
Building Supportive Multimodal User Interfaces

José Coelho
LaSIGE, University of Lisbon

Campo Grande Edifício C6 Piso 3 1749-016
Lisboa, Portugal

+351 21 750 05 32
jcoelho@lasige.di.fc.ul.pt

Carlos Duarte
LaSIGE, University of Lisbon

Campo Grande Edifício C6 Piso 3 1749-016
Lisboa, Portugal

+351 21 750 05 19
cad@di.fc.ul.pt

ABSTRACT
In this paper, we describe and discuss solutions capable of
helping in the development of supportive multimodal user
interfaces. Based on the specifications and design of
European Union funded project GUIDE (Gentle User
Interfaces for Elderly People), we show how it is possible
to use several modalities of interaction as well as adapting
UIs, as a mean of providing users with ideal interaction in
every application, and preventing or resolving errors
resulting from missed or wrong user-device inputs.

Keywords
Supportive multimodal user interfaces, adaptation, GUIDE,
UI translation.

INTRODUCTION
In this paper we are going to introduce some mechanisms
present in the ongoing GUIDE project and which are
intended to help developers in the implementation of
supportive user interfaces.

GUIDE Project
GUIDEi aims to offer multimodal interaction to elderly
(and disabled) users with the goal of simplifying interaction
with a television (TV) and set top box (STB) based system.
By pointing to the screen, making gestures, issuing speech
commands, interacting with a Tablet PC, using the remote
control, interacting with an Avatar or simply making use of
user intuition for combined interaction with several of these
modalities, the GUIDE framework makes fitting interaction
to users’ characteristics and preferences, possible and also
for impaired users to interact with the TV.

In what concerns supportive interaction, the use of Avatars
is explored with the goal of offering users, a persona with
whom they can relate to, while interacting with the system.
The Avatar will work like someone who explains to users
the interaction steps to be done in order to execute tasks,
and will help them getting out of “trouble” after an error
has been generated while using the system. More, the
existence of generic, as well as content-specific, speech
commands as a possibility of interaction makes intuition a

reality in GUIDE. Additionally, pointing interaction using a
video based gesture tracking sensor is helped by cursor
adaptation techniques which makes easier the selection of
content on the screen, also helping in supporting
interaction.

This diversity of devices and modalities of interaction, will
offer users the flexibility to use whatever medium they find
more appropriate given a specific context, at the same time
as they benefit from visual (text, images, video and
animations), audio (speech, and other sounds) and haptic
feedback (vibration). These multimodal capabilities are in
fact, the first step to a supportive interaction.

Considering the variety of differences present in elderly
users and their preferences when using a system like this,
GUIDE will cluster it’s users in different User Profiles
(UPs) - transparent to every user - where data concerning
preferences and constraints of interaction are saved. By
making use of each UP, GUIDE will try to adapt User
Interface (UI) elements to fit every user.

In addition to providing supportive use, GUIDE framework
supports UI adaptation for every application running.
Moreover it aims at providing this support requesting
reduced extra effort from developers. Since it is not
expectable to have developers providing different versions
of applications for users with different characteristics
GUIDE will develop tools to “translate” a “standard” UI
into tailored UIs for every type of user. The extra effort
asked of developers consists in identifying each UI
interactive component using WAI-ARIAii semantic tags.
With that information, GUIDE will abstract UI
characteristics, and save them in an Application Model
(AM) (one for every application), making adaptation of UI
components possible at run-time.

Problem Description
Nowadays, most UIs lack capability in guiding users to an
adequate and efficient interaction [1], when ideally “the UI
must guide the user in accomplishing a task the application
was designed for” [4] by providing help and appropriate
feedback about features, tasks, modalities and contexts of
interaction. If a user is not capable of perceiving an
application and reacting to errors while interacting, more
sooner than later he or she is going to abandon its use, and
adopt a more usable application. Unsatisfied users are
going to prefer a better supportive interface which can fit

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

and adapt to his or her characteristics. If this is true for the
so called typical users, for elderly users this is even more
relevant. Because these users are usually characterized by
having one or multiple impairments (example: hearing
difficulties, visual incapacity, motor constraints, etc.),
adequate interaction is only possible when the system is
capable of adapting its UI components and modalities of
interaction to these users’ specific characteristics.

Therefore, in the development of supportive multimodal
user interfaces for elderly or impaired users, several
questions need to be answered so that an appropriate
application and interaction can be implemented:

 How to let your users know how to interact?
 How to know your users?
 How to help users after a mistake has been

identified?
 How to present content and interaction

possibilities in the most suitable way to the users?

