
systems for elderly and disabled users. Proc. SRII,
2011.

2. Coelho, J., Duarte, C.: The Contribution of Multimodal
Adaptation Techniques to the GUIDE Interface. In:
Stephanidis, C. (ed.): Universal Access in HCI, Part I,
HCII 2011, LNCS 6765, pp. 337-346. Springer,
Heidelberg (2011)

3. Garcia Frey, A., Calvary, G. and Dupuy-Chessa,
S. Xplain: an editor for building self-explanatory user
interfaces by model-driven engineering. In Proc. of the
2nd Int. Symp. on Engineering Interactive Computing
Systems: EICS 2010, pp 41-46, ACM. Berlin, Germany,
June 19-23, 2010.

4. Myers, B. A., Weitzman, A. J. Ko., and Chau, D. H..
Answering why and why not questions in user
interfaces, in CHI’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 397-406, New York, NY, USA, 2006. ACM

i GUIDE– Gentle User Interfaces for Elderly People. http://www.guide-project.eu/.
ii http://www.w3.org/WAI/intro/aria

13

Opening the Box
Meta-level Interfaces Needs and Solutions

Alan Dix

Talis, 43 Temple Row, Birmingham, B2 5LS, UK

and Birmingham University, Edgbaston, Birmingham, UK

alan@hcibook.com

http://www.hcibook.com/alan/papers/SUI2011-meta/

ABSTRACT

This paper begins by considering reasons why some form

of meta-level interface may be required for modifying or

exploring existing user interfaces, from obvious functional

reasons of customisation and personalisation to more

political and social goals such as education and

empowerment. The paper considers examples of systems

developed by the author and others, and uses these to

present a number of techniques and principles for effective

meta-interactions. Some of these concern more surface

manipulation, and others deeper levels of code and meta-

descriptions of the application and UI. It concludes that

meta-interaction may be a key element for future liberal

society.

Keywords

customisation, personalisation, end-user programming,

end-user empowerment, appropriation

1. INTRODUCTION

The topic of this workshop brings together a number of

areas on which I have worked or that have been of personal

concern. This paper will discuss some of these areas of

concern and then look at general principles and techniques

that can be used to address them.

2. WHY META?

While it hardly needs stating for this workshop, to many it

may seem that meta-level interactions are simply the

preserve of the hobbyist or techie. However, they are both

ubiquitous and of broad benefit.

2.1 Customisation and Personalisation

Of course meta-level user interfaces are common. Every

time a user drags a palette to the side of the screen, selects a

ringtone or modifies the style definition in a document, she

is engaging in an adaptation of the user interface.

However, we also know that beyond a few examples like

this few users actually customise despite having problems

or gripes that could be dealing with through simple

selection of options (for example, turning off some of the

'smart' features in Word). Improving even these basic

features can have a major impact on user experience.

2.2 Appropriation

In particular "plugability and configuration" is one of the

design principles for appropriation [9]. Indeed several of

the design principles discussed in [9] are related to meta-

level user interactions; while appropriation is possible

using the interface as given, the user has greater flexibility

if she can peek under the hood (design principle "provide

visibility") and tinker inside ("plugability and

configuration") and share the results with others

("encourage sharing").

2.3 End-user Empowerment

One advantage of appropriation is the sense of ownership

and empowerment it engenders. A sense of control is

important for well being, and the act of tinkering gives this,

whether to improve the user interface for its original

purposes, or make it do something completely novel.

While this is important for all users it is particularly

relevant for those in developing countries, or the

disadvantaged in developed countries, who can be doubly

disadvantaged in a world where access to information is

central to economic and political power [1].

Existing technology can be appropriated by traditionally

disadvantaged groups; for example, Jensen reports how

mobile phones allowed fishing boats in Kerala, southwest

India, to obtain higher prices for their catches [12] and we

have all seen the impact of social media in recent popular

uprisings across North Africa and the Middle East.

However, if those closer to need are in a position to create,

modify or adapt existing software and hardware the results

are likely to be more appropriate than tools designed

primarily for an urban, middle-class, western environment.

This may be the end user, but Marsden et al. argue the case

for 'human access points', local experts, in their case local

health workers, who are given the tools to create and adapt

mobile-phone administered questionnaires [16]. Prompted

by various workshop discussions [17, 20], we have

explored the potential for a range of mobile phone-based

adaptations including compete coding via the mobile-phone

screen [10].

14

2.4 Education

Often modifications to user interfaces require a high degree

of expertise; so education is needed in order to use them.

However, if well designed, meta-level interactions hold the

potential to be a means for education in themselves; as

generations of children who have fiddled with old car

engines can testify. Education, of course, also contributes

to empowerment.

The Query-by-Browsing (QbB) intelligent database

interface is an example of this. QbB generates SQL:

queries based on user record preferences, but then reflects

this back to the user both by highlighting the records

selected by the query and by exposing the query itself [7].

The user can comprehend the system via the concrete

record selections, but in the process learn the SQL that

produce it (although not the machine learning algorithms

which generate the queries).

2.5 Privacy and Auditability

The control of privacy settings in social applications such

as Facebook, has become a big issue. Höök also argues

that this is an issue likely to be important in future

ubiquitous computing applications [11]. Indeed the very

openness in low-level architecture required for rich

context-sensitive features in itself creates privacy issues

[8]. Many approaches to privacy, in ubiquitous computing

and elsewhere, focus on restricting information flow.

However I have long argued that it is the eventual use of

the information that is most critical [6]; that is systems that

expose what happens to information both currently

(visibility) and in the past (auditability) are far more likely

to support the user's ability to manage information

disclosure.

2.6. Comprehensible Behaviour and Trust

Closely related is the issue of trust, not just for financial

and or personal security, but also at a mundane level of

whether we decide to use particular application features.

This is especially important when systems make choices

automatically for us. The kind of openness needed to allow

a user to adapt a system is very similar to that needed to

allow a user to believe in what it is doing already.

The record listings in Query-by-Browsing [7] are an

example of this as they may be comprehensible to the user,

even if the SQL is not, giving the user confidence that the

query will continue to be appropriate for unseen records.

Another example is MICA, which makes suggestions for

GUI customisation based on user activity, but also

"includes a description of why MICA is making

recommendations and how it generated them" [5], precisely

to support Hook's "predictability and transparency"

principle [11] and so engender trust.

3. TECHNIQUES AND PRINCIPLES

So if meta-level investigation and modification is a good

thing, how can it be achieved?

3.1 Cost and Benefit – When it happens

Sometimes people don’t customise because they don’t

know how. However many experts do not customise their

interfaces even if they complain about the things that are

wrong! The key problem is not lack of understanding but

lack of immediate benefit. We are creatures who heavily

discount the future; effort now for future gain is hard. If

customisation can be made closer to the point of use it

becomes more likely. One example are dialogues that ask

for a decision, but have a tick box to say "always do this".

This is effectively asking you set a preference, but at a

point in time when you are in the middle of doing the

requisite action. The benefit is clear and the cost (in terms

of clicks and mental effort) low. Furthermore this is all set

within the context of a concrete example of use (see also

next point)

3.2 Progressive Disclosure –Where It happens

The preferences and customisation of many applications

are buried in a "preferences" menu item far away from the

actual interaction. Somewhere in a preferences panel you

set parameters whilst guessing vaguely what they might be

about. However, others connect customisation closer to the

thing it affects. Back in 1995, Marsden [15] advocated the

advantages of a systematic policy suggesting a 'screw'

metaphor where every component has a small screw icon in

the bottom right hand corner. Clicking the screw 'undoes it'

revealing the circuitry within, and potential the ability to

unscrew other sub-components (see Figure 1).

Figure 1. Screw Metaphor from [15]

(a) screw in – UI (b) screw out – metaUI

Today in the Apple Dashboard just such a mechanism is

found on widgets. Instead of a screw a little 'i' for

information icon, clicking it 'turns around' the widget

showing settings behind. Strangely the iPhone reverted to a

special place for settings rather than associating them

closely with their application.

Figure 2. Mac OS Dashboard widget

(a) front – UI (b) back– metaUI

15

3.3 Tools of Revelation

A similar approach is to use some form of external 'tool' for

meta-level modifications. This happens in the real world;

Figure 3 shows a stud detector, which detects the wooden

studs in a wall so that you can screw into them. The

wooden structure is hidden behind plasterboard and

wallpaper, but the stud detector reveals it – the "provide

visibility" appropriation principle [9] in the physical world.

Figure 3. Wall Stud Detector

Note that "provide visibility" does not mean the same as

Nielsen's "visibility of system status" evaluation heuristic

[19], as this usually refers to the essential information about

the system for normal use. Instead, if systems reveal a little

more (such as a mobile phone showing signal strength not

just whether or not a call can be made), then the user can

use this in unexpected ways (such as waving the phone

about to seek out better signal).

Beaudouin-Lafon's 'instrumental interaction' [2] and in

particular Toolglasses [3], follows the same principle as the

stud detector advocating the use of 'instruments' as a means

for modifying and interacting with objects.

3.4 Smooth Transitions

When creating means for user to modify their environment

there is often a temptation to try to do everything – the

spectre of Turing equivalence rises and before long a

simple end-user customisation tool becomes a full-blown

and complex programming language. The effort to produce

something that could, in principle, do everything often ends

up with something that, in practice, is good for nothing.

However, the alternative is often to have very different

means for simple and more complex modifications, so that

users hit barriers; for example, moving from Excel

formulae to Visual Basic.

Mathematicians face a similar problem when modelling

'differential manifiolds' curved spaces such as the surface

of the Earth or the curved space-time of general relativity.

They effectively paper the curved space with flat Euclidean

surfaces (which are easier for a mathematician to handle),

but if you try to use a single flat surface there is at least one

point where things go very wrong, like the place where the

foil is all folded up at the end of an Easter egg. Instead

mathematicians use a collection of small patches, which

overlap in a 'smooth' manner.

One can envisage customisation working like this, with

different levels of customisation (perhaps ending up at

open-source code), where the two ends (use and coding)

have a huge gulf between them, but where each pair of

successive levels overlap with an easy transition. This

sounds like a hard problem, but there are examples that

achieve this to varying extents. HyperCard had a smooth

transition from use to customisation and then to

programming. In consequence, many who would never

consider themselves programmers created complex

HyperCard applications. Xerox Buttons were another

example, where a non-technical user might just use the

button, then peek at its code and change a file name, and

perhaps, over time, start to understand some of the code

that drove the familiar user-interface actions [14]. Could

the Excel formula to VB step be more like this?

3.5 Ease of collaboration

Another of the appropriation principles is "encourage

sharing" [9]. In Nardi and Miller's classic study of

spreadsheet use [18], they describe the collaboration

between Buzz and Betty

"When Buzz helps Betty with a complex part of the

spreadsheet such as graphing or a complex formula, his

work is expressed in terms of Betty’s original work. He

adds small, more advanced pieces of code to Betty’s basic

spreadsheet: Betty is the main developer and he plays an

adjunct role as consultant."

The fact that spreadsheets have relatively smooth

transitions (at least between levels of formula use) make

this collaboration possible. Note especially that Betty is

able to do a lot herself, and probably extends this over time

(education). Furthermore Betty is able to determine her

own level and understand when to seek help.

Spreadsheets, by their nature allow them to be passed

around. It is far rarer to see other kinds of configurations

shared. In UNIX systems, a lot of configuration is in text

files, such as .login or .profile, and expert users will move

these around. However, it is near impossible to simply take

one person's Word settings and apply them to another users

machine. Xerox Buttons [14] were a simple idea, a button

that executed some Lisp code, but were surprisingly

powerful, in part because you could mail them round,

creating a community. Maker cultures emerge when

people can share ideas and, even better, artefacts.

3.6 From Configuration to Code

Spreadsheets, Xerox Buttons, Query-by-Browsing and

HyperCard are all examples where the user can move in

steps from doing things to raw coding. When looking at

near-end-use development, one of the design lessons was

"reduce the gap between design and execution" [10].

