Theend-user vs. adaptive user interfaces

Veit Schwartze, Frank Trollmann, Sahin Albayrak
DAI — Labor
Ernst Reuter Platz 7
Berlin, 10781Germany
+49 30/314 - 74064, 74048, 74001
{Veit.Schwartze, Frank.Trollmann, Sahin.Albay@dai-labor.de

ABSTRACT

In smart environments, applications can supportsuge
their daily life by being ubiquitously available rttugh
various interaction devices. Applications deployeduch

an environment, have to be able to adapt to diftere

context of use scenarios in order to remain usaile¢he
user. For this purpose the designer of such anicapipin
defines adaptations from her point of view.

Because of situations, which are unforeseeableesigd
time, the user sometimes needs to adjust the dasign
decisions. For instance, the capabilities and pedso
preferences of the user cannot be completely fere&s

For instance there is a large set of heterogesiglalys for
graphical user interfaces, which differ in theipest ratio,
resolution and input possibilities. In additionckaiser has
different abilities or disabilities as well as arqmnal taste.
Such preferences cannot be predicted or categonized
reliable way at design time. The ability of the use

distribute user interface elements to differentickew also
raises the problem of multi-application scenarios.

This raises the need for the user to understandccandol
adaptations of the application at runtime in order
personalize it to her liking. Following, we wantdescribe
the requirements and functions of a supportive user

the designer. The user needs a way to understadd aninterface, to enable the user to evaluate and aooser

change adaptations defined by the designer andefioed
new adaptations. This requires the definition ofed of
context of uses and adaptations applied to theioseface
in this situation. For this reason supportive uségrfaces
should enable the user to control and evaluatestite of
the adaptive application and to understand “Whatpbkas

interface adaptations.

The next section describes the problem in moreildstan
example application. This is followed by the reguients
that have to be achieved by a supportive userfater The
section work in progress then gives an overviewualioe
layout- and adaptation model, which are needea:tigate

and why?* In this paper, we describe the requirements andthe position, size and style for each user interfelement

function of a supportive user interface to evaluatel

and to change these layout dimensions to a specific

control an adaptive application, deployed in a $mar sjtuation. The conclusion summarizes the paper and

environment.

Keywords
Context aware applications, end-user support, atiapt
and situation definition

INTRODUCTION

Applications, which are deployed into smart envinemts,
often aim to support the users in their every-dfgy Buch
applications must be able to adapt to differenttexinof
use scenarios to remain useable in every situati®he
large set of possible properties of devices leadsan
infinite number of possible situations which canr
considered at design time completely.

! Direct manipulation vs. interface agents, Shneiger, B. & Maes, P.
Interactions, ACM, 1997, 4, 42-61

describes the next steps.

PROPLEM DESCRIPTION

In this section we illustrate the problem space dy
example of a cooking assistant. Afterwards we @eriv
problems that have to be solved within the scope of
adaptive user interfaces.

The cooking assistant is an application that emsathle user
to search for recipes and supports her while capttiem.
During the cooking process the cooking assistaabls to
control the devices in the kitchen. We deployeddbeking
assistant into a real kitchen environment like digai in
Figure 1 top-left. The main screen, shown in Figlréop-
right, guides the user through the cooking stepd an
provides help if needed. The bottom half of Figure
illustrates several spots corresponding to theeusfit
working positions and user tasks in the kitchen.

elsia'=

=
Hom e Y
it —
71% o At
_Chimney--) _ WEBCAM
.) & . Touch

. Working e .) Working % Store

Fridge surface — Qven T surface ° ,gp!sprlr?}/,, cupboard
SPOTC 11 |- SN s A
SPOT A1 SPOT B1 ’/ SPOT B2 SPOT D’ SPQT E . SPOT A2
S SPOTC 1.2 | \

V" Distance

n

Figure 1: The kitchen with the cooking assistant running on a touch screen (top-left), the main screen of the cooking
assistant (top-right), and the location spots defined by the context model (bottom).

In [4], we define different automatic adaptatiotes,adapt Incomprehensible adaptations can lead to confusarthe
the user interface to specific situations, defibgdvorking user. The user has little knowledge about the sitine
steps, to support the user while operating in tibeh&n. system and its internal representation of the enwiient,
Two examples are: user and platform characteristics. Therefore, ihasd for

» Distance-based adaptation: While cleaning dishes her 'to comprehend why a specific adaptations h;m be
the user wants to learn more about the next step. Aapplled. It is not only |mp9rtant to know why sofey
video helps to understand what has to be done_happens but rathgr how to '”_f'”e'ﬁce the behavaIn@_User
Depending on the users distance to the screen, thénterf.a'ce generation. At design tme unknown emment
layout algorithm increases the size of video condmons and. user charac_tenstlcs leads to t_mdwtm
element to improve the legibility. In this case the adjust adaptat|ons_ . f"lt runtime e.g. button size fe t
distance of the user to the interaction device is Preference, capa_bllltles or ryle of the actual useor
used to calculate the enlargement factor for this example a user with a golor blindness or degemgrafi th_e
element. maculd may wish to adjust the contrast and the font &ize

improve the visibility and readability of the udaterface.

