
Developing A Web-based User Interface for
Semantic Information Retrieval

Daniel C. Berrios1, Richard M. Keller2
1Research Institute for Advanced Computer Science, MS 269-2,
NASA Ames Research Center, Moffett Field, CA USA 94035

2Computational Sciences Division, MS 269-2,
NASA Ames Research Center, Moffett Field, CA USA 94035

{berrios, keller}@email.arc.nasa.gov

Abstract

While there are now a number of languages and
frameworks that enable computer-based systems to
search stored data semantically, the optimal design for
effective user interfaces for such systems is still un-
clear. Such interfaces should mask unnecessary query
detail from users, yet still allow them to build queries
of arbitrary complexity without significant restric-
tions. We developed a user interface supporting se-
mantic query generation for SemanticOrganizer, a
tool used by scientists and engineers at NASA to con-
struct semantic networks of knowledge and data.
Through this interface users can select node types,
node attributes and node links to build ad-hoc seman-
tic queries for searching the SemanticOrganizer net-
work.

Introduction

To imbue web documents with machine-readable semantic
content, authors now have formats such as RDF for storing
such content (Lacher & Decker, 2001) and tools like An-
notea and the SHOE Knowledge Annotator (Heflin,
Hendler, & Luke, 1999) to help create such content. Fur-
thermore, standards for query languages to search this con-
tent are also beginning to emerge (Miller, Seaborne, &
Reggiori, 2002). However, there are still very few tools to
help users create semantic queries in any of these lan-
guages, and the design of such tools remains the subject of
ongoing research.

We have developed a user interface for building seman-
tic queries of arbitrary complexity for SemanticOrganizer1
(SO), a combined knowledge and data repository that fea-
tures an extensive semantic network. Through this inter-

1 http://sciencedesk.arc.nasa.gov/
Copyright © 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

face a user can generate a complex query to search the SO
knowledge space for sets of items consistent with the
query. The queries are stored as RDF models with anony-
mous nodes, hidden within HTML pages of the interface,
and incrementally updated as the user builds a query.

We approached the design of this interface with the twin
goals of accommodating users who know nothing or very
little about RDF and presenting the queries in a simple,
straightforward manner. SO has a wide array of users who
vary in technical savvy and who use a variety of computing
platforms and software. By and large, most user interac-
tion with SO is via HTML forms, and we have eschewed
more sophisticated interfaces such as specialized java app-
let widgets largely because of cross-platform/browser
compatibility issues. Thus, we sought to develop a seman-
tic searching interface using only HTML technology.

Methods

Because the task of building all but the simplest query can
require substantial cognitive reasoning on the part of users,
we chose a successive refinement design for the query
building interface (Fig. 1). Users iteratively add “terms” to
a query; each term is represented as a typed, but otherwise
anonymous node, similar to a resource in the RDF model.
A node is added by linking it to a node already in the
model through a “link” type property selected from the SO
knowledge network (i.e., a property whose range must be
another resource). The query can be submitted for execu-
tion any time after the first node is created and added to the
model. In fact, the user can continue to refine the query
and/or submit it for execution even after search results are
presented.

Figures 2 through 7 show the development of a query to
search for all DNA sequences from any bacterial culture of
a (stromatolite) sample with certain properties. Figure 2
shows a user beginning to build a query using the interface.
The interface is separated by a simple horizontal line into
an upper query building area, in which users select and

mailto:berrios@email.arc.nasa.gov
http://sciencedesk.arc.nasa.gov/
http://www.aaai.org/

Submit Query Search Node Listing
Results (Figs. 2 & 5)

Select node Select Range Class (Fig. 5)

Range Classes Node Display
Display (Fig.