"In general, bridging the gaps between environment and

language, design and use, test and bug report [...]

features found in many end-user or near-use software

such as spreadsheets (eliding data, code and execution),

Yahoo! Pipes (design close to execution), and

programming by example (use is design)"

At Talis we are working on tools to bridge this gap for

linked open data [4] as exposed, for example, in

16

data.gov.uk. This is building on Callimacus, where RDFa

embedded in a web page turns it into a UI generation

template, opening up application building to ordinary web

developers [13].

3.7. Meta-Representations for Meta UIs

As well as being the subject of user interaction, semantic

data of some form seems to be a key element of future user

interactions. Whether mashing data for the web or

connecting digital devices in the living room, effective

meta data about devices, applications and their interactive

potential seems an essential start point for more flexible

machine initiated activity, for machine activity to be

explicable, and for users to be able to interrogate and

modify it. Model-based user interfaces are clearly one way

to achieve this, but there could be other solutions, similar to

the way applications expose meta-information for Apple

Scripting on Mac OS or via COM on Windows.

4. CONCLUSIONS

We have discussed various principles and methods for

meta-level interactions., and also some of the reasons why

this is 'a good thing'. As we enter an era of open data and

mashups the ability to digitally tinker seems not just a

hobby, but a key enabler of a broad-based civil society.

REFERENCES

1. Beardon, H., Munyampeta, F., Rout S. and Maiso

Williams, G. ICT for Development, Empowerment or

Exploitation: Learning from the Reflect ICTs project.

ActionAid. (2005)

http://www.actionaid.org.uk/1413/ict_for_development

_empowerment_or_exploitation.html

2. Beaudouin-Lafon, M. Instrumental interaction: an

interaction model for designing post-WIMP user

interfaces. in Proc. of the CHI '00. ACM Press, (2000)

446–453.

3. Beaudouin-Lafon, M and Mackay, W. Reification,

polymorphism and reuse: three principles for designing

visual interfaces. in Proc. of AVI '0). (2000) ACM

Press ,102-109.

4. Bizer, C., Heath, T. and Berners-Lee, T. Linked Data –

The Story So Far. International. Journal on Semantic

Web and Information Systems, 2009.

5. Bunt, A., Conati, C., and McGrenere, J. Supporting

interface customization using a mixed-initiative

approach. In Proc. of IUI '07. (2007) ACM Press. 92-

101.

6. [Di90] Dix, A. (1990). Information processing, context

and privacy. in Proc. of INTERACT'90, (1990) North-

Holland. 15–20. http://hcibook.com/papers/int90/

7. [DP94] Dix, A. and Patrick, A. (1994). Query By

Browsing. Proc. of IDS'94: The 2nd International

Workshop on User Interfaces to Databases, (Lancaster,

UK, 1994), Springer Verlag. 236–248.

http://hcibook.com/alan/papers/QbB-IDS94/

8. Dix, A. Beyond intention – pushing boundaries with

incidental interaction. Proc. of Building Bridges:

Interdisciplinary Context-Sensitive Computing,

(Glasgow University, 9 Sept 2002)

http://hcibook.com/alan/papers/beyond-intention-2002/

9. Dix, A. 2007. Designing for appropriation. In Proc. of

HCI2007 Volume 2. (2007). BCS, 27–30.

http://www.bcs.org/content/conWebDoc/13347

10. Dix, A., Kozhissery, R., Ravichandran, R. and

Dayanand, D. Content Development Through the

Keyhole. in Proc. of EISE2009, Expressive Interaction

for Sustainability and Empowerment, (2009) 67–78.

http://hcibook.com/alan/papers/EISE2009-Keyhole/

11. Höök, K. Steps to take before intelligent user interfaces

become real. Interacting with Computers, 12 (2000)

409--426,.

12. Jensen, R. The Digital Provide: Information

(Technology), Market Performance, and Welfare in the

South Indian Fisheries Sector, Quarterly Journal of

Economics, 122(3), (2007) 879–924.

13. Leigh, J. and Wood, D. RDFa as a Query Language.

Semantic Technology Conference. (June 2010)

14. MacLean, A., Carter, K., Lövstrand, L., and Moran, T..

User-tailorable systems: pressing the issues with

buttons. In Proc. CHI '90. (1990) ACM Press, 1990,

175–182

15. Marsden, G. Overcoming Design and Execute Modes in

User Interface Design Environments. in Proc. of HCI 95

people and Computers (1995), 133-137

16. Marsden, G., Maunder, A. and Parker, M. People are

people, but technology is not technology. Phil. Trans.

R. Soc. A (2008) 366, 3795–3804.

17. Mobile Design Dialog. (Cambridge. 3–4 April 2008)

webpage: http://www.cs.swan.ac.uk/mobdesign/ Mobile

Design Dialog discussion:

http://mobiledesigndialog.nexo.com/

18. Nardi, B.and Miller, J. An ethnographic study of

distributed problem solving in spreadsheet

development. In Proceedings of the 1990 ACM

conference on Computer-supported cooperative work

(CSCW '90). (1990) ACM, Press, 197–208.

19. Nielsen, J. Heuristic evaluation. In Nielsen, J., and

Mack, R.L. (Eds.), Usability Inspection Methods,

(1994) John Wiley & Sons, New York, USA.

20. Winter School on Interactive Technologies. (HP Labs in

Bangalore, 2nd & 3rd February 2009). UK-India

Network on Interactive Technologies.

http://www.ukinit.org/02122008/winter-school-

interactivetechnologies

17

A Classification of Self-Explanatory User Interfaces

Maximilian Kern, Marco Blumendorf, Sahin Albayrak
DAI-Labor

Technische Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
forename.surname@dai-labor.de

ABSTRACT
In this paper a definition of Self-Explanatory User
Interfaces (SEUI) is proposed. Furthermore, existing
approaches on SEUIs are classified by identification of
their significant features. Derived from these features,
challenges and open issues are elaborated. Then,
advantages of a model-based approach for the development
of SEUIs are given. Finally, a conclusion is given with an
outlook on an ultimate SEUI from the author’s perspective.

Keywords
assistance, guidance, self-explanatory UI, adaptive UI, meta
UI, MDUI

INTRODUCTION
The term Supportive User Interface (SUI) has been
introduced recently and still needs to be defined clearly. In
our work, we understand the term supportive as the goal to
support the user while interacting with a user interface.
Support thus aims at the ability of a user interface to
provide optimal interaction capabilities and the necessary
configuration options therefore as well as help for the user
to understand the rationales of a user interface, provide a
context-sensitive help if the user is lost in navigation or
requests help explicitly. In this paper we focus on Self-
Explanatory User Interfaces as a subtype of SUIs that
especially emphasizes the help as explanatory features of
SUIs.

The earliest approaches for built-in support on an
interactive system emerged around 1966 with the HELP
system developed under the Genie project [12]. The HELP
system provides answers to questions about commands and
entities available on a UNIX based terminal window. While
such approaches were restricted to low computing
performance at this time, the ongoing technological
improvements enables recent assistants being capable of
understanding, interpreting and speaking human language,
capturing and considering context information and learn
from users by observing their interaction. In the following,
we propose a definition of SEUIs. Furthermore, we clarify

the term SEUI and classify existing approaches by
analyzing their features. Afterwards, challenges of the
development of SEUIs are discussed. Then, we discuss how
SEUIs can benefit from model-based development. Finally,
a conclusion on SEUIs is given with an outlook to an
ultimate SEUI.

A DEFINITION OF SEUI
Self-explanatory user interfaces in general are characterized
and thus, can be defined by the ability to reason on the
application state and generate additional explanations or
useful hints of higher value which support users in fulfilling
their desired task faster. Therefore, SEUIs introspectively
read out information hidden from the actual user interface
and evaluate them. By these hints, the user gains deeper
insight of the rationales in terms of purpose and structure of
the application [6]. Advanced SEUIs are generic by means
of that they adapt at runtime to the current context-of-use
and they are not bounded to a specific domain. In this
manner, their characteristics conform to those of meta UIs
and thus, can be comprehended as a kind of meta UI. By
taking the idea of an SEUI being able of accessing and
reasoning on artifacts of other applications or domains,
SEUIs can be thought of to be an ever-present agent or
companion who intermediates between the user and the
applications. Depending on its mightiness, it is not only
giving hints generated out of the underlying application but
is also able to interact on behalf of the user. The agent
could make use of natural language processing (NLP) and
understanding (NLU) and the user can establish a dialog
with him. Users could then accomplish their task by
cooperatively talking to the agent. For instance, in [13] an
information-seeking chat bot is presented. This chat bot
supports a tourist resided in Potsdam to find sight-seeing
places and gain background information related to those
places such as architects, historical persons, entrance fees
and public transports. It integrates an ontology with topic
maps applied as the discourse of the dialogue with the user.
Furthermore, this approach utilizes templates for generating
natural utterances which wrap the requested information.

FEATURES OF SEUIs
Existing approaches on self-explanatory user interfaces
differentiate mainly in the way, how they appear to the user
(Appearance) and how they are activated (Trigger).
Furthermore, they can be distinguished by the type of
knowledge base they are using and their scope or

18

mightiness. Figure 1 gives an overview of the identified
features. These features are discussed in greater detail in the
following sections.

Figure 1. Overview of identified features of SEUIs

Appearance
The appearance of SEUIs is manifold. However, we can
distinguish 5 basic ways of interaction:

1. Multi-device: shows the assistant on another device.

2. Multi-modality: utilizes one modality for the UI (e.g.
graphics) and another one (e.g. voice) for assistance.

3. Multi-window: combines UI and assistance on one
device and modality e.g. by using multiple windows,
different voices or split screens.

4. Overlay: puts the assistance over the application which
makes it easier to directly refer to specific elements.

5. Integration: integrates the assistance as part of the
application so that the user perceives it as part of
the application.

An example for multi-window, more in detail a split screen
mode was applied in the DiamondHelp system introduced
in [11], where the user still remains able to manipulate the
underlying user interface directly. The user can choose
between a ’guided’ interaction in form of a chat with the
system or ’unguided’ interaction by interacting with
classical user interface elements such as buttons, labels,
etc.. Overlay mode is emphasizing the character of meta UI
by overlaying the guided user interface in order to reach the
user. This mode was applied to the MASP Guide [8] and is
illustrated in Figure 2.

Figure 2. MASP Guide in overlay mode

Triggers
SEUIs either propose hints to the user pro-actively (system
initiative) or the user is explicitly asking for help (user
initiative). A third mode is called mixed-initiative which is
a combination of both. A proactive SEUI, where the system
takes over initiative, needs to recognize when support is
actually required by the user. In order to be able to
recognize the need for guidance, one option is to observe
interaction history of a specific user and reason on the
collected information. In [1] for instance, task models are
used to connect sequences of observed user interactions to
abstract tasks. Based on this information, possible
interactions of users are predicted and could be proposed as
a solution to the user. In [7] an approach for initial help is
presented, which helps users using an application for the
first time, i.e. it initially gives hints on startup. An important
and reasonable issue for system initiative is to keep support
decent in the sense of that the user is not flooded with hints
and suggestions on what he is able to do next. In detail,
system-initiated, self-explanatory user interfaces subtly
appear in the moment, the user is lost in navigation or
explicitly requests help. For the case the user explicitly
requests help by asking for instance “Why does the menu
bar appear all the sudden on the right hand side?”, the SEUI
may find the reason by analyzing the adaptation history and
finds that the user is right-handed and switched using a
touchscreen and they should not cover the user interface
with her right arm. The crystal framework proposed in [9]
enables the user to ask a wide variety of why-questions, the
answer is generated by introspection of the current state of
the application.