* Spot-based adaptation: While using the cooking |n 3 similar case, left-handed users may wish josadhe
assistant, the user is preparing ingredients, position of interaction elements (e.g. buttonsjresr hands

following the cooking advices and controlling the don't hide important information during interaction
kitchen appliances on a working surface. Because

it is difficult to look at the screen from this
position, shown in Figure 1 bottom, the important
information (Step description and the list of
required ingredients) are highlighted.

Additionally, supportive user interfaces can alltwe user
to define individual distributions, which leadsftee space
or multi-application scenarios. These problems mest
solved. The next section defines the requiremeftano

] .] . } approach to enable the user to adjust, interferdefine
The described adaptions can improve the interaaiiibim new adaptations.

the application but the user is not able to infheerthe
adaptations or to interfere, which can lead totfai®n and
the denial of the application. For instance, if theer is
concentrated on the ingredients list or the textstalp
description and the size of these elements is daidevn.
This problem space can be divided into the evainatind
control of the system state and behavior.

2 That means the loss of vision in the center ofviseal
field (the macula) because of damage to the retina.

REQUIREMENTS

The requirements of a supportive application argved
from the need to evaluate the state of the systedhta
control the behavior of the adaptation algorithrheyl are
divided into:

* An approach, to define the layout of an application
and the adaptations to different context of use
scenarios and

WORK IN PROGRESS

In our implementation the components that realize
adaptations of user interfaces, which can be asljustt
runtime, are the layout and the adaptation modeth b
based on a model@runtime [6] approach to use the sa
model at design and run time.

Additionally, we have done the first steps to expdhe
approach of a meta-user interface described in t3]

« The support of the end-user to change theseProvide a simple way to adapt the layout generation

adaptations to their preferences.
As aforementioned, heterogeneous interaction dgyice

algorithm to the needs of the user.

sensors and appliances makes the development of use. ayout model

interfaces for smart environments a challenging tme-
consuming task. To reduce the complexity of thebjenm
user interface developers can utilize models andetitg
languages. User interfaces generated from modelssign
time often fail to provide the required flexibilityecause
decisions made at design time are no longer availab
runtime. To handle this issue, the use of userrfaxde
models at runtime has been suggested [6].

The approach shifts the focus from design to roretand
raises the need to support the end-user by thdapsment
and personalization of applications. A meta-uséerface
offers an abstract view to the state of the systad
provides an interface to influence its behavior.[1j the
system provides access to the task and the platiuwdel,

at which the platform model shows the interacti@vides
currently available in the home. Like the described
approach, the supportive user interface shouldalizeithe
user, environment, and platform information of thaning
system in a simple way. Also the situations and
corresponding adaptations (system and user irdjiate
should be transparent to the user. This means,
adaptation rules representation must describe tiaildehy
and how the user interface changes and enablestveta
interfere. To make the execution of user interface
adaptations more comprehensible for the user, &eddb
should be provided like the animation of user fiisiees
changes.

Additionally, the user needs a way to delete oustdayout
adaptations rules and thus change the situaticzopdition
and the adaptation. A preview of the changes awsidsig
decisions. The definition of new adaptation rulequires
the selection of context variables, their accuraeg range
of values which accurately describe the situation.
Following, the user defines the executed adapfast she
has to select the layout dimension (size, orieomati
containment) she wishes to influence, following skkcts
a specific statement and the changes realized ébjattout
generation algorithm. Furthermore, some statemeaésd
parameters e.g. a statement, defines the size fttan,
which depends on the width of the finger.

The state of the realization is described in thd section.

The layout model defines the structure of the usterface
and spatial relationships between user interfagmenhts. It
consists of the user interface structure and a dfet
statements. The user interface structure is detesnby a
tree-like hierarchy of Containers and Ul-Elements.
Containers can contain a set of nested contaimersi@sted
elements. User interface elements are the visinles pf the
user interface structure and can present informatiothe
user. The statements describe the size, style patiak
relationships between the user interface elements.

The approach differs from previous approaches io tw
general aspects. First of all, we interpret theégitemodels,
such as the task tree, the dialog model, the alvstiser
interface model and the concrete user interfaceeidtie
derive the initial structure of the user interfao® suggest
statements influencing the spatial relationshipd size of
user interface elements from this information. Efiere we
propose an interactive, tool-supported processrttices
the amount of information that needs to be spetifioe the
layout. The tool enables designers to comfortaldfing

thedesign model interpretations by specifying statememd

subsequently applying them to all screens of ther us
interface. The layout model editor is described4h in
more detail.

Furthermore, different to other layout generation
approaches like [2], we create a constraint systgm
runtime. A sub tree of the user interface structaaeks the
user interface elements that are currently partthef
application’s visible user interface and a set tatesnents
regarding these nodes is evaluated and createssraiot
system solved by a Cassowary constraint solvee rébult

of a successful layout calculation is a set of elets, each
consisting of the location (an absolute x, y cooati) and

a width and height value.