4)
(Fig. 3)

Edit (literal)
Property Value(s)
(Fig. 3, upper right) Choose “Link” Property

(Fig. 3, lower right)

F
r
t
b
s

e
in
re
c
(i
th
w
su

b
m
n
fy
th
to
se
ti
lo
p
sa
m
d

igure 1. Flow of user interaction with the SemanticOrganizer query building interface. Given a listing of nodes cur-
ently in the query (top), the user can select any node for display of its properties (bottom, left), edit any of the properties,
hen choose a link type to relate the new node to the next new node in the query, which brings up a display of the possi-
le range node types for that link type (bottom, right). At any time, the user may submit the query for execution, view
earch results (top, right), and (optionally) continue building the query.
dit terms in the query, and a lower query execution area,
 which users can choose to submit a query, view search
sults, or erase the current query and begin again. Be-

ause the query (in its current state) is stored client-side
.e., embedded within the web page) and not server-side,
e user can “back up” to previous versions of the query at
ill using only their browser’s navigation buttons and pur-
e different paths of query refinement.
As shown in Figure 2, the user begins to build the query

y selecting the type “DNA Sequence” for a new (anony-
ous) node in the model, labelled “DNA Sequence 1.” All

odes are typed and so labeled by order of creation. Speci-
ing the type for a node in the query adds a statement to
e RDF model that restricts the type property of the node
 the appropriate class. The interface requires the user to
lect a type for each node before any of the node’s proper-

es can be defined. While this design choice initially fol-
wed logically from the types of queries we solicited from

otential users (e.g., “Find all experiments…”, “Find all
mples…”, etc.), it also obviates the need to develop
ethods for users to sort through the dozens or even hun-

reds of possible properties defined on all the various node

types in a given domain. Instead, the interface only needs
to display those properties whose domain is the type of
node selected.

After the user chooses the type of node to be added to
the model, the interface displays the Edit Node form (Fig.
3). This form allows the user to enter or select literal-
valued properties of the node, or select from a list of prop-
erties that have other nodes as ranges to link this node to
other nodes in the model. Literals can be specified by en-
tering them directly or selecting from a list of allowed val-

Figure 2. The Node Type Selection display of the query
builder interface. The user must select a type for the first
(and each successive) node in the query

Figure 3. The Edit Node Properties step. After selecting a type for the new node, the user is presented with a form to se-
lect/edit literal property values (upper right) and/or choose a “link” type property (lower right) to connect the new node to
another node

ues (if such a list is defined for the property type) and
submitting the form; the returned page displays the values
along with an adjacent “scissors” icon (see Figure 7) which
can be used to submit the form again, this time removing
the value. Values for any number of literal properties may
be submitted all at once or in any sequence as many times
as desired. However, once the user selects a “link” type
property and submits the form, the interface requires the
user to specify a class for the range of this property (Fig.
4). After the user has selected a range type, a new node

(“Culture 1”) is added to the model, as well as a statement
restricting its type to the type specified, and a statement
linking the two nodes through the selected property. This
action returns the user to the Node Listing Display, show-
ing the two newly created anonymous nodes along with the
list of all node types (Fig. 5).

At this point the user can either select one of the exist-
ing nodes in the model (to add other links and/or property
values) or choose the type for a third new node in the
model. He or she can continue the cycle of creating and

editing existing nodes at will until satisfied with the query.
This cycle could produce, for example, the complex query
shown in Figure 7.

In the query execution area of the interface, we display
generated queries in tabular form, which is well-supported
in HTML. Each node in the query is assigned a corre-
sponding column in the tabular display, and each row dis-
plays one or more links between nodes. While this format
may not be concise, it is probably superior to merely listing
the nodes and links of the model.

We could have designed the interface such that users
could create any type of graph structure, including those
with cycles. However, the use of HTML tables to display
queries with cycles clearly and unambiguously appeared
very challenging, if not impossible. Thus, we chose not to
allow users to generate cyclical query structures using this
initial version of the query-building interface.

At any time during the process of building the complex
query, the user may choose to completely erase the query
through the “Clear Query” button or execute the query by
pressing the “Perform Search” button. Choosing to erasing
the query removes the RDF model embedded in the page
and returns the user to the first step in the query building
process (see Figure 2).