Knowledge base
Another aspect is the source from where to retrieve
information for giving the user desirably useful hints. One
option is that the designer or developer of the SEUI is
manually identifying possible critical states of the user
interface at design time. Practically, due to the nature of
adaptive user interfaces, this is difficult since the designer
might not be able to foresee each state of the application
during runtime (Even if she could, she should prevent
critical situations at design time by revising the design of

19

the application.). Thus, it is preferable that the supportive
user interface is giving generic support during runtime. At
this time, the SEUI can retrieve information either from the
system description or from an external resource, e.g. the
Internet. The former option would require that the system
description offers more information than is held on the
surface of the user interface and this information is
available during runtime. By this way, hints are generated
out of hidden artifacts of the system description. The latter
option represents a bigger challenge since the information
on the Internet needs to be matched to a machine-
processible structure, i.e. a structure which is
comprehensible by the SEUI. For this purpose, the use of
some kind of ontology matching or well-formed source is
inevitable. In [4] a hybrid approach “The Companions” is
introduced, which is able to incorporate knowledge
retrieved from local resources, but also from a social
network or news site into a local rdf-based knowledge base
(KB). In order to give the user the impression of talking to a
human, the face of the avatar is displayed. The system was
designed to enrich photo albums with semantic information
about recognized people and places such as their relations
or detailed information.

Scope
The previously mentioned possibility of retrieving
information from an external resource yields to another
aspect of SEUIs - the scope of an SEUI. Generated hints
might be more useful to the user when the SEUI has
knowledge which goes beyond the intended domain of the
application, i.e. it has also knowledge of other applications
and their domains. For instance, for an interactive
application for preparing recipes, the SEUI gives reasons if
a step is not feasible due an electric device is missing,
which is controlled by another application for device
management. Mightiness of an SEUI is addressing the
potential of controlling the application itself or other
applications. For instance, if a user asks for a missing
device, the SEUI can implicate that the user wants to use
the device and activate the device in the device
management application. General assistance applies for
fully generic SEUI approaches. Such approaches require no
certain structure from the guided application.

CHALLENGES
Based on the identified features, we can identify various
challenges for the development of SEUIs. The major
general issue of giving support to the user is the
understanding of the user and their needs. Getting this right
is crucial so the user actually feels supported rather than
annoyed. The users are playing the key-role in HCI, so they
should not be displeased by the amount of hints and the
moment hints are communicated by the system.

This directly leads to the appearance of the SEUI. It should
please the user without disturbance and therefore needs to
be well designed and provide the necessary integration into
the application depending on the needs. Learning from
many bad examples of help systems, it seems advisable to

provide some kind of adaptation and personalization
capability, which allows the continuous adaptation, based
on the users behavior, and also requires the continuous
monitoring of adaptation results and the performance of the
help system in terms of user satisfaction.

Looking at the triggers to start the assistance, system-, user-
and mixed initiative also pose different challenges. A
system-initiative SEUI needs to be aware of situations,
where users are not certain of how to proceed, and then find
a reason (and a solution) in order to solve the users’
problem. For instance, Microsoft’s Paper Clip discourages
users due to the lack of information about the context-of-
use, i.e. it is not aware of the context. For user-initiative
SEUIs the major issue lays in the ambiguity of a user’s
utterance, the system has to rely on the terms of the current
domain, current task and the discourse of the user interface,
i.e. it needs to be aware of the system state.

The issue of ambiguity then also refers to the knowledge
base (KB) of an SEUI. As discussed earlier, the usage of an
ontology or presumption of certain structures of the KB is
inevitable. Then, the challenge is accounted to the quality
of the ontology matching algorithm and the way of
extracting and processing information. Furthermore, this
quality depends also on the fineness of the world
knowledge and common knowledge for SEUIs with
knowledge which goes beyond the intended domain of the
application.

Relating to the scope of SEUIs, there might not be one best
way for supportive UIs. It depends on the needs of the user,
the usage situation and the application if SEUIs are
integrated parts or separate applications. Being external
applications, this however also poses requirements on the
application in terms of traceability of the current state and
access to design information and semantic meaning of
elements. An application might need to conform to a
specific structure in order to integrate self-explainability.
This has direct impact on the effort for application
developers/designers, which should be ideally minimal.
Thus, the challenge is to develop an open or standardized
programming/controlling interface for applications in order
to ease integration of SEUIs and access application
knowledge.

A MODEL-BASED APPROACH TO SEUI DEVELOPMENT
From our point of view, model-based development comes
along with major advantages in order to cope with
previously mentioned challenges. Models provide explicit
information about the application state and the contextual
space instead of weaving information in unstructured
program code. For the sake of separation of concern,
information is held in several models each covering a
certain aspect (e.g. context model, interaction model,
abstract UI model, concrete UI model, final UI model, etc.).
An SEUI can access this information easily and needed
information can be retrieved from these models. For
inferring on semantics, the SEUI benefits from the self-
explanatory nature of models. The MASP has built-in

20

features for monitoring the application state and
interactions [2], which lower the development effort for
recognizing trigger situations of an SEUI. Another model-
based approach on Automated Usability Evaluation (AUE)
described in [10] is simulating a user model at run-time in
order to identify lacks in usability. This approach could also
be applied in order to identify problematic states of an
application during runtime and provide hints to the user (for
system-initiative SEUIs). Models have been proposed and
utilized as basis for adaptive systems [2][3][5]. Regarding
the appearance, an SEUI integrated into such systems needs
to be as adaptive as the surrounding environment.

CONCLUSION AND OUTLOOK
Self-explanatory user interfaces raise supportiveness of user
interfaces significantly. We have proposed a definition for
SEUIs, which is “the ability (of a user interface) to reason
on the application state and generate additional
explanations or useful hints of higher value which support
users in fulfilling their desired task faster.“. It was stated
that SEUIs mainly differentiate in their activation
mechanism (user-/system-/mixed-initiative, initially), their
appearance (multi-device, multi-modality, multi-window,
overlay, built-in), their knowledge base (manual, system
description, system analysis, external, hybrid) and their
scope (application specific, multi-application, general
assistance). We are conscious that our classification is not
completive but consider it as a first step towards a better
understanding of SEUI as a special kind of SUI. The
challenges and open issues on SEUI lay in the design and
the understanding of users and their needs. Furthermore, it
was elaborated, how development of SEUIs can benefit
from a model-based approach.
As a conclusion, the ultimate SEUI from our perspective is
a companion, which is ubiquitously accessible and provides
useful hints at any time. It would only take initiative if a
user needs help and would incorporate knowledge beyond
the current application’s domain. For retrieving external
information, it would apply approved algorithm for
matching terms against ontologies. In order not to allocate
space on the screen, the user could communicate entirely
via voice, but it remains optional for overlay mode.
Moreover, the SEUI would act in the same way as an expert
knowing your personal needs and observing any of your
interactions.

REFERENCES
1. Bezold, M. Describing user interactions in adaptive

interactive systems. In UMAP (2009), 150–161.

2. Blumendorf, M., Lehmann, G., and Albayrak, S.
Bridging models and systems at runtime to build
adaptive user interfaces. In EICS ’10: Proceedings of
the 2nd ACM SIGCHI symposium on Engineering
interactive computing systems, ACM (2010).

3. Clerckx, T., Luyten, K., and Coninx, K. Dynamo-aid: A
design process and a runtime architecture for dynamic

model-based user interface development. In EHCI/DS-
VIS (2004), 77–95.

4. Dingli, A., Wilks, Y., Catizone, R., and Cheng, W. The
companions: Hybrid-world approach. In International
Joint Conference on Artificial Intelligence
(IJCAI)(Pasadena, CA, 2009).

5. Duarte, C. Design and Evaluation of Adaptative
Multimodal Systems. PhD thesis, Department of
Informatics, University of Lisbon, March 2008.
DI/FCUL TR-08-9.

6. García Frey, A., Calvary, G., and Dupuy-Chesa, S.
Xplain: an editor for building self-explanatory user
interfaces by model-driven engineering. In Proceedings
of the 2nd ACM SIGCHI symposium on Engineering
interactive computing systems, EICS ’10, ACM (New
York, NY, USA, 2010), 41–46.

7. Kang, H., Plaisant, C., and Shneiderman, B. New
approaches to help users get started with visual
interfaces: multi-layered interfaces and integrated
initial guidance. In dg.o ’03: Proceedings of the 2003
annual national conference on Digital government
research, Digital Government Society of North America
(2003), 1–6.

8. Kern, M., Trollmann, F., Blumendorf, M., and
Albayrak, S. Adaptive user interface assistance in smart
environments. In Proceedings of the Workshop on
Meaning and Matching (AISB2010), De Montfort
University Leicester, SSAISB (2010).

9. Myers, B. A., Weitzman, D. A., Ko, A. J., and Chau, D.
H. Answering why and why not questions in user
interfaces. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
ACM (New York, NY, USA, 2006), 397–406.

10. Quade, M., Blumendorf, M., and Albayrak, S. Towards
model-based runtime evaluation and adaptation of user
interfaces. In Proceedings of International Workshop on
User Modeling and Adaptation for Daily Routines
(UMADR2010): Providing Assistance to People with
Special and Specific Needs (2010).

11. Rich, C., and Sidner, C. DiamondHelp: A generic
collaborative task guidance system. AI Magazine 28, 2
(2007).

12. Roberts, R. Help: a question answering system. In
AFIPS ’70 (Fall): Proceedings of the November 17-19,
1970, fall joint computer conference, ACM (New York,
NY, USA, 1970), 547–554.

13. Stede, M., and Schlangen, D. Information-seeking chat:
Dialogue management by topic structure. In
Proceedings of the 8th Workshop on Semantics and
Pragmatics of Dialogue, CATALOG 04, Barcelona,
2004 (2004).Autonomous Systems (ICAS 2008)

21

Supportive User Interfaces in Adaptation

Víctor López-Jaquero
Laboratory on User Interaction & Software

Engineering (LoUISE)
University of Castilla-La Mancha

02071 Albacete, Spain
+34 967 59 92 00

victor@dsi.uclm.es

Francisco Montero
Laboratory on User Interaction & Software

Engineering (LoUISE)
University of Castilla-La Mancha

02071 Albacete, Spain
+34 967 59 92 00

fmontero@dsi.uclm.es

ABSTRACT
In this paper a discussion of how supportive user interfaces
can be used in user interfaces with adaptation capabilities is
provided. This discussion in made using as reference
ISATINE adaptation framework, where the stages for a
proper adaptation process and the tasks the user can get
involved during the adaptation process are clearly
described. Moreover, some open questions are enunciated
to help in the identification of open issues in supportive
user interfaces field.

Keywords
Supportive user interfaces, adaptation, ISATINE adaptation
framework

INTRODUCTION
The growing complexity of the applications being currently
developed to match complex functionality requirements,
and the myriad of situations where the users want to
interact with those applications has provoked the creation
of complex user interfaces. Nevertheless, the complexity of
the user interfaces produced together with the great number
of features available in the user interface can easily lead to
the misuse or underuse of the applications, by-passing
important features that could increase user performance.

Furthermore, another issue found in complex applications
covering a wide range of requirements is that each group of
users takes advantage of a small part of the functionalities,
but all the extra unused features still remain in the user
interface, occupying screen space and conveying extra
cognitive load to the user that is not required to perform the
tasks.

These issues go beyond regular desktop applications, and
get even worse for those applications designed for mobile
devices, since the space available to present the user
interface is greatly reduced. Thus, the functionalities found
more common during the design process are usually the
fastest to be carried out though the user interfaces. But,
what if other users encounter problems finding some other

functionality considered to be unimportant during the
design? Should not the application support rearranging the
user interface to support these unforeseen needs?

So far, the problems identified concern the complexity of
the user interface and the heterogeneity of contexts of use.
Nevertheless, another issue comes to play: understanding
the user interface (one of the factors usability is considered
to be composed of). Even for user interfaces with a reduced
set of functionalities, the user can find it hard to understand
how to carry out a task because the designers failed to
match user’s mental model.

In all these situations, supportive user interfaces (SUIs) [4]
can prove useful. We find that this kind of user interfaces
are also closely related to adaptation, as considered in
ISATINE framework [2], because SUIs are required to help
in performing several stages of the adaptation process
proposed in this framework.

SUPPORTIVE USER INTERFACES IN ADAPTATION
Adaptation can range from adaptability, where the user is in
charge of performing the adaptation process, to adaptivity,
where is the system the entity in charge of performing the
adaptation process. Nevertheless, many intermediate
configurations are possible, where different entities are
responsible for the several stages required to carry out user
interface adaptation.

