
Learning State-Based Behaviour using
Temporally Related Cases

Michael W. Floyd and Babak Esfandiari

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario, Canada

Abstract. Learning by observation allows a software agent to learn an
expert’s behaviour, by examining the actions the expert performs in re-
sponse to inputs, without the expert having to explicitly program the
agent. Most learning by observation approaches only make use of the
current inputs and actions of the expert and ignore any past inputs or
actions. This limits the agents to only being able to learn reactive be-
haviour. We present an approach to case retrieval that uses the expert’s
past inputs and actions in order to allow for learning state-based be-
haviour. We demonstrate our approach by learning from a simulated
obstacle avoidance robot that reasons using internal state information.
Our results show a significant accuracy improvement over retrieval that
does not take into account any past information.

Keywords: learning by observation, state-based agents, temporal cases

1 Introduction

Programming a software agent or a robot can be a difficult and time-consuming
task as it requires the expert to have programming skills and a clear domain
model to transfer to the agent. One approach to alleviate the knowledge trans-
fer bottleneck is to have an agent that learns by observation. Such an agent is
not explicitly trained by an expert but, instead, observes how the expert be-
haves when presented with sensory stimuli. The agent is then able to use those
observations to train itself.

Case-based reasoning has been a popular approach to learning by observation
with applications in a variety of domains [6, 9–11]. While learning by observa-
tion can be beneficial, it does have several areas that may negatively influence
the agent’s performance. Some of these items have been addressed by previous
research [5, 6, 9–11] while others remain open problems. In particular, learning
by observation treats the expert as a black box and examines the outputs, in the
form of actions, produced after receiving inputs, in the form of sensory stimuli.
Any internal information, like the expert’s state, that influences reasoning will
be unobservable. This can result in the observing agent missing key information
that it would need to accurately learn the expert’s behaviour.

Our idea is that if an observing agent only uses the latest sensory stimuli
as a case description it can only, at best, learn an expert’s reactive behaviour.
However, if the case description captures the expert’s behaviour over a period
of time it should be possible to extract temporal relationships between sensory
stimuli and actions. For example, past stimuli and actions may still influence the
current behaviour. This temporal relationship can then be exploited in order to
approximate the state of the expert.

The remainder of this paper will detail a case retrieval algorithm that exploits
the temporal link between observed cases to allow imitation of state-based ex-
perts. Section 2 defines the cases that will be generated when observing a state-
based expert and Section 3 describes how those cases will be retrieved. The
experiments in Section 4, which involve learning state-based behaviour from a
simulated obstacle avoidance robot, demonstrate how our approach is a signifi-
cant improvement over retrieval that does not make use of temporal sequences
of cases. Our work is compared to related work in Section 5 and conclusions are
presented in Section 6.

2 Case Definition

The interactions between an expert, or any agent, and its environment can be
thought of as a series of environment states and actions by the expert [15]. Dur-
ing each interaction, the expert will sense the current state of the environment
and use the state, and possibly other information, to reason about what actions
it should perform. Both the possible environments states, S, and possible ac-
tions, A, are sets containing all environment states and actions that may be
encountered:

S = {S′, S′′, . . . } (1)

A = {A′, A′′, . . . } (2)

An observing agent is able to record each interaction and create a case, Ci,
that contains the environment state encountered by the expert and the resulting
action. In this case definition the environment state is the problem and the action
is the solution.

C = S ×A (3)

Ci = < Si, Ai > (4)

If the expert is purely reactive then it will select an action to perform based
solely on the current state of the environment:

Ai = f(Si) (5)

A case-based reasoning system that attempts to imitate the behaviour of a
reactive expert, by determining which action to perform, can do so by retrieving
cases that are similar to the currently observed environment state. However,
experts that are not purely reactive may reason using information from their

internal state. The difficulty in this is that the internal state of the expert is not
directly observable by an outside viewer and can not be added as a feature of
the cases.