In the remainder of this paper, we describe the approaches
followed in GUIDE to try to offer solutions to the questions
identified above, by supporting multimodal interaction and
UI adaptation for elderly users when using a TV and STB
based system. Special interest also goes to the way this
framework provides every application with the possibility
of adapting to different contexts of interaction, and to the
presentation of ideas on how it could be possible for these
types of users to personalize UI presentation and interaction
while preserving usability.

ANSWERING THE QUESTIONS

How to let your users know how to interact?
For an efficient interaction to be a reality, users need to
have knowledge about the available ways for performing
each task. They have to know to the full extent all the
possibilities and modalities when confronted with different
difficulties and contexts of interactions. Only by
understanding how they can interact, they can make the
most of the interface being presented and understand how
to use all the features provided by the application. For
example, if a visual interface with a menu is presented on
the screen, and the user doesn’t know he or she can speak
the name of a specific button for making a selection, a lot
of time can be lost by performing the task using alternative
modalities (the only ones the user has knowledge about)
like selecting the button by pressing remote control keys in
a certain sequence or by pointing to the screen with the
remote control.

GUIDE will try to instruct the users before they start
interacting with any of the framework applications. For
this, it will use an application called the User Initialization
Application (UIA) to give the user a clear understanding of
the possible ways of interaction. Users will be guided
through the experimentation of the various modalities of
interaction available in the framework, like pointing to the
screen, issuing speech commands, pressing remote control
buttons, etc.. For this purpose, the UIA will present on the
screen a tutorial with scripted animations of how to

perform different gestures, informing the user of the set of
speech commands he or she can issue for achieving typical
tasks, and providing instructions about how to interact with
other components of the system like the Avatar engine, the
Table PC, etc.. In all this process the user has an active
role, learning by experimentation of every interaction
modality and device.

How to know your users?
For the users to understand an interface and know how to
interact with it, it really helps that the interface knows the
user in advance. Only knowing beforehand what are the
users preferred ways of interacting as well as the users’
impairments and difficulties makes it possible to build or
adapt the interface for appropriate and efficient user
interaction. For example, if the system doesn’t have enough
information about the user to know that he or she is blind
and presents a visual interface to him or her, no interaction
will occur at all, and the system will not be used. In a
second example, if the user prefers to interact using
pointing and the system presents a simple visual interface
that only receives remote control input, he or she will be
less motivated to use and adopt that system (and a higher
probability of making errors during interaction exists).

GUIDE will try to collect information about its users before
they get to interact with any of the system’s applications.
To this end, the UIA will also be used for collecting data
about users. Every time a new user starts using the system,
the UIA is presented on the screen combined with audio
output (covering possible situations of severe audio or
visual impairments) and the user is asked to perform a
series of tasks concerning his or her capabilities. In a first
instance, the user is “registered” in the application using
name, and facial and vocal characteristics, so that from that
point on, every time he or she wants to use the system the
correspondent UP can be loaded based on these properties.
Next, the application tries to understand if the user has
some visual impairment by presenting text on the screen
and asking for user feedback (figure 1) (e.g. presenting a
sentence and expecting for user to adjust the font until he
feels comfortable reading, and then asking user to read the
sentence out loud to make sure he is in fact seeing it well).
If the user passes this test, different configurations of text
font and buttons, as well as several background and text
colors, are tested out to understand his or her preferences
regarding visual interfaces. If the user fails the test, the text
font size is raised in a screen-by-screen basis until there is
the understanding of how severe is the user visual
impairment.

Figure 1: UIA prototype. Example of visual test where the
user has to read out loud the text presented on the screen,
and increase or decrease the text size to his or her
preferences.

For every other modality of interaction, similar tests are
presented to the user, and data about user impairments and
preferences is collected. For example, the user is asked to
perform different gestures, or asked to point to different
locations on the screen to understand motor capabilities, to
repeat out loud what he heard to understand hearing
capabilities (figure 2 top), and asked to play memory and
interpretation “games” with the goal of testing his or her
cognitive capabilities (figure 2 bottom).

Figure 2: UIA prototype. Examples of audio (top) and
cognitive (bottom) tests presented to GUIDE users.

From the results obtained in GUIDE user trials and from
discussions with developers, we also know to be extremely
important that UIA application must be presented to users
in form of a simple and quick tutorial, so that elderly don’t
feel like they are being evaluated. If UIA takes too long,

users will also lose interest, and will not want to use the
system.

User information can be collected explicitly with the UIA,
but also implicitly through run-time analysis of the user
interaction logs. After the user has gone through all the
UIA process, he or she starts interacting with different
applications. Information concerning every task performed
and modality used is saved by the system in logs. A rule-
based inference motor will analyze this data and makes
conclusions about user preferences and difficulties (for
example, if the user makes consecutive errors when
pointing to the screen for selection of a menu button, the
system concludes he or she has difficulties using that
modality and tries to increase the size of the buttons before
suggesting a change in the modality of interaction). These
conclusions enrich the data collected in the first process.