Next, ISATINE framework is briefly discussed to illustrate
how adaptation, either adaptability or adaptivity, or any
other combination to reach adaptation, should be enriched
with SUIs throughout the adaptation process stages.

ISATINE adaptation framework
ISATINE framework [2] is a specialization of Norman’s
theory of action for adaptation, aiming at covering the
whole adaptation cycle, going beyond most adaptation
frameworks, mostly focused on the actual execution of the
adaptation. Three entities are considered in this framework:
the user (U), the interactive system (S), or any third party
(T). Find below a brief explanation of the stages found in
this adaptation process:

• Goals for user interface adaptation: any entity (U,
S, or T) may be responsible for establishing and
maintaining up-to-date a series of goals to ensure
user interface adaptation.

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

22

• Initiative for adaptation: this stage is further
refined into formulation for an adaptation request,
detection of an adaptation need, and notification
for an adaptation request, depending on their
location.

• Specification of adaptation: this stage is further
refined in specification by demonstration, by
computation, or by definition, depending on their
origin: respectively, U, S, or T.

• Application of adaptation: this stage specifies
which entity will apply the adaptation specified in
the previous stage. Since this adaptation is always
applied on the UI, this UI should always provide
some mechanism to support it.

• Transition with adaptation: this stage specifies
which entity will ensure a smooth transition
between the UI before and after adaptation. For
instance, if S is responsible for this stage, it could
provide some visualization techniques, which will
visualize the steps, executed for the transition.

• INterpretation of adaptation: this stage specifies
which entity will produce meaningful information
in order to facilitate the understanding of the
adaptation by other entities. Typically, when S
performs some adaptation without explanation, U
does not necessarily understand why this type of
adaptation has been performed.

• Evaluation of adaptation: this stage specifies the
entity responsible for evaluating the quality of the
adaptation performed so that it will be possible to
check whether or not the goals initially specified
are met.

SUI in ISATINE
Supportive user interfaces could be thought for almost
every stage in ISATINE framework. In this section some
examples are provided to show how they could be used to
help in the adaptation process in several stages. Some
specific examples of SUI supporting ISATINE framework
can be found in [3].

Specification of adaptation
In this stage there are two tasks in which the user could be
supported. The first one is specifying the adaptation that the
user would like to apply. This is already very common for
adaptable or customizable user interfaces, where the user is
supported in specifying what to change. It is also a
common task in end-user programming for user interface
adaptation. In this kind of task the user should be presented
with a user interface to support the specification of the
adaptations. Notice how this supportive user interface could
be either part of the regular user interface or not.

The second task in this stage where the user can be
supported is the selection of what adaptation to apply
among a set of plausible adaptations. A user interface
should be provided by the system to do this task. Very
simple SUIs could be used to support the user, i.e. a simple
selection list. However, much more complex SUIs could be

imagined, i.e. providing previews for each adaptation
selectable.

Application of adaptation
In this stage the adaptation selected should be applied to the
user interface. If is the user the entity in charge, then a user
interface must be provided to carry out this task. For
instance, if the adaptation to be applied is for changing user
interface elements layout, the user could be supported by
providing a user interface where the user can move around
the user interface.

Evaluation of adaptation
In this stage the system should assess how good an
adaptation has been. If it is the user the entity in charge of
performing this stage, then a user interface should be
presented for the user to express his opinion. For instance,
in [1] they present to the user a simple UI with different
smilies, which represent how happy the user feels about the
last adaptation.

Next, a discussion of SUIs in adaptation is included.

DISCUSSION AND OPEN QUESTIONS
The first thing to clarify is what we mean with supportive
user interface. For us a SUI is a UI that exploits UI meta-
model information to convey/receive information about the
UI to/from the user, or provides a means to modify the
structure, behavior or contents of the UI. Regarding the
definition of SUI one question arises: are SUI a
complement or an evolution of Mega-UI [5]?

SUI can be either part of the regular UI or not.
Nevertheless, they should not escape general UI design
principles and guidelines, although some extra ones should
appear because of their supportive nature. We have plenty
of design guidelines, interaction patterns, heuristics, design
principles and standards, but how can be integrate all this
plethora of knowledge in the design process, and more
concretely in the design in the design process of SUI.

The design of SUIs for adaptation should pursue especially
consistency, for the user to gain a common mental model
for user interface adaptation tasks, as the user already has
for the general task in a user interface.

Another open question is what the relation is between SUI
and Intelligent User Interfaces (IUI). Therefore, we have to
consider supportive vs. intelligent user interfaces. Will the
S in SUI finally become “Semantic” to achieve Semantic
User Interfaces. Has the evolution in the Web gone further
beyond to reach the desktop to foster cooperative, semantic
and ubiquitous desktop user interfaces?

SUIs require also the user of proper metaphors to prevent
the user from becoming puzzled because of the usual
overwhelming complexity of the underlying UI meta-model
that SUI should manage.

Yet another open question is the evaluation of this kind of
user interfaces. What criteria and metrics should be
considered during the evaluation of SUIs? Is usability
enough?

23

Still much understanding and general principles for SUI
design are to be discovered. Adaptation capabilities are
clearly a good domain to test this understanding and
principles for SUI design, since as discussed in ISATINE
framework, it requires of SUI for many of the adaptation
stages to carry out a proper adaptation process.

To sum up, should we go one step further, and even coin
the term Supportive User Interfaces Engineering (SUIE)?
What is the relation SUIE has with Usability Engineering,
Model-Based Development of User Interfaces or Model-
Driven Development?

In this sense, we do believe ISATINE framework can
provide a guide for the consideration of the specification,
design, deployment and evaluation of SUIs.

ISATINE framework can help in providing SUI designers
with a guide of what aspects should address the designer to
create a SUI that: (i) effectively manipulates the user
interface (therefore the specification of what is manipulated
in the user interface should be carried out: Specification
state in ISATINE), (ii) actually makes the required changes
to the user interface (Execution stage in ISATINE), (iii)
makes sure that the transition to the new version of the user
interface produced by the SUI from the original one is
smooth enough so the user does not get confused
(Transition stage in ISATINE) or (iv) explains the user
what changes were made (INterpretation stage in
ISATINE). In our opinion, SUI designers could benefit
from ISATINE guidelines for adaptation, but it should be
probably refined to reflect the peculiarities of SUI.

ACKNOWLEDGMENTS
This work has been partially supported by grant PEII09-
0054-9581 from the Junta de Comunidades de Castilla-La

Mancha and also by the grant TIN2008-06596-C02-01
from the Spanish Government.

REFERENCES
1. Arhippainen, L., Rantakokko, T. and Tähti, M.: 2005,

Navigation with an Adaptive Mobile Map-Application:
User Experiences of Gesture- and Context-
Sensitiveness. In: Proceedings of 2nd International
Symposium on Ubiquitous Computing Systems,
UCS’2005, Tokyo, November 8-9, 2004. Vol. 3598 of
Lecture Notes in Computer Science. pp. 62–73,
Springer, Berlin.

2. López Jaquero, V., Vanderdonckt, J., Montero, F.,
González, P. Towards an Extended Model of User
Interface Adaptation: the ISATINE framework, Proc. of
Engineering Interactive Systems 2007, EIS’2007
(Salamanca, 22-24 March 2007), M.B. Harning, J.
Gulliksen (eds.), Springer-Verlag, Berlin, 2007. ISSN:
0302-9743

3. López-Jaquero, V., Montero, F. and Gonzalez, P. AB-
HCI: an interface multi-agent system to support human-
centred computing , IET Softw. 3, 14 (2009),
DOI:10.1049/iet-sen:20070108.

4. Demeure, A., Lehmann, G., Petit, M. Calvary, G.
Supportive User Interface description.
http://www.supportiveui.org/cfp.html

5. Sottet, J-S., Calvary, G., Favre, J-M. and Coutaz, J.
Megamodeling and Metamodel-Driven Engineering for
Plastic User Interfaces: MEGA-UI. In Human-Centered
Software Engineering, pp 173-200, Seffah, A.,
Vanderdonckt, J. and Desmarais, M. C. (eds.), Springer
Human-Computer Interaction Series. 2009.

24

A Supportive User Interface for Customization of
Graphical-to-Vocal Adaptation

Fabio Paternò
CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy
Fabio.Paterno@isti.cnr.it

Christian Sisti
CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy
Christian.Sisti@isti.cnr.it

ABSTRACT

In this paper, we describe an approach to adapting
graphical Web pages into vocal ones, and show how
the approach is supported by a tool that allows the user
to drive the adaptation results by customizing the
adaptation parameters. The adaptation process exploits
model-based user interface descriptions.

Keywords

Vocal Interfaces, Model-Based, Adaptation, Supportive
User Interfaces, Accessibility.

INTRODUCTION

Vocal interfaces are important in a number of different
contexts, such as for vision-impaired users or when the
visual channel is busy (e.g, car driving) [7]. Design
techniques in developing Vocal Interfaces has been
widely studied [1] but little attention has been paid on
how to adapt web pages for vocal browsing. Moreover,
recognition of natural language is improving [2] and in
future it will be possible to develop vocal interfaces
able to recognize any user input.

We found that adaptation of graphical Web pages into
vocal ones needs to be supplemented through
Supportive User Interfaces (SUI), that enable the users
to customize the adaptation. Indeed, a completely
automatic transformation cannot provide good results
in many case.

The adaptation process is based on the exploitation of
MARIA [5], a recent model-based language, which
allows designers to specify abstract and concrete user
interface languages according to the CAMELEON
Reference framework [3]. The customization tool has a
Web interface allowing the user to drive the Vocal
Interfaces generation.

In this workshop paper we firstly present the overall
Model-Based Language Architecture, secondly we
introduce the adaptation approach and lastly we show
an example of application of the supportive interface
for graphical-to-vocal adaptations, also showing how a
parameter change can lead to different results in the
final user interface.

MODEL-BASED INTERFACES in MULTI-DEVICE
ENVIRONMENTS

MARIA is a model-based language, which allows
designers to specify abstract and concrete user interface
languages. Abstract User Interfaces (AUIs) are
independent on the interaction modalities, while

Concrete User Interfaces (CUIs) are dependent on the
interaction resources of the target platforms but are
independent of the implementation languages.

An AUI is composed by a number of presentations, a
data model and a set of external functions. Moreover
each presentation contains a number of user interface
elements, called interactors, and a number of, so
called, interactor compositions. Examples of interactor
compositions are grouping and relations to
group/relate different interactors. The interactors can
be classified in terms of editing, selection, output and
control and may have associated a number of events
handler.

As already mentioned, the CUIs are dependent on the
interaction resources of the target platform so, while in
Desktop modality a presentation can be defined as a
set of user interface elements perceivable at a given
time, in the case of Vocal modality a presentation is
defined as a set of dialogues between user and platform
that can be identified as a logical unit (e.g. the
communication necessary for a vocal form filling).

Figure 1. Some Possible Abstraction Levels

Figure 1 shows the relationship between AUI and CUIs
limited to Desktop and Vocal target platform (some
other target platforms available are Mobile, Multi-
Touch and Multi-Modal). Figure 1 also represents
some possible transformations that can be performed,
such as the HTML generation from Desktop Logical

25

Descriptions (an instance of a Desktop CUI) and the
VoiceXML generation from Vocal Logical
Descriptions.

The aim of our work is to develop an adaptation
process that take as input HTML pages, and generates
corresponding VoiceXML (opportunely adapted for
voice modality) documents. This is not a simple task
and raises a large number of adaptation issues (such as
the retrieving of the menu items for vocal interaction
and the adaptation of images). In this context
Supportive User Interfaces can provide useful support,
in particular in the customization of the adaptation
rules.

APPROACH

Our solution is based on an adaptation server that
consists of three modules (see Figure 2):

 Reverser: parses the Web pages and builds up
an equivalent Desktop Concrete Logical
Description. Adapter: transforms the Desktop Concrete
Logical Description into an adapted Vocal
Concrete Logical Description. Generator: generates the VoiceXML taking
in input the Vocal Concrete Logical
Description.

Figure 2. The Adaptation Server Architecture.