While not directly observable, internal state can be inferred by examining the
complete series of past environment states and actions [15] (assuming the state is
never changed stochastically). A state-based expert will not only reason using the
current environment state but also using state information that was determined
using past environment states and actions. This requires thinking of cases not as
unrelated observations but as a temporally linked series of observations. When
an expert is observed for a period of time, a run R of environment states and
actions will be observed:

R : S
A0−→

0 S
A1−→

1 S
A2−→

2 . . . S
Au−1
−−−→

u−1 Su (6)

When learning by observing a state-based expert it then becomes necessary
to use the run of the expert to approximate how the expert selects which actions
to perform:

Ai = f(Si, Ai−1, Si−1, Ai−2, Si−2, . . .) (7)

In order to allow learning from a state-based expert, we extend our definition
of the problem to the current run rather than just the current environment state.
This leads us to redefine a case Ci as a pair containing the current run Ri and
the performed action Ai.

Ci =< Ri, Ai > (8)

This definition of a case is appropriate because it allows for approximating
the action selection of both a reactive expert (using the environment state) and a
state-based expert (using the entire run) since the run contains the environment
state. However, since each run is simply a sequence of cases it still requires an
analysis of the run to infer what state the expert is currently in.

3 Temporal Backtracking

The goal of the observing agent is to observe the expert and build a case base so
that it can behave similarly to the expert when presented with similar sensory
input. Ideally, the agent should be behaviourally equivalent to the expert. If the
expert and agent are behaviourally equivalent then after encountering the same
run they will produce the same action [15]. When performing case retrieval the
objective of the agent will be to compare its current run to runs of the expert,
which are stored as the problem portion of cases, in order to find the most similar
expert run and reuse the associated action.

A run is composed of both environment states and actions. Therefore, when
determining the similarity of two runs of equal length, Ra and Rb, it is necessary
to determine the similarity of the elements of the runs:

sim(Ra, Rb) = f(sim(Sa
i , S

b
i), sim(Aa

i−1, A
b
i−1), sim(Sa

i−1, S
b
i−1), . . .) (9)

This requires defining two similarity metrics: the problem similarity metric and
solution similarity metric. The problem similarity metric is used to calculate the
similarity between two environment states and the solution similarity metric is
used to calculate the similarity between actions. It should be noted that actions
can, at different times, be part of both a case’s problem portion and solution
portion. The current action is the solution portion of a case since the case-base
reasoning cycle is used to retrieve an appropriate action to perform. However,
after an action is performed it is appended to a run, which is the problem portion
of a case, so the action then becomes part of the problem.

The agent should, ideally, compare its entire run to runs in the case base
but this may not be computationally feasible. As an agent interacts with the
environment over time, the length of the run it has encountered will grow and so
too will the amount of computation required to compare it to other runs. If the
agent has received its nth environment state Sn and is attempting to select its
nth action to perform, An, then the run will contain n environment states and
n − 1 actions. Given the previous definition of run similarity, this would make
the similarity complexity O(n). The value of n could potentially be very large
for a typical real-time system.

An alternative approach would be to only consider a fixed-sized run, of length
l, for the agent. This would have the benefit of reducing the computational
complexity of the similarity calculation to constant time, O(1), but can result
in a loss of information if an incorrect run size is selected. For example, in the
situation where l = 1 the agent is ignoring all past information and behaving in
a purely reactive manner. It may not even be possible to select an ideal value
of l to use if the necessary run length is time-varying or context-dependent. For
example, the run length might be time-varying if a single environment state
influences the expert’s state. As the run grows, the influential environment state
will move further and further into the past.

We propose an approach to run retrieval that starts with an initial run length
of 1, only taking into account the current environment state, but can dynamically
increase the run length if more information is necessary. Looking again at the
definition of a run, we can see that the current run at time t, Rt, is composed
of the run at t− 1, Rt−1, along with the action performed in response to Rt−1,
At−1, and the current environment state St.