Adaptation model

The adaptation model describes possible situatmasthe
corresponding adaptations of the layout model of th
application. For this purpose, the adaptation madekists
of adaptation definitions. Each adaptation defimiti
consists of a tuple of a situation, describing wttean rule
should be applied and an adaptation rule, desgihimw

the layout model is adapted. The adaptation rukeg cause
changes to the user interface structure and may alsl,
modify or delete statements.

e
1
1

Environment

Figure 2: Example graph of layout model adaptations

In the center of Figure 2 an example of an adaptagraph

is shown. Each nod€l)) defines a state of the layout model
(@) and each edge®) a set of adaptation rules to

transform the layout model to a state, applicalle d

specific situation®). A situation is determined by a certain

state of the user, device and environment.

Additionally, we have done first steps to definguaportive
user interface.

Supportive user interface

The supportive user interface should provide a way,
understand the context information representatigiinv
the system and allow the manipulation of the ustariace
generation and adaptation algorithm.

To match the requirements defined above, a suppanser
interface should hide the complexity of the intéi@at
space (various sensors gathering information alibat
environment,
characteristics) from the user. Also the complexity
situation definition and recognition must be encdgied.
Accordingly, the situation description, the adaptat
definition must be as simple as possible but asptexnas

necessary. The user must be able to define powerful

adaptations but shouldn’t be overstrained. A waglddhis
is to derive semantic information from the usekifdce
models to visualize the effected elements on theesc To
preview the user interface changes, the suppouser
interface application simulates the layout modehnges
and visualizes the result of the calculation touber.

In [5] we use the information derived from the cate
user interface model (e.g. all button elements)aluiv the

heterogenic interaction devices aneér us

user to define a statement which influences the sizhese
elements. A screenshot is shown in Figure 3.

Figure 3: Supportive user interface screenshot

The supportive user interface application addsatestent
to the layout model and triggers the
mechanism to update the user interface of the egtjin.

CONCLUSION

In this paper, we have defined the requirements Ul to
control and evaluate the state of the adaptiveicgifmn
and have shown first steps of implementation.

In the future, we plan to increase the ratio ofoenatic

statements derived from the user interface modelshe

layout generation process. Additionally, we take diomain
model objects influenced by the user interface elgminto

account. The resulting set of statements redueeartiount
of designer defined statements. At run time, theasbn

recognition and the adaptation algorithm must keuated,

especially the handling of imperfect (e.g. inaccyra
incompleteness, conflicting) context informationdathe

user interface adaptation over the time.

Last but not least, we have to implement the SUicepts
and prove the acceptance of our approach by usdiest
Additionally, because the user doesn’t want to raefall
adaptions manually, we want to explore the postéslof
machine learning algorithms to reduce and simplifg
definition of adaptations.

REFERENCES
1.Joelle Coutaz. Meta-user interfaces for ambigacss:
Can model-driven engineering help? In Margaret H.
Burnett, Gregor Engels, Brad A. Myers and Gregg
Rothermel, editors, End-User Software Engineering,
number 07081 in Dagstuhl Seminar

Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

2.Christof Lutteroth, Robert Strandh, and Geraldb@re
Domain specific high-level constraints for userenféice
layout. Constraints, 13(3):307 - 342, 2008.

3.Dirk Roscher, Marco Blumendorf, and Sahin Alb&yra
Using Meta user interfaces to control multimodal
interaction in smart environments. In Gerrit Meixne
Daniel Gorlich; K. Breiner; H. Huymann; A. Pleuy; S

recalculation

Proceedings.
Internationales Begegnungs und Forschungszentrum fi

Sauer; J. Van den Bergh, editor, Proceedings of the runtime. In Proceedings of the Working Conference o
IUI'09 Workshop on Model Driven Development of Advanced Visual Interfaces, pages 321 - 325, 2010.

Advanced User Interfaces, volume 439 of CEUR g Gordon Blair, Nelly Bencomo, and Robert B. France
Workshop Proceedings, ISSN 1613-0073. CEUR \odels@ run.time. Computer, 42(10)222 27, Oct. 2009.
Workshop Proceedings (Online), 2009. .)

. . . 7.Sebastian Feuerstack, Marco Blumendorf, Veit
4.Veit Schwartze, Sebastian Feuerstack, and Sahin Schwartze, and Sahin Albayrak. Model-based layout
':‘R??’J?I;ieighﬁ]v'ﬁé”S;%Sc;gv_eungrwlg‘éigﬁcego&raﬂm generation. In Paolo Bottoni and Stefano Levialdi,

: 9 : editors, Proceedings of the working conference on
5.Veit Schwartze, Marco Blumendorf and Sahin Allayr Advanced visual interfaces. ACM, 2008.
Adjustable context adaptations for user interfacds