The reverser, taking into account the associated page
style-sheet, transforms the HTML tag patterns into
opportune Desktop CUI elements. This process enables
the possibility to obtain a more semantic description.
The adapter is subdivided into three sub-modules that
are executed in pipeline:

1. Pre-Converter: removes the elements that
cannot be rendered vocally (e.g., images
without ALT tag) but also corrects possible
inconsistences due to the reverse process (e.g.,
grouping containing only one interactor due to
formatting purposes).

2. Menu-Generator: generally the vocal
interfaces are navigated through lists of
menus. This step aims to convert a Desktop
Logical Description into a new one structured
into a set of of menus/sub-menus
hierarchically structured.

3. Graphical-to-Vocal Mapper: with this step
each elements of the Desktop CUI is mapped

into a (semantically equivalent) element of a
new Vocal CUI.

The final implementation language is VoiceXML 2.0
[8], a standard language, supported by W3C, for the
specification of Vocal Interfaces. The VoiceXML code
generated by the transformation has been tested with
the Voxeo Voice Browser [9] (suggested by W3C), and
has passed the validation test integrated in it. More
detail on the VoiceXML generation is provided in [4].

THE CUSTOMIZATION SUPPORT

The adaptation process is complex and the results
depend on a number of factors, such as the structure of
the Web pages in input and their conformance to the
accessibility guidelines. In order to obtain better results
we have designed a Supportive User Interface, which
allows the user to customize the adaptation results.
The adaptation process can be driven setting a number
of parameters. Such parameters can influence different
states of the transformation process.
To adjust the pre-conversion step the following
parameters are available:
 Remove Whitespaces: if enabled it removes

the grouping that contains only whitespaces
from the computation. This can happen due to
graphical formatting purposes (e.g., list of
“ ”). Min Image Width/Height: images under
these size limits (that not contains ALT
attribute) are removed. Min Grouping Threshold: in the
specification provided by the reverse
engineering removing grouping operators
when they contain little text (below the
threshold) to synthesize.

To customize the menu generator step it is possible to
set the following parameters:
 Max Grouping Threshold: if the textual

grouping content length is above the max
threshold, then new menu items are created by
splitting the original grouping. Descr/Nav ratio: to set the ratio between the
description and navigator interactors in order
to identify the groupings that contain a
navigator bar.

Finally, to customize the mapper step, the parameters
are:
 Multiple Choice: to set how the final vocal

interface will perform the multiple choice.
There are two solutions: Yes/No Questions, for
every possible choice the platform will ask a
Yes/No confirmation to the user; Grammar
Based: the user can select more than one

26

possible choice with one single sentence
(listing the choices in sequence). End Form Sound: to decide if each vocal
dialogue should terminate with a short sound.

Figure 3 and 4 show our Supportive User Interface that
allows such parameterization. The left panel (shown in
Figure 3) contains some modifiable parameters and
their default’s values.

 Figure 3. Customization of the adapter.

The right panel (see figure below) shows the structure
and the menu items of the generated vocal page. In this
way the designer can decide whether to download the
final vocal interface (as a zip file containing the
VoiceXML documents) or change the transformation
parameters in order to obtain a different structure.

Figure 4. Application right panel: vocal menu structure.

EXAMPLE CONFIGURA TION PARAMETER
CHANGE

In this section we show an example of configuration
parameter change, which affects the structure of the
resulting user interface.

In particular, we consider Max_Threshold parameter,
which defines the threshold in terms of text length to
render vocally. If the length exceeds this limit the
adaptation system splits the presentation content. If we
set max_threshold = 2500 then we obtain the structure
in Figure 4.

Figure 4. Initial parameter set.

Thus, the Returning home part (see Figure 5) will be
rendered a single piece of information.

Figure 5. The considered content part.

If we change the parameter to max_threshold = 700
we obtain the structure in Figure 6.

27

Figure 6. The resulting modified structure

We can note that the resulting structure has more sub-
levels: the section Returning home is subdivided in
multiple parts, highlighted by dashed lines in Figure 7,
which can be further subdivided.

Figure 7. How the content is further divided.

CONCLUSION

A Model-Based approach to supporting Graphical-to-
Vocal Adaptation is introduced. A Supportive User
Interface is then proposed (as Web Application) in
order to help the user to manage the overall adaptation
process.

We consider this tool as useful support to provide users
with full control on the final results. Given the
complexity of the existing Web content, we plan to add
new features to both the adaptation rules and the
customization interface, in order to have further
flexible control on the adaptation results.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Artemis
EU SMARCOS and the ICT EU SERENOA projects.

REFERENCES

1. A., Edwards and I., Pitt.: Design of Speech-
Based devices. Springer (2007).

2. A., Franz. and B., Milch.:Searching the web
by Voice. In proceeding of the 19th
international conference on Computational
Linguistic - Volume 2, pp. 1-5, Stroudsburg,
PA, USA. (2002).

3. Calvary, G., Coutaz, J., Bouillon, L., Florins,
M., Limbourg, O., Marucci, L., Paternò, F.:
The CAMELEON reference framework.
CAMELEON project, Deliverable 1.1. (2002).

4. F., Paternò and C., Sisti.: Deriving Vocal
Interfaces in Multi-device Authoring
Environments. In Proceedings of the 10th
International Conference on Web Engineering,
pp. 204-217 (2010).

5. Paternò F., Santoro C., Spano L.D.: MARIA:
A universal, declarative, multiple abstraction-
level language for service-oriented
applications in ubiquitous environments.
ACM Trans. Comput.-Hum. Interact., 16(4).
(2009).

6. UNICEF. http://www.unicef.org/.

7. Voice Browser Activity.
http://www.w3.org/Voice/.

8. Voice extensible markup language
(VoiceXML) version 2.0.
http://www.w3.org/TR/2009/REC-
voicexml20-20090303/7.

9. Voxeo Voice Browser.
http://www.voxeo.com/.

28

Design and Implementation of Meta User Interfaces for
Interaction in Smart Environments

Dirk Roscher, Grzegorz Lehmann, Marco Blumendorf, Sahin Albayrak
DAI-Labor, TU-Berlin

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
firstname.lastname@DAI-Labor.de

ABSTRACT
Interaction in smart environments encompasses multiple
input and output devices, different modalities, and involves
multiple applications. Each of these aspects is subject to
changes and thus high adaptation requirements are posed
on user interfaces in smart environments. One of the
challenges in this context is the assuring of the usability of
highly-adaptive user interfaces. In this paper, we describe
the design and implementation of a Meta User Interface
that enables the user to observe, understand, manage and
control ubiquitous user interfaces. Our major contribution
is a functional model and system architecture for Meta-
User Interfaces for smart environments.

Keywords
Supportive UIs, meta-UI, smart environments

INTRODUCTION
Smart environments comprehend networks of (interaction)
devices and sensors that influence the interaction between
humans and computers. In contrast to the traditional usage
of applications with one PC, the interaction in smart
environments comprehends a dynamic set of multiple
devices supporting different modalities and involves
multiple applications and users. Based on an analysis of
multimodal interaction in smart environments, the notion of
ubiquitous user interfaces (UUIs) with five distinguished
features has been defined in [1]:

1. Shapeability: Identifies the capability of a UI to
provide multiple representations suitable for different
contexts of use on a single interaction resource.

2. Distribution: Identifies the capability of a UI to present
information simultaneously on multiple interaction
resources, connected to different interaction devices.

3. Multimodality: Identifies the capability of the UI to
support more than one modality.

4. Shareability: Denotes the capability of a UI to be used
by more than one user (simultaneously or sequential)
while sharing (partial) application data and (partial)
interaction state.

5. Mergeability: Denotes the capability of a UI to be
combined either partly or completely with another UI

to create combined views and input possibilities.

These features enable UUIs to address the variable
dimensions of smart environments (multiple devices,
modalities, user, applications and situations). By addressing
these challenges, UUIs become adaptive and can respond to
dynamic alteration of one or more features at runtime. Such
adaptations can be done either manually by the user or
automatically by the runtime system. An important aspect
in this sense is the transparency of system decisions and
user control of the features. With respect to these needs, the
term meta user interface (meta-UI) was established by
Coutaz et al. [2] as a definition of “an interactive system
whose set of functions is necessary and sufficient to control
and evaluate the state of an interactive ambient space”.
Meta-UIs have the potential to help the user in
understanding and controlling the high variability within
the interactive space. [3] presents a model-driven approach
for developing self-explanatory UIs that make design
decisions understandable to the user. In [4] a graphical
representation of the system’s state explains the
interconnections between sensors and devices as well as
their effects. These works show how the interaction in a
highly adaptive interactive space can be improved when
giving the user appropriate UI evaluation and control tools.
However, there is yet no common understanding of the
necessary features of meta-UIs for smart environments.

In the next section, we present an example UUI scenario, in
which a meta-UI assists the user. In the section thereafter,
based on the features of UUIs and the scenario, we describe
necessary functionalities of a meta-UI for UUIs.
Afterwards, we discuss the requirements for a runtime
architecture for meta-UIs as well as for the actual
applications. The section thereon illustrates our current
implementation, addressing several of the identified
challenges. Finally, we conclude the paper and denote some
open research challenges.

INTERACTION IN A SMART ENVIRONMENT
The following scenario illustrates an example UUI and a
possible usage of a meta-UI with the help of a calendar
application utilized in a smart home environment. Thereby,
we want to underline the necessity of control and
evaluation capabilities that are required to analyze and
configure the ubiquitous calendar application.

Dieter is living in a smart home, equipped with a broad
range of networked devices and sensors. Every morning,
when Dieter is in the kitchen, he asks his smart home to

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

29

present him the calendar application with the appointments
for today. (1) Dieter can control how the information is
presented: if he utters the words “read out”, the
appointments are presented via voice. Saying “show there”
and pointing on the kitchen screen triggers the display of
information on the screen. “Silence” disables all voice
output. (2) When Dieter leaves the kitchen and walks
around his smart home, the voice output follows him until
all appointments are read out. Similarly, the displayed
information also moves with him to the screens in his
vicinity until he confirms to be done with his daily
planning. (3) This behavior has been configured and trained
by Dieter once after he installed his new calendar
application. (4) Training took some effort though, and
Dieter could continually monitor the system during the
training process, while the system was giving valuable
hints about why certain adaptations had been applied.

Sometimes Dieter needs to reschedule appointments to
avoid conflicts. (5) To do so, he orders the system to
change from voice or screen output to a presentation on the
TV, synchronized with the display and controls of his
smartphone. This allows him to interact and check details
while keeping the overview on the big screen.
Rescheduling appointments occasionally raises the need to
contact colleagues and customers to agree on a different
date or timeslot. (6) For this purpose, Dieter can configure
the calendar application to set up video calls to the
provided contact data while sharing the relevant calendar
information with the called person. (7) Dieter can
additionally select information from his notes application to
share it. (8) He has the ability to store such a configuration
and is able to reactivate the configuration whenever he
wants.

EVALUATING AND CONTROLLING UUIs
The above scenario exemplifies UUIs with their five
features (shapeability, distribution, multimodality,
shareability and mergeability) and shows how the user
influences each of these features at runtime. In the
following, we describe the functionalities of a meta-UI in
general and for all five features of UUIs in more detail.

General Features
According to the definition given in [2], a meta-UI provides
evaluation and control features, which in our case allows to
manage the adaptation of UIs in our example smart
environment. The evaluation functionalities allow users to
understand the behavior and current status of the interactive
system, while the control features allow the user to
influence and change the interactive system according to
their needs.

Evaluation functionalities (e.g. (4) in our scenario) address
the need of the user to always have access to information
about the state of the system and enable the system to
inform the user about any changes in the state of the
interactive space. Changes do not only include automatic
adaptations of the interactive system, but also cover manual
adaptations where the user has to be informed as well
especially when the manual adaptation does not provide the
results expected by the user. Another very important

information for the user in case of automatic adaptations is
the reason why the adaptation happened. Information can
thereby be conveyed implicitly by the look and feel of the
UI [5] or be explicitly given to the user, which might be
annoying in some cases though.