Rt : R
At−1
−−−→

t−1 St (10)

Each case, which is composed of a run and the associated action, can be rewritten
as a tuple containing the current environment state, the action associated with
the current run, the previous run and the action of the previous run:

Ct =< Rt−1, At−1, St, At > (11)

Which can be further simplified as:

Ct =< Ct−1, St, At > (12)

This simplification is beneficial because each case no longer needs to store the
entire run but can instead store the most recent environment state and a link to
the previous case.

The pseudocode for our retrieval approach is shown in Algorithm 1. The
functions used by the algorithm each take three parameters: the current run of
the agent (run), a collection of past runs (pastRuns), and a time offset that tells
it how far back in the run to examine (time). Initially, the stateRetrieve(. . .)
function is called and is given the current run of the agent, the entire case base,
and a time offset of 0. This causes the function to only consider the most recent
environment state (0 time units in the past) when comparing runs.

Two threshold values are used by the algorithm: the problem threshold (PT)
and solution threshold (ST). The problem threshold is used when comparing the
environment state portions of runs (in the stateRetrieve(. . .) function) whereas
the solution threshold is used when comparing the action portions of runs (in the
actionRetrieve(. . .) function). Both functions retrieve the appropriate piece of
the current run and past runs (using the state(. . .) and action(. . .) functions1)
and compare those run pieces using either the problem similarity metric or so-
lution similarity metric (line 3). If a run does not have an environment state or
action at a specific time, because the run does not go that far back in the past, a
null value will be returned. The similarity metrics will compute a similarity of 0
if one or both of the parameters are null. If the similarity is above the necessary
threshold value (line 6), either the problem threshold or solution threshold, then
the past run is added to the set of nearest neighbours (NN on line 7).

After the current run has been compared to all past runs the nearest neigh-
bour set is examined. If the nearest neighbour set is empty then the action
associated with the most similar run (bestRun) is returned (line 10). In this
situation there were no cases that were similar enough, based on the thresholds,
but a best guess at the action is made. However, if there were one or more cases
that were similar enough to the current run then it becomes necessary to see if
they agree on which action should be performed. If all of the nearest neighbours
had the same associated action (NNactions has only one item) then that action
is returned (line 11). If the nearest neighbours disagree on the action, more in-
formation is necessary to make the decision. The functions then recursively call
each other using the current run, the nearest neighbours, and an updated time
to examine (line 12). For example, initially the stateRetrieve(. . .) function is
used to compare the runs using the current environment states (equivalent to
a time offset of 0). If the function resulted in a non-agreeing nearest neighbour
set then the algorithm will look further back in time by examine the actions at
time offset 1 using the actionRetrieve(. . .) function. If examining the actions at

1 When the action(. . .) function takes two parameters it returns the action that oc-
cured at a specified point in the run whereas when it only takes one parameter it
returns the most recent action performed during the run.

Algorithm 1: Action Selection using Temporal Backtracking

Input: current run (run), candidate runs (pastRuns), time offset (time)
Output: action to perform (action)

Function: stateRetrieve(run, pastRuns, time) returns action

1 NN = ∅; NNactions = ∅; bestSim = −1; bestRun = NULL
2 foreach past ∈ pastRuns do
3 similarity = sim(state(run, time), state(past, time))
4 if similarity > bestSim then
5 bestSim = similarity; bestRun = past

6 if similarity > PT then
7 NN ← NN ∪ past
8 if action(past) /∈ NNactions then
9 NNactions← NNactions ∪ action(past)

10 if NN == ∅ then return action(bestRun)
11 else if |NNactions| == 1 then return {NNactions}
12 else return actionRetrieve(run,NN, time + 1)

Function: actionRetrieve(run, pastRuns, time) returns action

1 NN = ∅; NNactions = ∅; bestSim = −1; bestRun = NULL
2 foreach past ∈ pastRuns do
3 similarity = sim(action(run, time), action(past, time))
4 if similarity > bestSim then
5 bestSim = similarity; bestRun = past

6 if similarity > ST then
7 NN ← NN ∪ past
8 if action(past) /∈ NNactions then
9 NNactions← NNactions ∪ action(past)

10 if NN == ∅ then return action(bestRun)
11 else if |NNactions| == 1 then return {NNactions}
12 else return stateRetrieve(run,NN, time)

time offset 1 is still unable to produce an agreeing nearest neighbour set (or an
empty nearest neighbour set) the algorithm will then look at the environment
states at time offset 1 by calling the stateRetrieve(. . .) function.

