
Opening the Box
Meta-level Interfaces Needs and Solutions

Alan Dix
Talis, 43 Temple Row, Birmingham, B2 5LS, UK

and Birmingham University, Edgbaston, Birmingham, UK
alan@hcibook.com

http://www.hcibook.com/alan/papers/SUI2011-meta/

ABSTRACT
This paper begins by considering reasons why some form
of meta-level interface may be required for modifying or
exploring existing user interfaces, from obvious functional
reasons of customisation and personalisation to more
political and social goals such as education and
empowerment. The paper considers examples of systems
developed by the author and others, and uses these to
present a number of techniques and principles for effective
meta-interactions. Some of these concern more surface
manipulation, and others deeper levels of code and meta-
descriptions of the application and UI. It concludes that
meta-interaction may be a key element for future liberal
society.
Keywords
customisation, personalisation, end-user programming,
end-user empowerment, appropriation
1. INTRODUCTION
The topic of this workshop brings together a number of
areas on which I have worked or that have been of personal
concern. This paper will discuss some of these areas of
concern and then look at general principles and techniques
that can be used to address them.
2. WHY META?
While it hardly needs stating for this workshop, to many it
may seem that meta-level interactions are simply the
preserve of the hobbyist or techie. However, they are both
ubiquitous and of broad benefit.
2.1 Customisation and Personalisation
Of course meta-level user interfaces are common. Every
time a user drags a palette to the side of the screen, selects a
ringtone or modifies the style definition in a document, she
is engaging in an adaptation of the user interface.
However, we also know that beyond a few examples like
this few users actually customise despite having problems
or gripes that could be dealing with through simple
selection of options (for example, turning off some of the
'smart' features in Word). Improving even these basic
features can have a major impact on user experience.

2.2 Appropriation
In particular "plugability and configuration" is one of the
design principles for appropriation [9]. Indeed several of
the design principles discussed in [9] are related to meta-
level user interactions; while appropriation is possible
using the interface as given, the user has greater flexibility
if she can peek under the hood (design principle "provide
visibility") and tinker inside ("plugability and
configuration") and share the results with others
("encourage sharing").
2.3 End-user Empowerment
One advantage of appropriation is the sense of ownership
and empowerment it engenders. A sense of control is
important for well being, and the act of tinkering gives this,
whether to improve the user interface for its original
purposes, or make it do something completely novel.
While this is important for all users it is particularly
relevant for those in developing countries, or the
disadvantaged in developed countries, who can be doubly
disadvantaged in a world where access to information is
central to economic and political power [1].
Existing technology can be appropriated by traditionally
disadvantaged groups; for example, Jensen reports how
mobile phones allowed fishing boats in Kerala, southwest
India, to obtain higher prices for their catches [12] and we
have all seen the impact of social media in recent popular
uprisings across North Africa and the Middle East.
However, if those closer to need are in a position to create,
modify or adapt existing software and hardware the results
are likely to be more appropriate than tools designed
primarily for an urban, middle-class, western environment.
This may be the end user, but Marsden et al. argue the case
for 'human access points', local experts, in their case local
health workers, who are given the tools to create and adapt
mobile-phone administered questionnaires [16]. Prompted
by various workshop discussions [17, 20], we have
explored the potential for a range of mobile phone-based
adaptations including compete coding via the mobile-phone
screen [10].