All data collected by the UIA and run-time processes are
saved in a user model and used to adapt every application
running on the framework [2].

How to help users after a mistake has been identified?
A supportive UI is one which tries to be aware at all times
if a user is lost in the interaction, or if he or she is having
too many interaction errors to be enjoying an efficient use
of the application. Accordingly, one of the biggest
challenges when guiding the user in the interaction, it’s
how to identify or perceive that the he or she is lost and
when is the application or interaction generating errors.
Only after identifying that, the application can then try to
help the user and suggest alternative ways to achieve a
desired goal. This is, however, a difficult task because at
run-time a lot of dimensions are involved. If the user
mistakes or misinterprets the interface structure and
meaning, it can by itself result in interaction mistakes.
There are also a lot of possible errors caused by changes in
the context of the interaction, like the physical and social
aspects of the environment. For example, if a user is
interacting using speech input and the noise in the room
increases, the system can fail to interpret the command
issued because of the background noise, or a wrong
command can be recognized instead (this can also happen
when another person is speaking to the user at the same
time of interaction).

Interaction mistakes will be identified in GUIDE by
analyzing the interaction in run-time and by watching for
unrecognized inputs. Because in this framework users can
interact with UIs through different modalities (and
devices), in a singular way or in a combined fashion, the
system has to be alert for many different errors like:

 Unrecognized commands issued when speech
input is performed.

 Selection of meaningless coordinates (coordinates
not related with any UI interactive content) when
pointing with finger.

 Unrecognized gestures performed by the user.
 Errors resulting from remote control commands.

 Repeated errors when interacting with each
device or modality (consecutive errors could
suggest a switching of modalities is required).

 Long periods with no selection registered but with
screen navigation occurring (may suggest that the
user is lost, or doesn’t know what to do).

 Errors resulting from incomplete fusion of input
modalities.

 Contradictory instructions from simultaneous
input of different modalities.

 No input received after system started a task
requiring user feedback.

Additionally, every time a change in context of interaction
occurs, the system has to be alert for periods of inactivity or
for unexpected inputs, and using the interaction logs the
system tries to prevent some errors from happening when
there is clear understanding of what are the causes.

A supportive UI has to be capable of helping the users
every time there is a mistake in the interaction [4].
However, in modern applications help is a capacity
“created ad-hoc” [4] meaning it was previously generated
and it does not cover run-time situations not originally
foreseen by the designers. For this reason, UI design does
not cover every situation where a user needs help for
responding to UI or interaction difficulties. Therefore
helping the user is not something easy to do in a predefined
manner before the user starts using the system, and requires
some run-time “intelligence” from the supportive system or
interface. For example, if a user is using speech input for
menu navigation and his or her dog enters the room and
starts barking, the system will receive a series of
consecutive unrecognized inputs and the user will be in a
situation that was not taken care off in the design process,
which can result in aborting the interaction with the
application.

As it is strongly based on multimodal interaction, one of
GUIDE’s ways of helping users after a mistake has been
identified will rely on suggesting to the user a change in the
modality of interaction. This change is however, based on
each user preferences and characteristics firstly identified
by the UIA and logs of interaction, as well as it is based in
the context of interaction and task being performed at that
moment[2]. So, as the user has already “ranked” modalities
of interaction by preference (and based on constraints),
every time an error results from repeated errors interacting
with one single modality, another is suggested to the user,
who accepts it (or rejects it) in order to continue the
interaction. This will also be the procedure every time a
change in the context of interaction happens [2] (for
example, when the dog starts barking, the system won’t
recognize the barks as speech commands – rather, barks
will be interpreted as background noise - and will suggest
to the user continuing interacting using pointing).

Another way of helping users is to present to them relevant
information related with the context of the error they have
just made, like presenting alternative modalities of

interaction and showing how to use them when a change in
the context of interaction happens, showing information
related with the task they are performing every time there
are errors in the recognition of modalities or long pauses in
the interaction (for example when the user is pointing and
trying to select an area on the screen where there are no
interactive UI items, show him or her where the buttons are
by highlighting them). However, GUIDE main focus is
helping users proceed with the interaction in an alternative
way even when it’s not possible to detect the cause of the
error.

Finally, every time an error occurs, the Avatar engine will
also be called for a more “personal” interaction between the
system and the user (meaning, the Avatar presents the
explanation of the error to the user, shows how changing
modalities can solve the problem or just points the user to
using an alternative modality when an error arises). In this
way, it’s almost like together they can find a solution to the
problem or “find a way out” of the mistake.