The primary benefit of this approach is that the algorithm is able to dy-
namically backtrack, starting with the current environment state, until it has
enough information (an agreeing set of nearest neighbours) to select an action.
The algorithm recursively attempts to eliminate nearest neighbour cases by com-
paring portions of the runs that occur further in the past. In some situations the
algorithm only needs to compare the current environment state while in other
situations it may be necessary to compare a much longer portion of the runs.
This is beneficial because even if an expert is state-based it may not perform all

of its reasoning using state information. There may be times when it behaves
reactively and so performing a full run comparison would be unnecessary.

4 Experimental Results

Our experiments look to demonstrate the benefits of our retrieval approach when
learning by observing a simulated obstacle avoidance robot. The robot moves
around a 50 unit × 50 unit environment which contains a number of obstacles
scattered throughout. There are 5 possible actions the robot can perform: move
forward, move backward, turn left, turn right and reverse direction (turn 180
degrees).

Arobot = {Forward,Backward, Left, Right,Reverse} (13)

In order to sense the environment the robot has two sensors: touch and sonar.
The touch sensor produces a binary value. When the robot comes into contact
with something, like an obstacle, the touch sensor produces a value of 1. A
value of 0 is produced if nothing is being touched. The sonar sensor produces
a continuous value indicating the approximate distance to the nearest obstacle.
Each environment state is then a pair containing the feature values from both
sensors:

Srobot =< ftch, fsnr > (14)

Using the definition of the robot’s action set and environment state we can
now describe the problem similarity metric (Equation 15) and solution similarity
metric (Equation 17) that will be used during retrieval. The problem similarity
metric is calculated by taking the average similarity of each of the environment
features (using Equation 16).

sim(Sa, Sb) =
1

2

(
sim(fa

tch, f
b
tch) + sim(fa

snr, f
b
snr)

)
(15)

sim(fi, fj) =

{
1 , iffi = fj
1− |fi−fj |fi+fj

, iffi 6= fj
(16)

The problem similarity metric returns continuous similarity values in the range
[0, 1] whereas the solution similarity metric produces a binary value depending
on whether the actions are the same or not:

sim(Aa, Ab) =

{
1 , ifAa = Ab

0 , ifAa 6= Ab
(17)

An expert agent will be observed and learnt from in our experiments. If its
touch sensor indicates it has come in contact with an obstacle (a sensor value
of 1), the robot will be moved backward. Otherwise, the expert will base its
action selection on the value of the sonar sensor. If the sonar value is less than

2 the robot will reverse direction, if the value is between 2 and 3 the robot will
turn, and if the value is greater than 3 it will move forward. The direction the
robot turns, when the sonar value is between 2 and 3, depends on what state
the expert is in. The state of the agent is changed based on a previous action it
has perform. This expert toggles its turning direction after each turn. In order
to know which direction the expert will turn it is necessary to examine the run
to see the last direction the expert turned.

The expert was observed interacting with the environment over a period
of time. This resulted in a case base containing 50, 000 cases. Additionally, the
expert agent was also observed in order to create testing case bases for use during
evaluation. There were 25 testing case bases created and each case base contained
2, 500 cases. The placement of obstacles and the initial starting position of the
robot was different when creating each of the 26 case bases (the main case base
and the 25 testing case bases).

4.1 Class Separation

The selection of the expert was based on the assumption that its behaviour could
not be learnt using only the current environment state. Using only the current
environment state as inputs, inputs would appear similar to each other but result
in different actions. The internal state of the agent would be a necessary feature
in order to properly separate different classes in the problem space.