2.4 Education
Often modifications to user interfaces require a high degree
of expertise; so education is needed in order to use them.
However, if well designed, meta-level interactions hold the
potential to be a means for education in themselves; as
generations of children who have fiddled with old car
engines can testify. Education, of course, also contributes
to empowerment.
The Query-by-Browsing (QbB) intelligent database
interface is an example of this. QbB generates SQL:
queries based on user record preferences, but then reflects
this back to the user both by highlighting the records
selected by the query and by exposing the query itself [7].
The user can comprehend the system via the concrete
record selections, but in the process learn the SQL that
produce it (although not the machine learning algorithms
which generate the queries).
2.5 Privacy and Auditability
The control of privacy settings in social applications such
as Facebook, has become a big issue. Höök also argues
that this is an issue likely to be important in future
ubiquitous computing applications [11]. Indeed the very
openness in low-level architecture required for rich
context-sensitive features in itself creates privacy issues
[8]. Many approaches to privacy, in ubiquitous computing
and elsewhere, focus on restricting information flow.
However I have long argued that it is the eventual use of
the information that is most critical [6]; that is systems that
expose what happens to information both currently
(visibility) and in the past (auditability) are far more likely
to support the user's ability to manage information
disclosure.
2.6. Comprehensible Behaviour and Trust
Closely related is the issue of trust, not just for financial
and or personal security, but also at a mundane level of
whether we decide to use particular application features.
This is especially important when systems make choices
automatically for us. The kind of openness needed to allow
a user to adapt a system is very similar to that needed to
allow a user to believe in what it is doing already.
The record listings in Query-by-Browsing [7] are an
example of this as they may be comprehensible to the user,
even if the SQL is not, giving the user confidence that the
query will continue to be appropriate for unseen records.
Another example is MICA, which makes suggestions for
GUI customisation based on user activity, but also
"includes a description of why MICA is making
recommendations and how it generated them" [5], precisely
to support Hook's "predictability and transparency"
principle [11] and so engender trust.
3. TECHNIQUES AND PRINCIPLES
So if meta-level investigation and modification is a good
thing, how can it be achieved?
3.1 Cost and Benefit – When it happens
Sometimes people don’t customise because they don’t
know how. However many experts do not customise their

interfaces even if they complain about the things that are
wrong! The key problem is not lack of understanding but
lack of immediate benefit. We are creatures who heavily
discount the future; effort now for future gain is hard. If
customisation can be made closer to the point of use it
becomes more likely. One example are dialogues that ask
for a decision, but have a tick box to say "always do this".
This is effectively asking you set a preference, but at a
point in time when you are in the middle of doing the
requisite action. The benefit is clear and the cost (in terms
of clicks and mental effort) low. Furthermore this is all set
within the context of a concrete example of use (see also
next point)
3.2 Progressive Disclosure –Where It happens
The preferences and customisation of many applications
are buried in a "preferences" menu item far away from the
actual interaction. Somewhere in a preferences panel you
set parameters whilst guessing vaguely what they might be
about. However, others connect customisation closer to the
thing it affects. Back in 1995, Marsden [15] advocated the
advantages of a systematic policy suggesting a 'screw'
metaphor where every component has a small screw icon in
the bottom right hand corner. Clicking the screw 'undoes it'
revealing the circuitry within, and potential the ability to
unscrew other sub-components (see Figure 1).

Figure 1. Screw Metaphor from [15]
(a) screw in – UI (b) screw out – metaUI

Today in the Apple Dashboard just such a mechanism is
found on widgets. Instead of a screw a little 'i' for
information icon, clicking it 'turns around' the widget
showing settings behind. Strangely the iPhone reverted to a
special place for settings rather than associating them
closely with their application.

Figure 2. Mac OS Dashboard widget

(a) front – UI (b) back– metaUI

3.3 Tools of Revelation
A similar approach is to use some form of external 'tool' for
meta-level modifications. This happens in the real world;
Figure 3 shows a stud detector, which detects the wooden
studs in a wall so that you can screw into them. The
wooden structure is hidden behind plasterboard and
wallpaper, but the stud detector reveals it – the "provide
visibility" appropriation principle [9] in the physical world.

Figure 3. Wall Stud Detector

Note that "provide visibility" does not mean the same as
Nielsen's "visibility of system status" evaluation heuristic
[19], as this usually refers to the essential information about
the system for normal use. Instead, if systems reveal a little
more (such as a mobile phone showing signal strength not
just whether or not a call can be made), then the user can
use this in unexpected ways (such as waving the phone
about to seek out better signal).
Beaudouin-Lafon's 'instrumental interaction' [2] and in
particular Toolglasses [3], follows the same principle as the
stud detector advocating the use of 'instruments' as a means
for modifying and interacting with objects.
3.4 Smooth Transitions
When creating means for user to modify their environment
there is often a temptation to try to do everything – the
spectre of Turing equivalence rises and before long a
simple end-user customisation tool becomes a full-blown
and complex programming language. The effort to produce
something that could, in principle, do everything often ends
up with something that, in practice, is good for nothing.
However, the alternative is often to have very different
means for simple and more complex modifications, so that
users hit barriers; for example, moving from Excel
formulae to Visual Basic.
Mathematicians face a similar problem when modelling
'differential manifiolds' curved spaces such as the surface
of the Earth or the curved space-time of general relativity.
They effectively paper the curved space with flat Euclidean
surfaces (which are easier for a mathematician to handle),
but if you try to use a single flat surface there is at least one
point where things go very wrong, like the place where the
foil is all folded up at the end of an Easter egg. Instead
mathematicians use a collection of small patches, which
overlap in a 'smooth' manner.
One can envisage customisation working like this, with
different levels of customisation (perhaps ending up at
open-source code), where the two ends (use and coding)