How to present content and interaction possibilities in
the most suitable way to the users?
The main problem with developing interfaces for elderly or
disabled users is the great diversity existing in terms of user
characteristics and user impairments. It is common for an
elderly user to have more than one impairment (for
example, poor hearing and poor vision), as it is usual to
observe a lot of differences between each of these users.
This means that what is good for one user can also, and at
the same time, be inappropriate for several others. For
example, an elderly user with hearing difficulties can
interact with a visual interface without any problem, but
one with severe visual impairments cannot, and need an
interface with audio input and output for efficient
interaction. However it is not expectable that developers
will implement different versions of the same application,
so the framework has to ensure the ways of interaction are
adapted to the user characteristics.

GUIDE will offer elderly users adaptation mechanisms
capable of adapting UI elements to each user
characteristics. After the user has gone through the UIA
and the system has collected enough information, the user
is assigned to one UP [1]. Using the information about each
user, GUIDE adapts each UI to fit the UP interaction
patterns. This is only possible because GUIDE asks for
extra information in each application development, so
every UI is implemented using HTML, JavaScript, and
CSS languages to what the developers add WAI-ARIAii
annotations providing semantic information about UI
components. In this way, for every application, GUIDE
will derive and keep an Application Model (AM), which is
nothing more than an abstract interface that saves
information about the structure of the UI and identifies
each UI element present. This facilitates adaptation to
different interaction contexts as well as to different types of
users (users that belong to different UPs), because every
time a user calls for an application, the system uses its
application model and considering the interaction context

and user characteristics, modifies UI elements not
appropriate for the user. For instance, when a user with
visual impairments calls for an application formed by a
visual menu and some text content, GUIDE consults its
AM and “knowing” the user characteristics as well as
“observing” no change in the interaction context, loads the
UI increasing the size of the buttons originally defined and
uses audio and visual output modalities.

In what concerns the developers control over this UI
adaptation, GUIDE will adopt one of three adaptation
schemes depending on the level of freedom given by the
developer to change the application original properties
(CSS and HTML): In “Augmentation”, GUIDE won’t be
able to change any UI components, only making some
overlay of output modalities (for example, adding audio
output to a visual interface); in “Adjustment” GUIDE has
permission to adjust UI component parameters as well as
also making “augmentation” (for example, adding audio
output to a visual interface and also changing UI colors for
a higher-contrast); and finally in “Replacement” the
developer gives total control to GUIDE, making possible
the substitution of UI components as well as
“augmentation” and “adjustment” (for example, adding or
removing buttons, as well as adjusting colors and adding
audio output to a visual interface).

Additionally, all interfaces must be capable of listening for
user commands at any time of the interaction so that
modifications to the interaction and presentation can be
done at run-time, if the user is not satisfied with the current
configuration. For example, if a user says “bigger buttons”
or makes a gesture to increase the volume, the interface
must adapt and reflect these changes (by reloading the UI
or modifying output parameters).

CONCLUSIONS
For the development of supportive multimodal user
interfaces to be a reality, we have to make sure that the
user’s characteristics are known to the application. As well,
the application has to be capable of instructing the users
about all the ways of interacting with it, and make sure that
adaption and UI help is presented to users in a personalized
fashion. GUIDEs UIA, multimodal interaction and UI
translation and adaption, were presented in this paper as
possible solutions which can help in the deployment of
supportive user applications without asking much more
additional effort from the developers.

REFERENCES
1. Biswas, P., Langdon, P.: Towards an inclusive world –

a simulation tool to design interactive electronic
systems for elderly and disabled users. Proc. SRII,
2011.

2. Coelho, J., Duarte, C.: The Contribution of Multimodal
Adaptation Techniques to the GUIDE Interface. In:
Stephanidis, C. (ed.): Universal Access in HCI, Part I,
HCII 2011, LNCS 6765, pp. 337-346. Springer,
Heidelberg (2011)

3. Garcia Frey, A., Calvary, G. and Dupuy-Chessa,
S. Xplain: an editor for building self-explanatory user
interfaces by model-driven engineering. In Proc. of the
2nd Int. Symp. on Engineering Interactive Computing
Systems: EICS 2010, pp 41-46, ACM. Berlin, Germany,
June 19-23, 2010.

4. Myers, B. A., Weitzman, A. J. Ko., and Chau, D. H..
Answering why and why not questions in user
interfaces, in CHI’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 397-406, New York, NY, USA, 2006. ACM

i GUIDE– Gentle User Interfaces for Elderly People. http://www.guide-project.eu/.
ii http://www.w3.org/WAI/intro/aria