On the other hand, the control functionalities enable users
to configure the interactive system according to their needs.
That includes the possibility to configure the features
independently on various levels of detail, the triggering of
adaptations as well as the control of ongoing adaptations.
For automatic adaptation, there is a need to configure the
triggers that activate the adaptations, or to (de-)activate
such adaptations at all.

The meta-UI has to support the user in the handling of the
numerous situations and the possible configurations of the
interactive system. Therefore the meta-UI has to provide
capabilities to learn from the changes users’ made and to
store configurations and reapply them when needed ((3)
and (8) in scenario).

From our perspective, the meta-UI does not provide
functionalities for end-user development as the user cannot
create new functionality but “only” adapts and explores the
interactive system based on existing functionality.

Shapeability
(5) shows how the user switches between the utilization of
different devices and how this triggers the splitting of the
UI to two devices. This requires the adaptation of the UI to
the actual device features and the provisioning of different
representations for the different utilized devices.

In terms of the evaluation of the shapeability feature, any
adaptation of the graphical layout (e.g. rearrangements or
reorientation of UI elements) should be made transparent
for the user. For example, modern tablets and smartphones
automatically change their screen orientation depending on
how the user is holding them. Usually the orientation
changes are animated so the user can follow and understand
them. Another common shapeability feedback is a special
beep tone indicating the currently configured volume for
auditory UIs. Switching between different devices or
device combinations, as in the scenario (5), requires even
more advanced evaluation features. Users cannot follow the
reshaping of the elements across devices and have to be
aware of the changes between the different representations.
This e.g. includes added or removed information because of
more or less screen space.

One example for a more complex adaptation, which
requires explicit access to information about the reason of
the adaptation and means to control it, is the context-based
GUI layouting functionality presented in [6]. The
adaptation automatically resizes UI elements depending on
the position of the user relative to the currently used
display. Animations between different UI layouts are
helpful, but not always sufficient to understand the
adaptations. Thus, a meta-UI provides information about
the position of the user currently detected by the system
and the distance to the display. The user also has the
possibility to turn the automatic adaptations off at any time.

30

Distribution
As shown in the scenario (2, 5), in a smart environment the
user is able to use various interaction devices, between
which the UI is distributed. Furthermore, the devices can
also be changed dynamically by redistributing the UI. In
terms of evaluation, the user has to be able to keep track of
the distribution and may even want to explicitly inquire
where a UI element has been distributed to. The user needs
to know which devices are used for the output and also
which devices can be used to enter data. In case of a
redistribution of the UI the awareness of the changes can
e.g. be transported by hints like “as you can see on the right
display.”

The control possibilities for the distribution of a UUI range
from the application of distribution configurations
preconfigured by the developer, to a very detailed shifting
of single UI elements from one device (or even modality)
to another performed by the user. Thereby it is also
important for the user to know the devices available for a
re-distribution and be informed about the potential effects;
for example, if all tasks are still supported or if private
information is visible to other people on a public display.

A more complex adaptation example for the distribution
feature is the so called “follow me” mode illustrated in the
scenario (2). Activation of the mode leads to an automatic
redistribution of the UI to different devices based on
changing situations. The interaction resources (IRs)
available for the user are monitored and in case of changes
(IRs becoming available or not) the UI elements are
redistributed to a new calculated IR combination. Thereby,
it is especially important to provide feedback to the user.

Multimodality
In the scenario the use case (1) illustrates how the user
utilizes several modalities to interact with the application
and seamlessly switches between them.

The user needs to be aware of the currently possible input
modalities and ideally also the commands that are provided
in each modality (e.g. currently active voice commands,
which might be more than actually visible on the screen). A
possible solution for implicitly transporting the usable input
modalities in the graphical user interface is described in [5].
Control possibilities should at least include the turning on
and off for certain modalities. Considering the numerous
situations, it should also be possible to define certain
situations with certain modality combinations.

Shareability
The capability to share parts of the UI or information with
other users is illustrated in (7) within the scenario. This is
also a basis for collaboration. While collaborating with
other users, the user should be able to view and control
which UI parts are shared with whom and with what rights
(similar to e.g. social networking sites where it is possible
for a user to view how others see the user’s profile).
Security and privacy thereby play a very important role for
shareability. A meta-UI should make the user aware of (and
in some cases even warn about) the risks of sharing
security- or privacy-relevant UI parts.

Mergeability
Use case (6) shows how the user can merge different
applications. This can include the transfer of information
from one application to another as well as the combination
of functionalities from different applications. The
evaluation functionalities comprehend at least information
about the current status of merged applications.

To control the merge of different applications, users need to
know which applications or part of the applications can be
combined with each other. Furthermore, the effects of the
merge (e.g. enhanced functionality) also have to be made
available for the user.

Based on the scenario analysis carried out in this section, in
the next section, we derive requirements for the runtime
infrastructure providing a meta-UI.

ARCHITECTURAL REQUIREMENTS
Besides some general requirements, the evaluation and
control functionalities described in the previous section
pose requirements on the UUIs and the runtime
infrastructure in which the UUIs are deployed.

Figure 1: Meta-UI functionalities can be implemented either
in a separate meta-UI application (orange box) or be part of
applications. Control and evaluation interfaces of the runtime
infrastructure (1), the applications (2) and the smart
environment (3) are required to implement meta-UIs.

In general, a meta-UI for UUIs must be easily accessible
and provide clear functionalities for evaluation and control
of the UUIs in the environment. The meta-UI must hide the
complexity of the interactive space (in terms of many
devices, many modalities, many users, many applications,
many and complex situations), while making it perceivable
for the user.

As visualized in Figure 1, meta-UI functionalities can be
realized twofold – either as a separate meta-UI application,
or as part of the applications. In both cases, communication
interfaces between the applications, the runtime
infrastructure and the environment are needed.

To implement evaluation and control of each UUI feature, a
meta-UI must be able to refer to every UI element affected
by the respective feature. Thus, each application must

31

provide information about its UI elements, their interaction
capabilities and state ((2) in Figure 1). This information
must be made accessible for the part of the meta-UI
deployed within the runtime infrastructure ((1) in Figure 1).
Similarly, meta-UIs require information about the
environment, its users and the available platforms. The
context information must be gathered at runtime from
sensors and devices in the environment ((3) in Figure 1)
and made accessible for the meta-UIs ((1) in Figure 1). By
interpreting the information about the state of the
applications and the context, meta-UIs can explain the
current state of the interactive space.

As shown at various stages of the calendar application
scenario (1, 5, 6, 7), meta-UI control functionalities require
a detailed UUI configuration management. Through a
meta-UI the UUI behavior can be configured manually (8)
or automatically, e.g. by learning the user’s preferences (3).
Both pose a challenge for the runtime infrastructure
handling different configurations and matching them with
the current context situation.

A META-UI FOR SMART ENVIRONMENTS
Figure 1 shows a screenshot of our current implementation
of a meta-UI. On the top in the center the user sees the
modalities currently utilized for the application. At the
bottom four menus enable the configuration of different UI
features.

Figure 2: The Meta-UI surrounding the actual UI on the top
and on the bottom.

The Migration menu provides possibilities to redistribute a
UUI from one interaction resource to another, e.g. transfer
the graphical UI to a screen better viewable from the users’
current position. Through the Distribution menu the user
can control the distribution on more fine grained levels by
distributing selected parts of the UI among the available
IRs. The user can also specify if the selected parts should
be cloned or moved to the target IR. The selection of
relevant UI elements can be done through an overlay
display when activating the configuration possibility. The
Modality configuration menu provides possibilities to
configure the utilized modalities within the interaction.
This allows users to e.g. switch off audio output if it is
currently disturbing the user. Through the Adaptation menu
the user controls more complex automatic adaptation

functions (e.g. (de-)activates the follow me mode explained
above).

In the future we plan to add the possibility to store and
retrieve configurations. We also intend to implement the
evaluation and control of mergeability and shareability.

CONLUSION
Meta-UIs are one of the available instruments for handling
the variability of smart environments from the user’s
perspective. We have given an overview of general features
Meta-UIs should include as well as of possible evaluation
and control functionalities for UUIs. But to realize a well-
established Meta-UI for UUIs like the traditional desktop
metaphor for single PCs requires to solve many open
challenges.

One open issue is to determine the concrete set of needed
evaluation and configuration possibilities. Extensive user
studies need to be done to solve this. Thereby question like
the clustering and grouping of Meta-UI functionality has to
be answered including possible different versions of Meta-
UIs for e.g. users acting in a known or unknown
environment (this e.g. poses additional requirements on the
identification of interaction devices).

There are also several challenges for the configuration of
the features by the user. One example are automatic
adaptations that uses artificial intelligence. In cases of
inappropriate behavior, the user should also influence and
configure such algorithms. Another issue is the
determination of the reason why a user reconfigures the
system (context selection). Furthermore, the meta-UI is
also a user interface the user is interacting with. So the
same requirements for evaluation and configuration holds
true for itself.

REFERENCES
1. Blumendorf, M. Multimodal Interaction in Smart

Environments A Model-based Runtime System for
Ubiquitous User Interfaces. Dissertation, Technische
Universität Berlin, 2009.

2. Coutaz, J. Meta-user interfaces for ambient spaces.
Proceedings of TAMODIA'06, 2006, Springer, 1-15.

3. García Frey, A., Calvary, G. and Dupuy-Chesa, S.
Xplain: an editor for building self-explanatory user
interfaces by model-driven engineering. Proceedings of
EICS '10, 2010, ACM, 42-46.

4. Vermeulen, J., Slenders, J., Luyten, K., and Coninx, K.
I bet you look good on the wall: Making the invisible
computer visible. Proceedings of AmI '09, Springer.

5. Weingarten, F., Blumendorf, M. and Albayrak, S.
Conveying multimodal interaction possibilities through
the use of appearances. 2010.

6. Schwartze, V. Adaptive user interfaces for smart
environments. Proceedings of ICPS'10 Doctoral
Colloquium, 2010.

32

The end-user vs. adaptive user interfaces
Veit Schwartze, Frank Trollmann, Sahin Albayrak

DAI – Labor
Ernst Reuter Platz 7

Berlin, 10781Germany
+49 30/314 - 74064, 74048, 74001

{Veit.Schwartze, Frank.Trollmann, Sahin.Albayrak}@dai-labor.de

ABSTRACT
In smart environments, applications can support users in
their daily life by being ubiquitously available through
various interaction devices. Applications deployed in such
an environment, have to be able to adapt to different
context of use scenarios in order to remain usable for the
user. For this purpose the designer of such an application
defines adaptations from her point of view.

Because of situations, which are unforeseeable at design
time, the user sometimes needs to adjust the designers’
decisions. For instance, the capabilities and personal
preferences of the user cannot be completely foreseen by
the designer. The user needs a way to understand and
change adaptations defined by the designer and to define
new adaptations. This requires the definition of a set of
context of uses and adaptations applied to the user interface
in this situation. For this reason supportive user interfaces
should enable the user to control and evaluate the state of
the adaptive application and to understand “What happens
and why?”1 In this paper, we describe the requirements and
function of a supportive user interface to evaluate and
control an adaptive application, deployed in a smart
environment.

Keywords
Context aware applications, end-user support, adaptation-
and situation definition

INTRODUCTION
Applications, which are deployed into smart environments,
often aim to support the users in their every-day life. Such
applications must be able to adapt to different context of
use scenarios to remain useable in every situation. The
large set of possible properties of devices leads to an
infinite number of possible situations which cannot be
considered at design time completely.

1 Direct manipulation vs. interface agents, Shneiderman, B. & Maes, P.

Interactions, ACM, 1997, 4, 42-61

For instance there is a large set of heterogenic displays for
graphical user interfaces, which differ in their aspect ratio,
resolution and input possibilities. In addition, each user has
different abilities or disabilities as well as a personal taste.
Such preferences cannot be predicted or categorized in a
reliable way at design time. The ability of the user to
distribute user interface elements to different devices also
raises the problem of multi-application scenarios.

This raises the need for the user to understand and control
adaptations of the application at runtime in order to
personalize it to her liking. Following, we want to describe
the requirements and functions of a supportive user
interface, to enable the user to evaluate and control user
interface adaptations.