In order to test this assumption, the similarity of the nearest like neighbour
(NLN) and the nearest unlike neighbour (NUN) for each case was calculated.
The nearest like neighbour is the most similar case with the same associated
action and the nearest unlike neighbour is the most similar case with a different
associated action. Each case in the case base was compared to the remaining
49, 999 cases to find the NLN and NUN similarity values. The similarity when
comparing cases is performed using the problem similarity metric and only takes
into account the current environment state (the values of the touch and sonar
sensors).

The mean similarity2 of the nearest like neighbours and nearest unlike neigh-
bours is shown in Table 1. All of the actions had a mean nearest like neighbour
similarity that was nearly identical (a similarity of approximately 1.00). This
should be expected since the size of the case base is much larger than the num-
ber of possible environment states (approximately 200 states if we discretize the
sonar value to the nearest integer). For most actions, the mean NUN similarity
was significantly lower (using a paired t-test with p < 0.01) than the mean NLN
similarity. However, for both the left and right actions there was no significant
difference between the mean NLN and NUN similarities. The cases with these
actions, on average, had nearly identical like neighbours and unlike neighbours.
Therefore, in many situations it would be impossible to determine the correct
action to perform since there would be multiple identical cases in the case base
but the cases would not all have the same action.
2 The confidence intervals are not show in the table since, when rounded to two decimal

places, they are all +/- 0.00.

Forward Reverse Backward Left Right

NLN 1.00 1.00 1.00 1.00 1.00

NUN 0.86 0.92 0.67 1.00 1.00

Table 1. Mean similarity of nearest like neighbours and nearest unlike neighbours

4.2 Retrieval Results

The results from the previous section indicate that the left and right actions
appear to be difficult to separate when using only the current environment state
as the problem features. In order to test this, the accuracy of reactive retrieval
(RR) was compared to the accuracy of temporal backtracking retrieval (TB).
Reactive retrieval only uses the current environment state as features and per-
forms a 1-nearest neighbour search to find the most similar case in the case
base. The action associated with the nearest neighbour is returned. Temporal
backtracking retrieval uses the approach described in Section 3. Each retrieval
approach used the large cases base, containing 50, 000 cases, as the training case
base. Each testing trial, 25 trials in total, used one of the testing case bases and
used each case in the test case base as input to the retrieval algorithms. The
tests looked to see how accurately the retrieval algorithms returned an action
that matched the known action of the test case.

One modification to the temporal backtracking approach is that the prob-
lem threshold was split into two: the current problem threshold (CPT) and
past problem threshold(PPT). This split was done to allow the algorithm to
be more lenient on the similarities of past environment states. For the tem-
poral backtracking approach three similarity settings were tested: {CPT =
0.99, PPT = 0.90, ST = 0.90}, {CPT = 0.99, PPT = 0.90, ST = 0.00}.
{CPT = 0.99, PPT = 0.00, ST = 0.90}. The first set of thresholds takes into
account both past actions and past environments, the second only takes into
account past environments and the third only takes into account past actions.

The results, in Table 2, show the accuracy results (and 95% confidence inter-
vals) of the reactive retrieval approach and the results of temporal backtracking
retrieval using the best threshold set. For the expert, the best threshold values
were {CPT = 0.99, PPT = 0.00, ST = 0.90}. The best threshold values found
confirm our assumptions about what information in the run is necessary to imi-
tate the expert. There was a significant increase (using a paired t-test with p <
0.01) in the overall retrieval accuracy, the left action accuracy and the right ac-
tion accuracy. However, there were small, yet statistically significant, decreases
in the accuracy of the forward3 and reverse actions. It should also be noted that,
while not shown in the table, the temporal backtracking results using the other
threshold values also significantly increased the overall accuracy. This shows us
that while the settings for the threshold values are important it is possible to
improve over reactive retrieval using non-optimal thresholds.