have a huge gulf between them, but where each pair of
successive levels overlap with an easy transition. This
sounds like a hard problem, but there are examples that
achieve this to varying extents. HyperCard had a smooth
transition from use to customisation and then to
programming. In consequence, many who would never
consider themselves programmers created complex
HyperCard applications. Xerox Buttons were another
example, where a non-technical user might just use the
button, then peek at its code and change a file name, and
perhaps, over time, start to understand some of the code
that drove the familiar user-interface actions [14]. Could
the Excel formula to VB step be more like this?
3.5 Ease of collaboration
Another of the appropriation principles is "encourage
sharing" [9]. In Nardi and Miller's classic study of
spreadsheet use [18], they describe the collaboration
between Buzz and Betty

"When Buzz helps Betty with a complex part of the
spreadsheet such as graphing or a complex formula, his
work is expressed in terms of Betty’s original work. He
adds small, more advanced pieces of code to Betty’s basic
spreadsheet: Betty is the main developer and he plays an
adjunct role as consultant."

The fact that spreadsheets have relatively smooth
transitions (at least between levels of formula use) make
this collaboration possible. Note especially that Betty is
able to do a lot herself, and probably extends this over time
(education). Furthermore Betty is able to determine her
own level and understand when to seek help.
Spreadsheets, by their nature allow them to be passed
around. It is far rarer to see other kinds of configurations
shared. In UNIX systems, a lot of configuration is in text
files, such as .login or .profile, and expert users will move
these around. However, it is near impossible to simply take
one person's Word settings and apply them to another users
machine. Xerox Buttons [14] were a simple idea, a button
that executed some Lisp code, but were surprisingly
powerful, in part because you could mail them round,
creating a community. Maker cultures emerge when
people can share ideas and, even better, artefacts.
3.6 From Configuration to Code
Spreadsheets, Xerox Buttons, Query-by-Browsing and
HyperCard are all examples where the user can move in
steps from doing things to raw coding. When looking at
near-end-use development, one of the design lessons was
"reduce the gap between design and execution" [10].

"In general, bridging the gaps between environment and
language, design and use, test and bug report [...]
features found in many end-user or near-use software
such as spreadsheets (eliding data, code and execution),
Yahoo! Pipes (design close to execution), and
programming by example (use is design)"

At Talis we are working on tools to bridge this gap for
linked open data [4] as exposed, for example, in

data.gov.uk. This is building on Callimacus, where RDFa
embedded in a web page turns it into a UI generation
template, opening up application building to ordinary web
developers [13].
3.7. Meta-Representations for Meta UIs
As well as being the subject of user interaction, semantic
data of some form seems to be a key element of future user
interactions. Whether mashing data for the web or
connecting digital devices in the living room, effective
meta data about devices, applications and their interactive
potential seems an essential start point for more flexible
machine initiated activity, for machine activity to be
explicable, and for users to be able to interrogate and
modify it. Model-based user interfaces are clearly one way
to achieve this, but there could be other solutions, similar to
the way applications expose meta-information for Apple
Scripting on Mac OS or via COM on Windows.
4. CONCLUSIONS
We have discussed various principles and methods for
meta-level interactions., and also some of the reasons why
this is 'a good thing'. As we enter an era of open data and
mashups the ability to digitally tinker seems not just a
hobby, but a key enabler of a broad-based civil society.
REFERENCES
1. Beardon, H., Munyampeta, F., Rout S. and Maiso

Williams, G. ICT for Development, Empowerment or
Exploitation: Learning from the Reflect ICTs project.
ActionAid. (2005)
http://www.actionaid.org.uk/1413/ict_for_development
_empowerment_or_exploitation.html

2. Beaudouin-Lafon, M. Instrumental interaction: an
interaction model for designing post-WIMP user
interfaces. in Proc. of the CHI '00. ACM Press, (2000)
446–453.