To execute the query, we viewed searching the SO
knowledge space using the generated query as a constraint
satisfaction problem (CSP) (as others have): the nodes in
the query represent the set of variables in the CSP, the
items in SO correspond to the domain of possible values
for these variables, and the various properties in the RDF
model that the user specifies represent the constraints. We
developed procedures to solve this CSP using common

programming techniques to increase efficiency, including
node and arc-consistency tracking.

Figure 7 shows the search results for the query shown in
Figure 7. Each node in the query corresponds to a column
in the results table, and the possible sets of values for the
nodes are listed as rows. Clicking on a particular value
shows the item in SO.

Discussion

We present our experience developing a complex query
generation interface that we hope will be effective and at
the same time intelligible to naïve web users. The mis-
sions and scientific activities conducted at NASA often in-
volve users with a wide variety of sophistication in com-
puter science and experience with computing tools. Yet
even unsophisticated users have advanced information
needs that will require them to be able to specify complex
queries.

There are several features that we realize users need and
the current interface lacks. We will extend the functions of
the interface to include selecting and searching for multiple
values for literal-valued properties (using Boolean OR),
specifying ranges of values for special types of literals
such as dates and times, and range sets for link-type prop-
erties.

Because building some queries often requires significant
time and thought, we are also developing methods for users
to store, retrieve, clone, re-edit and re-execute complex
queries. We are currently exploring reuse of inference rule
“building blocks” for the creation of reusable complex que-

q
c
f

Figure 5. After selecting a "link" type property, the user
is required to choose from a set of possible range classes.
In this case, there is only one possible range class, "Cul-
ture", defined for the "sequenced from" property

Figure 4. After selecting a "link" type property, the user is re-

uired to choose from a set of possible range classes. In this
ase, there is only one possible range class, "Culture", defined
or the "sequenced from" property

ries. These building b
tions for anonymous no
sented as triples) that c
first order logic operat
example, a user can cr
trips undertaken by a w
in” property for each
field trips, if the workg
a group. The predicate
ist a node, x, of type “p
ber-of” with a value of
group” and has the pro
of node z and also that

Figure 7. The final comp i-
cation

Figure 6. Example sea
set of possible values fo

lex query to search DNA sequences from any culture cultivated from a sample of Cyanobacteria showing lithif
locks include knowledge represena-
des and their properties (i.e., repre-
an be combined through a subset of
ors to form rule predicate sets. For
eate a rule that looks for any field
orkgroup, and sets the “participated

member of the workgroup to those
roup participated in the field trip as
s for this rule stipulate that there ex-
erson” that has the property “mem-

 node y, and that y is of type “work-
perty “participated in” with a value
 z is of type “field trip.” The firing

of the rule sets the property “participated in” of x (the per-
son) to the value z. These same predicate sets capture the
logical predicates embodied in the complex query “find me
all nodes of type person such that these persons are mem-
bers of a workgroup that participated in some field trip.”
(However, there is no equivalent to the rule conclusion –
only that the values for variables in each of the predicates
be returned) By implementing the execution of such com-
plex queries using persistent inference rule predicates, us-
ers will be able to store, retrieve, and share common que-
ries. Furthermore the result sets retrieved by the queries
could also be persistently stored and then continuously up-
dated using a standard inference engine.

rch results. Each row represents a
r each node in the model

Acknowledgements

We wish to thank Brad Bebout and Lee Prufert-Bebout
for the kind use of their data in our examples. We would
also like to thanks Mr. Shawn Wolfe.

References

Heflin, J., Hendler, J., & Luke, S. (1999). SHOE: A
Knowledge Representation Language for Internet Applica-
tions. (Technical Report CS-TR-4078 (UMIACS TR-99-
71)): Dept. of Computer Science, University of Maryland
at College Park.
Lacher, M. S., & Decker, S. (2001). RDF, topic maps, and
the semantic Web. Markup Languages: Theory & Practice,
3(3), 313-331.
Miller, L., Seaborne, A., & Reggiori, A. (2002). Three im-
plementations of SquishQL, a simple RDF query language.
Paper presented at the ISWC 2002. First International Se-
mantic Web Conference Proceedings, Sardinia, Italy.