3 The accuracy values are rounded to 1.00, but if no rounding is performed there is a
small, statistically significant decrease to the temporal backtracking values.

Forward Reverse Backward Left Right Overall

RR 1.00±0.00 1.00±0.00 1.00±0.00 0.48±0.02 0.50±0.02 0.80±0.01

TB 1.00±0.00 0.97±0.01 1.00±0.00 0.74±0.02 0.73±0.02 0.89±0.01

Table 2. Retrieval accuracy of standard reactive retrieval and temporal backtracking

One other area of note is how far back in the run the temporal backtracking
approach needed to examine. In many cases, the algorithm only examined the
current state of the environment. However, in some situations the algorithm
needed to go as far as 58 time steps in the past. If it would not have had those
past cases to examine it would have been unable to successfully select which
action to perform. Even though there are only approximately 200 environment
states and 5 actions, a run of length n would have approximately 200n × 5n−1

states. When comparing runs, a relatively simple and small state space becomes
much larger. Having a case base that only contained all runs of length 2 would
have required approximately 200, 000 cases (four times larger than the case base
we used) and would have been insufficient when longer runs were required.

5 Related Work

Most previous works that have made use of learning by observation, includ-
ing case-based reasoning [4, 10, 11] as well as other techniques [2, 7], have only
used the agent’s current sensory information as inputs during action selection.
This limits these approaches to only learning the behaviour of reactive experts.
However, approaches that use planning [9] are able to learn from state-based
experts since the plan nodes and transitions implicitly contain any necessary
state information. These planning approaches require the goals of the expert to
be manually defined beforehand, which may not be possible if the expert’s be-
haviour is not known. Additionally, these planning approaches have been found
to have difficulty learning reactive behaviour [9].

Previous work has examined using sequences of input data during reasoning
[8, 13]. These approaches, unlike our own, only make use of past inputs and
not past actions. Approaches that do reason with entire episodes of behaviour
have been called trace-based reasoning [1] or episode-based reasoning [12]. These
approaches have treated past episodes both as sequences of actions [3] and as
sequences of actions and stimuli [1, 12]. The primary difference from our own
work is that these techniques require a known start and end of each episode.
If the optimal episode length was unknown, or there was no optimal episode
length, it would be necessary to have a case base with all possible episodes that
could be generated from a run. This would result in a space complexity that is
O(n2), where n is the length of the run, compared to O(n) using our approach.
Also, they use similarity calculations that involves comparing entire episodes to
each other. Both their similarity measures and ours would have a computational
complexity of O(n) worst case but ours could be O(1) in the best case (when
only the most recent sensory input is relevant). Using an entire episode during

similarity calculation could also potentially introduce irrelevant information if
only the last part of the episode is relevant.

This work can be thought of as a sequential decision making task. Many other
approaches to sequential decision making assume Markovian sequence transitions
(the probability of reaching the next item in the sequence is only dependant on
the current item), require discretized sequence elements, or have difficulty when
important state information occurred far in the past [14]. These limitations are
not an issue with our approach since data can be examined far in the past (in
our experiments the algorithm went as far as 58 time steps in the past) and the
similarity calculations allow for continuous sensory inputs and actions.

6 Conclusions

In this paper we have described an approach to case retrieval for use in learning
by observation systems. Unlike past approaches, our approach takes into account
the entire run of an expert rather than just the current environment state. This
is beneficial because it allows learning from experts who reason using internal
state information. Additionally, the amount of past information required does
not need to be defined a priori as our approach is able to dynamically look
further back in the past when necessary.