The next section describes the problem in more detail by an
example application. This is followed by the requirements
that have to be achieved by a supportive user interface. The
section work in progress then gives an overview about the
layout- and adaptation model, which are needed to generate
the position, size and style for each user interface element
and to change these layout dimensions to a specific
situation. The conclusion summarizes the paper and
describes the next steps.

PROPLEM DESCRIPTION
In this section we illustrate the problem space by an
example of a cooking assistant. Afterwards we derive
problems that have to be solved within the scope of
adaptive user interfaces.

The cooking assistant is an application that enables the user
to search for recipes and supports her while cooking them.
During the cooking process the cooking assistant is able to
control the devices in the kitchen. We deployed the cooking
assistant into a real kitchen environment like depicted in
Figure 1 top-left. The main screen, shown in Figure 1, top-
right, guides the user through the cooking steps and
provides help if needed. The bottom half of Figure 1
illustrates several spots corresponding to the different
working positions and user tasks in the kitchen.

33

In [4], we define different automatic adaptations, to adapt
the user interface to specific situations, defined by working
steps, to support the user while operating in the kitchen.
Two examples are:

• Distance-based adaptation: While cleaning dishes
the user wants to learn more about the next step. A
video helps to understand what has to be done.
Depending on the users distance to the screen, the
layout algorithm increases the size of video
element to improve the legibility. In this case the
distance of the user to the interaction device is
used to calculate the enlargement factor for this
element.

• Spot-based adaptation: While using the cooking
assistant, the user is preparing ingredients,
following the cooking advices and controlling the
kitchen appliances on a working surface. Because
it is difficult to look at the screen from this
position, shown in Figure 1 bottom, the important
information (Step description and the list of
required ingredients) are highlighted.

The described adaptions can improve the interaction with
the application but the user is not able to influence the
adaptations or to interfere, which can lead to frustration and
the denial of the application. For instance, if the user is
concentrated on the ingredients list or the textual step
description and the size of these elements is scaled down.
This problem space can be divided into the evaluation and
control of the system state and behavior.

Incomprehensible adaptations can lead to confusions for the
user. The user has little knowledge about the state of the
system and its internal representation of the environment,
user and platform characteristics. Therefore, it is hard for
her to comprehend why a specific adaptations has been
applied. It is not only important to know why something
happens but rather how to influence the behavior of the user
interface generation. At design time unknown environment
conditions and user characteristics leads to the wish to
adjust adaptations at runtime e.g. button size to the
preference, capabilities or rule of the actual user. For
example a user with a color blindness or degeneration of the
macula2 may wish to adjust the contrast and the font size to
improve the visibility and readability of the user interface.
In a similar case, left-handed users may wish to adjust the
position of interaction elements (e.g. buttons) so their hands
don’t hide important information during interaction.

Additionally, supportive user interfaces can allow the user
to define individual distributions, which leads to free space
or multi-application scenarios. These problems must be
solved. The next section defines the requirements of an
approach to enable the user to adjust, interfere or define
new adaptations.

2 That means the loss of vision in the center of the visual

field (the macula) because of damage to the retina.

Figure 1: The kitchen with the cooking assistant running on a touch screen (top-left), the main screen of the cooking
assistant (top-right), and the location spots defined by the context model (bottom).

34

REQUIREMENTS
The requirements of a supportive application are derived
from the need to evaluate the state of the system and to
control the behavior of the adaptation algorithm. They are
divided into:

• An approach, to define the layout of an application
and the adaptations to different context of use
scenarios and

• The support of the end-user to change these
adaptations to their preferences.

As aforementioned, heterogeneous interaction devices,
sensors and appliances makes the development of user
interfaces for smart environments a challenging and time-
consuming task. To reduce the complexity of the problem
user interface developers can utilize models and modeling
languages. User interfaces generated from models at design
time often fail to provide the required flexibility because
decisions made at design time are no longer available at
runtime. To handle this issue, the use of user interface
models at runtime has been suggested [6].

The approach shifts the focus from design to run time and
raises the need to support the end-user by the development
and personalization of applications. A meta-user interface
offers an abstract view to the state of the system and
provides an interface to influence its behavior. In [1] the
system provides access to the task and the platform model,
at which the platform model shows the interaction devices
currently available in the home. Like the described
approach, the supportive user interface should visualize the
user, environment, and platform information of the running
system in a simple way. Also the situations and
corresponding adaptations (system and user initiated)
should be transparent to the user. This means, the
adaptation rules representation must describe in detail why
and how the user interface changes and enable the user to
interfere. To make the execution of user interface
adaptations more comprehensible for the user, feedback
should be provided like the animation of user interface
changes.

Additionally, the user needs a way to delete or adjust layout
adaptations rules and thus change the situation precondition
and the adaptation. A preview of the changes avoids wrong
decisions. The definition of new adaptation rules requires
the selection of context variables, their accuracy and range
of values which accurately describe the situation.
Following, the user defines the executed adaption. First she
has to select the layout dimension (size, orientation,
containment) she wishes to influence, following she selects
a specific statement and the changes realized by the layout
generation algorithm. Furthermore, some statements need
parameters e.g. a statement, defines the size of a button,
which depends on the width of the finger.

The state of the realization is described in the next section.

WORK IN PROGRESS

In our implementation the components that realize
adaptations of user interfaces, which can be adjusted at
runtime, are the layout and the adaptation model, both
based on a model@runtime [6] approach to use the same
model at design and run time.

Additionally, we have done the first steps to expand the
approach of a meta-user interface described in [3] to
provide a simple way to adapt the layout generation
algorithm to the needs of the user.

Layout model

The layout model defines the structure of the user interface
and spatial relationships between user interface elements. It
consists of the user interface structure and a set of
statements. The user interface structure is determined by a
tree-like hierarchy of Containers and UI-Elements.
Containers can contain a set of nested containers and nested
elements. User interface elements are the visible parts of the
user interface structure and can present information to the
user. The statements describe the size, style and spatial
relationships between the user interface elements.

The approach differs from previous approaches in two
general aspects. First of all, we interpret the design models,
such as the task tree, the dialog model, the abstract user
interface model and the concrete user interface model. We
derive the initial structure of the user interface and suggest
statements influencing the spatial relationships and size of
user interface elements from this information. Therefore we
propose an interactive, tool-supported process that reduces
the amount of information that needs to be specified for the
layout. The tool enables designers to comfortably define
design model interpretations by specifying statements and
subsequently applying them to all screens of the user
interface. The layout model editor is described in [7] in
more detail.

Furthermore, different to other layout generation
approaches like [2], we create a constraint system at
runtime. A sub tree of the user interface structure marks the
user interface elements that are currently part of the
application’s visible user interface and a set of statements
regarding these nodes is evaluated and creates a constraint
system solved by a Cassowary constraint solver. The result
of a successful layout calculation is a set of elements, each
consisting of the location (an absolute x, y coordinate) and
a width and height value.

Adaptation model

The adaptation model describes possible situations and the
corresponding adaptations of the layout model of the
application. For this purpose, the adaptation model consists
of adaptation definitions. Each adaptation definition
consists of a tuple of a situation, describing when the rule
should be applied and an adaptation rule, describing how

35

the layout model is adapted. The adaptation rules may cause
changes to the user interface structure and may also add,
modify or delete statements.

Figure 2: Example graph of layout model adaptations

In the center of Figure 2 an example of an adaptation graph
is shown. Each node (�) defines a state of the layout model
(�) and each edge (�) a set of adaptation rules to
transform the layout model to a state, applicable for a
specific situation (�). A situation is determined by a certain
state of the user, device and environment.

Additionally, we have done first steps to define a supportive
user interface.

Supportive user interface

The supportive user interface should provide a way, to
understand the context information representation within
the system and allow the manipulation of the user interface
generation and adaptation algorithm.

To match the requirements defined above, a supportive user
interface should hide the complexity of the interaction
space (various sensors gathering information about the
environment, heterogenic interaction devices and user
characteristics) from the user. Also the complexity of
situation definition and recognition must be encapsulated.
Accordingly, the situation description, the adaptation
definition must be as simple as possible but as complex as
necessary. The user must be able to define powerful
adaptations but shouldn’t be overstrained. A way to do this
is to derive semantic information from the user interface
models to visualize the effected elements on the screen. To
preview the user interface changes, the supportive user
interface application simulates the layout model changes
and visualizes the result of the calculation to the user.

In [5] we use the information derived from the concrete
user interface model (e.g. all button elements) and allow the

user to define a statement which influences the size of these
elements. A screenshot is shown in Figure 3.

Figure 3: Supportive user interface screenshot

The supportive user interface application adds a statement
to the layout model and triggers the recalculation
mechanism to update the user interface of the application.

CONCLUSION

In this paper, we have defined the requirements of a SUI to
control and evaluate the state of the adaptive application
and have shown first steps of implementation.

In the future, we plan to increase the ratio of automatic
statements derived from the user interface models for the
layout generation process. Additionally, we take the domain
model objects influenced by the user interface elements into
account. The resulting set of statements reduces the amount
of designer defined statements. At run time, the situation
recognition and the adaptation algorithm must be evaluated,
especially the handling of imperfect (e.g. inaccuracy,
incompleteness, conflicting) context information and the
user interface adaptation over the time.

Last but not least, we have to implement the SUI concepts
and prove the acceptance of our approach by user studies.
Additionally, because the user doesn’t want to define all
adaptions manually, we want to explore the possibilities of
machine learning algorithms to reduce and simplify the
definition of adaptations.

REFERENCES
1.Joelle Coutaz. Meta-user interfaces for ambient spaces:

Can model-driven engineering help? In Margaret H.
Burnett, Gregor Engels, Brad A. Myers and Gregg
Rothermel, editors, End-User Software Engineering,
number 07081 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

2.Christof Lutteroth, Robert Strandh, and Gerald Weber.
Domain specific high-level constraints for user interface
layout. Constraints, 13(3):307 - 342, 2008.

3.Dirk Roscher, Marco Blumendorf, and Sahin Albayrak.
Using Meta user interfaces to control multimodal
interaction in smart environments. In Gerrit Meixner;
Daniel Görlich; K. Breiner; H. Huÿmann; A. Pleuÿ; S.

36

Sauer; J. Van den Bergh, editor, Proceedings of the
IUI'09 Workshop on Model Driven Development of
Advanced User Interfaces, volume 439 of CEUR
Workshop Proceedings, ISSN 1613-0073. CEUR
Workshop Proceedings (Online), 2009.

4.Veit Schwartze, Sebastian Feuerstack, and Sahin
Albayrak. Behavior sensitive user interfaces for smart
environments. In HCII 2009 - User Modeling, 2009.

5.Veit Schwartze, Marco Blumendorf and Sahin Albayrak.
Adjustable context adaptations for user interfaces at

runtime. In Proceedings of the Working Conference on
Advanced Visual Interfaces, pages 321 - 325, 2010.

6.Gordon Blair, Nelly Bencomo, and Robert B. France.
�Models@ run.time. Computer, 42(10):22 27, Oct. 2009.

7.Sebastian Feuerstack, Marco Blumendorf, Veit
Schwartze, and Sahin Albayrak. Model-based layout
generation. In Paolo Bottoni and Stefano Levialdi,
editors, Proceedings of the working conference on
Advanced visual interfaces. ACM, 2008.

37

A classification for Supportive User Interfaces derived
from Collaborative User Interfaces

Carsten Wirth

TU��erlin, DAI-Labor

Sekretariat TEL 14

Ernst-Reuter-Platz 7

10587 Berlin

carsten.wirth@dai-labor.de

Sahin Albayrak

TU-Berlin, DAI-Labor

Sekretariat TEL 14

Ernst-Reuter-Platz 7

10587 Berlin

sahin.albayrak@dai-labor.de

ABSTRACT
In this paper, we describe that the concept of supportive

user interface is overlapping with aspects, which can be

found in collaborative user interfaces and how this can help

to classify and design supportive user interfaces

accordingly.