3. Beaudouin-Lafon, M and Mackay, W. Reification,
polymorphism and reuse: three principles for designing
visual interfaces. in Proc. of AVI '0). (2000) ACM
Press ,102-109.

4. Bizer, C., Heath, T. and Berners-Lee, T. Linked Data –
The Story So Far. International. Journal on Semantic
Web and Information Systems, 2009.

5. Bunt, A., Conati, C., and McGrenere, J. Supporting
interface customization using a mixed-initiative
approach. In Proc. of IUI '07. (2007) ACM Press. 92-
101.

6. [Di90] Dix, A. (1990). Information processing, context
and privacy. in Proc. of INTERACT'90, (1990) North-
Holland. 15–20. http://hcibook.com/papers/int90/

7. [DP94] Dix, A. and Patrick, A. (1994). Query By
Browsing. Proc. of IDS'94: The 2nd International
Workshop on User Interfaces to Databases, (Lancaster,
UK, 1994), Springer Verlag. 236–248.
http://hcibook.com/alan/papers/QbB-IDS94/

8. Dix, A. Beyond intention – pushing boundaries with
incidental interaction. Proc. of Building Bridges:
Interdisciplinary Context-Sensitive Computing,
(Glasgow University, 9 Sept 2002)
http://hcibook.com/alan/papers/beyond-intention-2002/

9. Dix, A. 2007. Designing for appropriation. In Proc. of
HCI2007 Volume 2. (2007). BCS, 27–30.
http://www.bcs.org/content/conWebDoc/13347

10. Dix, A., Kozhissery, R., Ravichandran, R. and
Dayanand, D. Content Development Through the
Keyhole. in Proc. of EISE2009, Expressive Interaction
for Sustainability and Empowerment, (2009) 67–78.
http://hcibook.com/alan/papers/EISE2009-Keyhole/

11. Höök, K. Steps to take before intelligent user interfaces
become real. Interacting with Computers, 12 (2000)
409--426,.

12. Jensen, R. The Digital Provide: Information
(Technology), Market Performance, and Welfare in the
South Indian Fisheries Sector, Quarterly Journal of
Economics, 122(3), (2007) 879–924.

13. Leigh, J. and Wood, D. RDFa as a Query Language.
Semantic Technology Conference. (June 2010)

14. MacLean, A., Carter, K., Lövstrand, L., and Moran, T..
User-tailorable systems: pressing the issues with
buttons. In Proc. CHI '90. (1990) ACM Press, 1990,
175–182

15. Marsden, G. Overcoming Design and Execute Modes in
User Interface Design Environments. in Proc. of HCI 95
people and Computers (1995), 133-137

16. Marsden, G., Maunder, A. and Parker, M. People are
people, but technology is not technology. Phil. Trans.
R. Soc. A (2008) 366, 3795–3804.

17. Mobile Design Dialog. (Cambridge. 3–4 April 2008)
webpage: http://www.cs.swan.ac.uk/mobdesign/ Mobile
Design Dialog discussion:
http://mobiledesigndialog.nexo.com/

18. Nardi, B.and Miller, J. An ethnographic study of
distributed problem solving in spreadsheet
development. In Proceedings of the 1990 ACM
conference on Computer-supported cooperative work
(CSCW '90). (1990) ACM, Press, 197–208.

19. Nielsen, J. Heuristic evaluation. In Nielsen, J., and
Mack, R.L. (Eds.), Usability Inspection Methods,
(1994) John Wiley & Sons, New York, USA.

20. Winter School on Interactive Technologies. (HP Labs in
Bangalore, 2nd & 3rd February 2009). UK-India
Network on Interactive Technologies.
http://www.ukinit.org/02122008/winter-school-
interactivetechnologies