Our experiments examined the ability to learn from a simulated obstacle
avoidance robot. While the behaviour of this agent was simple, we showed that
retrieval using only the current environment state as input was not sufficient
to predict actions that were dependant on the agent’s internal state. However,
our temporal backtracking approach, which used past environment states and
actions during retrieval, was able to significantly improve the retrieval accuracy.
In some situations no past information was necessary during retrieval but in
many situations information from many past environment states and actions was
needed. We found selecting appropriate threshold values for use in the temporal
backtracking algorithm is able to improve results but even using non-optimal
thresholds significantly improves the results compared to standard retrieval. In
this paper, we presented the results from a single expert agent. Further results,
omitted due to space limitations, showed similar performance improvements
when learning from two other experts: one agent that bases state-transitions on
past environment states and another that bases state-transitions on both past
environment states and past actions. While our approach did show significant
improvements when learning from a simulated obstacle avoidance robot, future
work will look at the applicability of our algorithm in other domains and with
agents that have more than two internal states. Also, our work assumes that the
expert does not switch between behaviours in a way that can not be identified by
examining the run. If the expert did unexpectedly switch behaviours, we would
need to extend our approach to separate unrelated behaviours that are part of
the same run.

References

1. Champin, P.A., Prié, Y., Mille, A.: MUSETTE: Modeling USEs and tasks for
tracing experience. In: Workshop From Structured Cases to Unstructured Prob-
lem Solving Episodes For Experience-Based Assistance at the 5th International
Conference on Case-Based Reasoning. pp. 279–286 (2003)

2. Coates, A., Abbeel, P., Ng, A.Y.: Learning for control from multiple demonstra-
tions. In: 25th International Conference on Machine Learning. pp. 144–151 (2008)

3. Doumat, R., Egyed-Zsigmond, E., Pinon, J.M.: User trace-based recommendation
system for a digital archive. In: 18th International Conference on Case-Based Rea-
soning. pp. 360–374 (2010)

4. Flinter, S., Keane, M.T.: On the automatic generation of cases libraries by chunking
chess games. In: 1st International Conference on Case-Based Reasoning. pp. 421–
430 (1995)

5. Floyd, M.W., Davoust, A., Esfandiari, B.: Considerations for real-time spatially-
aware case-based reasoning: A case study in robotic soccer imitation. In: 9th Eu-
ropean Conference on Case-Based Reasoning. pp. 195–209 (2008)

6. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitat-
ing RoboCup players. In: 21st International Florida Artificial Intelligence Research
Society Conference. pp. 251–256 (2008)

7. Grollman, D.H., Jenkins, O.C.: Learning robot soccer skills from demonstration.
In: IEEE International Conference on Development and Learning. pp. 276–281
(2007)

8. Mart́ın, F.J., Plaza, E.: Ceaseless case-based reasoning. In: 7th European Confer-
ence on Case-Based Reasoning. pp. 287–301 (2004)

9. Ontañón, S., Ram, A.: Case-based reasoning and user-generated AI for real-time
strategy games. In: Gonzáles-Calero, P.A., Gomez-Mart́ın, M.A. (eds.) AI for
Games: State of the Practice (2011)

10. Romdhane, H., Lamontagne, L.: Forgetting reinforced cases. In: 9th European
Conference on Case-Based Reasoning. pp. 474–486 (2008)

11. Rubin, J., Watson, I.: Similarity-based retrieval and solution re-use policies in the
game of Texas Hold’em. In: 18th International Conference on Case-Based Reason-
ing. pp. 465–479 (2010)

12. Sànchez-Marrè, M., Cortés, U., Mart́ınez, M., Comas, J., Rodŕıguez-Roda, I.: An
approach for temporal case-based reasoning: Episode-based reasoning. In: 6th In-
ternational Conference on Case-Based Reasoning. pp. 465–476 (2005)

13. Shih, J.: Sequential instance-based learning for planning in the context of an imper-
fect information game. In: 4th International Conference on Case-Based Reasoning.
pp. 483–501 (2001)

14. Sun, R., Giles, C.L.: Sequence learning: From recognition and prediction to se-
quential decision making. IEEE Intelligent Systems 16(4), 67–70 (2001)

15. Wooldridge, M.: An introduction to multiagent systems. John Wiley and Sons
(2002)