Keywords
support, collaboration, classification

INTRODUCTION
The growing complexity of today's and future ubiquitous

systems which is driven by innovative enabling

technologies, new interaction techniques and concepts as

well as context-of-use dynamics is raising new challenges

regarding end user support. The User Interface (UI) has to

be well designed by hiding complexity from the user but

still providing easy access to all functions. It has to provide

customization regards to user’s personal needs but also has

to adapt automatically to the context of use for reducing

user disturbance while performing her tasks. These

requirements are partly conflicting so that the resulting

system behavior can lead to user confusion. To solve this

problem, the system has to enable the user to understand

what is happening and how the application behavior can be

controlled as desired.

A promising approach towards extended user support is

seen in equipping the UI with corresponding supporting

functionality, which is developed and/or provided

simultaneously with the primarily functions. These

Supportive User Interfaces (SUI) can come in manifold

ways which makes comparisons and discussions difficult

because there is missing a classification as well as a clear

definition of SUI by now. In this paper we propose a

classification which is derived from Collaborative User

Interfaces (COUI) since as we will show many parallels

between SUI and COUI can be drawn.

In the following section the concepts of SUI and COUI are

presented along with examples of their manifestations. This

enables to elaborate several parallels of the both UI types in

the section thereafter. As a result a classification for SUI is

proposed and implications on design aspects for SUI are

described afterwards. The paper will finish with a

conclusion and outlook.

RELATED WORK
In this section an overview of the UI types SUI and COUI

and their manifold manifestations is given. So that the

parallels between SUI and COUI can be elaborated on the

common understanding in the next section.

Supportive User Interfaces
The concept of SUI is to provide the user with support

within complex systems such as ubiquitous systems by

means of making the user able to understand what is

happening in the system and how the system can be

controlled as desired with the numerous interaction

possibilities provided. The SUI can come in manifold ways

like self-explanatory user interfaces [5], process driven

user-guidance environments [10], extended device control

support [9], guidance for different modalities [7], support

by utilizing contextual awareness [1], and Meta-UI, which

can control and evaluate the states of the underlying system

[2] and therefore can enable supportive functionality, and

assistance with visualization of system behavior [13]

amongst others.

Collaborative User Interfaces
Collaborative User Interfaces are part of collaborative

environments and applications and are establishing a

human to human collaboration regarding the three aspects

communication, coordination and cooperation, which is

also known as 3C-Model [4]. COUI can be found in diverse

application functional classes [4]; e.g. Message Systems,

Multi-User Editors, Group Decision Support Systems,

Electronic Meeting Rooms, Computer Conferencing,

Intelligent Agents, Workflow Management Systems and

more. Depending on the purpose COUI are supporting each

of the 3C differently [12].

PARALLELS OF SUI AND COUI
At first glance SUI and COUI seem to have few similarities

based on their purpose. The purpose of the SUI is to help

38

the ��er to ��derstand what is ha))�ning and give a better

control while the COUI focuses on supporting the user

while performing shared tasks with other users.. To show

the similarities of both a few examples are described

subsequently. Thereafter a conclusion for the presented

examples will be drawn in the following section.

Adaptation of a Workspace
A shared workspace is a common tool in Collaborative

Environments (CE) [8][6] but team members normally have

different preferences, different experiences, and often

different training thus making adaptations necessary [11]. If

a team member is changing the workspace layout in a way

which is affecting all of the team (e.g., removing an

important tool) the change has to be communicated and

explained to be excepted by the team or at least the team

has to be made aware of the change if a more hierarchical

role concept is used. Likewise in a self adapting system

(SAS) which is controlling a workspace environment

adaptations of the workspace (removing a tool because of

resolution changes) have to be communicated and

explained to the user.

Simultaneous changes by the user and the system
Typically the work in CE takes place on some kind of

shared business objects [11] which demands coordination

of activities for conflict prevention or concurrency control

to resolve conflicts between participants simultaneous

operations [4]. In a SAS the user is sharing interface objects

with the system. In example if the system decides to

optimize the content of a toolbar at the same time the user is

customizing it, this leads to a conflicting state. Either the

user can get her privileges to change the toolbar revoked on

short-term by the system to prevent conflicts or the system

has to resolve emerging conflicts with a suitable solution. A

simple one could be to overrule the users changes. Both the

SUI and the COUI have to provide the appropriate

coordination and concurrency control mechanism to

minimize user confusion and disturbance along with

suitable application control.

Application Tutoring
In CE colleagues may serve as tutors for inexperienced

colleagues by guiding the first steps with tools provided by

the environment (e.g., mouse traces can be followed,

questions can be asked and are answered by others via chat

etc.) This cooperation towards a goal with a common

interest (in this case the same skill level for optimal

working results) can be transferred to SAS or SUI

respectively. The system and the user are sharing the

common interest that the user can operate the application at

best and therefore has to provide a SUI which enables

cooperation towards this goal between the user and the

system. To achieve this goal the SUI should be able to act

as tutor for the user.

IMPLICATIONS FOR SUI FROM COUI
As shown by the examples in the section above system

behavior triggered by an agent (whether that agent is

automation or another human) establishes the same

requirements upon the user support. Furthermore the

aspects of communication, coordination and cooperation

(3C), which are used to characterize collaborative

applications can be found in the concept of SUI, with the

difference that for SUI the user is collaborating with the

system instead of a human.

For collaboration environments different classifications

exist. In the context of SUI the 3C Model proposed by

Teufel et al. [12] can be utilized to classify SUI

respectively by weighting the support of each of the 3C

within the system separately. The system can be classified

by placing it in a triangle where each corner represents one

of these properties as shown in Figure 1 (exemplary

illustrated for [9][2][5] and a fictive Automation Level

Configurator which allows the user to adjust the automation

level of adaptations with guidance to find the optimal

personal configuration).

The advantage of this classification is that both COUI and

SUI become comparable. Furthermore, this can help to find

design issues in SUIs. In a smart home for example the

steering of activities of multiple users which may depend on

shared device resources can be supported by SUI

functionality with the goal to optimize daily routines and to

avoid resource conflicts. This SUI with the focus on Device

Control Support can inherit aspects and mechanisms of

Workflow Management Systems because resource

allocation and scheduling are fundamental issues of them

[3].

Another benefit from considering collaborative aspects in

SUI while designing interfaces is that parts of the UIs

supportive functionality can be replaced later on by real

collaborative functions if desired. Humans still tend to trust

humans more then machines especially when life or money

is involved. The configuration interface of an automated

heating regulation system in a smart home for example can

be either explained by the system itself or the user seeks the

guidance of a human supervisor by switching to the

collaborative mode. A fundamental issue of SUI amongst

Figure 1: exemplary SUI 3C Classification based on[12]

39

others therefore sho��d �� to s���	
t the ��er to get

support, whether this support can be realized by the system

itself, another system or other users.

CONCLUSION & OUTLOOK
In this paper the parallels between SUI and COUI have

been shown; both share the aspects of communication,

coordination and cooperation and are establishing the same

requirements on the user support. Furthermore SUI can be

classified with the help of the 3C Model likewise COUI.

This classification can help to identify and to focus on

design issues for SUI by considering related COUI

implementations.

One can assume that a quality level of SUI could be how

close the system is behaving in comparison to a real user

within a similar collaborative environment. The

specification of quality levels has to follow the clear

specification of SUI and is therefore a interesting topic for

future research.

REFERENCES
1. Bahr, G.; Balaban, C.; Milanova, M. & Choe, H.

Stephanidis, C. (Ed.) Nonverbally Smart User

Interfaces: Postural and Facial Expression Data in

Human Computer Interaction Universal Access in

Human-Computer Interaction. Ambient Interaction,

Springer Berlin / Heidelberg, 2007, 4555, 740-749

2. Coutaz, J. Meta-user interfaces for ambient spaces.

Proceedings of TAMODIA'06, 2006, Springer, 1-15.

3. Delias, P.; Doulamis, A.; Doulamis, N.;

Matsatsinis, N.; , Optimizing Resource Conflicts in

Workflow Management Systems, Knowledge and

Data Engineering, IEEE Transactions on , vol.23,

no.3, pp.417-432, March 2011

4. Ellis, C. A.; Gibbs, S. J. & Rein, G. Groupware:

some issues and experiences Commun. ACM, ACM,

1991, 34, 39-58

5. Garc’ia Frey, A.; Calvary, G. & Dupuy-Chesa, S.

Xplain: an editor for building self-explanatory user

interfaces by model-driven engineering Proceedings

of the 2nd ACM SIGCHI symposium on Engineering

interactive computing systems, ACM, 2010, 41-46

6. Greenberg, S. & Marwood, D. Real Time

Groupware as a Distributed System: Concurrency

Control and its Effect on the Interface, ACM Press,

1994, 207-217

7. Komatani, K.; Ueno, S.; Kawahara, T. & Okuno,

H. G. Flexible guidance generation using user model

in spoken dialogue systems Proceedings of the 41st

Annual Meeting on Association for Computational

Linguistics - Volume 1, Association for

Computational Linguistics, 2003, 256-263

8. Lauwers, J. C. & Lantz, K. A. Collaboration

awareness in support of collaboration transparency:

requirements for the next generation of shared

window systems CHI '90: Proceedings of the

SIGCHI conference on Human factors in computing

systems, ACM, 1990, 303-311

9. Seifried, T.; Haller, M.; Scott, S. D.; Perteneder,

F.; Rendl, C.; Sakamoto, D. & Inami, M. CRISTAL:

a collaborative home media and device controller

based on a multi-touch display Proceedings of the

ACM International Conference on Interactive

Tabletops and Surfaces, ACM, 2009, 33-40

10. Sliski, T. J.; Billmers, M. P.; Clarke, L. A. &

Osterweil, L. J. An architecture for flexible,

evolvable process-driven user-guidance

environments Proceedings of the 8th European

software engineering conference held jointly with

9th ACM SIGSOFT international symposium on

Foundations of software engineering, ACM, 2001,

33-43

11. Teege, G. Users as Composers: Parts and Features

as a Basis for Tailorability in CSCW Systems

Computer Supported Cooperative Work (CSCW),

Springer Netherlands, 2000, 9, 101-122

12. Teufel, S.; Sauter, C. & Mühlherr, T.

Computerunterstützung für die Gruppenarbeit

Addison-Wesley, 1995

13. Wachsmuth, S.; Wrede, S. & Hanheide, M.

Coordinating interactive vision behaviors for

cognitive assistance Computer Vision and Image

Understanding, 2007, 108, 135 – 149

40

41

SUI Approaches

• Focused on the user [1, 2]
• Feature centric [6]
• Adaptation centric [4, 5, 7]

Workshop Motivation and Goals

Enabling technologies make it possible to create more and more complex systems in terms of functional core, new interaction techniques and

context-of-use dynamics. The users require a better understanding and control of their applications. This workshop focuses on human-computer

interaction and more specifically on the engineering of user interfaces to foster intelligibility and control. In a broader context this workshop aims to

identify and classify the supportive UIs that may enhance the interaction (e.g., by rendering the workflow in e-government applications or making it

possible to the end-user to see the available platforms in the surrounding and redistribute the UIs him/herself).

SUI Goals from the User’s Perspective [2]

• Customization and Personalization
• Appropriation
• End-user Empowerment

• Education
• Privacy and Auditability
• Comprehensive Behavior and Trust

Agreed Definition of Supportive UIs

A supportive user interface (SUI) exchanges information about an

interactive system with the user, and/or enables its modification, with

the goal of improving the effectiveness and quality of the user's

interaction with that system.

Research Agenda

• Elicit the dimensions of supportive UIs through a taxonomy that

would cover both the abstraction and presentation of supportive UIs
• Discuss the properties supportive UIs should convey
• Explore how to integrate SUIs into development processes
• …

SUI Taxonomies

Two classifications based on:
• Collaborative UIs [8]
• Self-Explanatory UIs [3]

Some Examples Presented

[6]

[5]

[1]

[3][2] [2]

1st International Workshop on
Supportive User Interfaces (SUI 2011)

3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems

 Pisa, Italy - June 13, 2011 - http://www.supportiveui.org/

Organizers: Alexandre Demeure, Grzegorz Lehmann, Mathieu Petit, Gaëlle Calvary

Fabio Paternò, Christian Sisti

