ICBO: International Conference on Biomedical Ontologies - Buffalo, NY, USA
Working with Multiple Biomedical Ontologies Workshop, July 26, 2011

Use of Multiple Ontologies to Characterize
the Bioactivity of Small Molecules

Ying Yan!, Janna Hastings!, Jee-Hyub Kim!, Stefan Schulz2,
Christoph Steinbeck!, Dietrich Rebholz-Schuhmann!

1European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
2Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria

Abstract. ChEBI is an ontology of biologically interesting chemicals. Biological activities of
chemical entities comprise interactions with biological entities such as proteins and
anatomical structures such as the cell membrane. Currently, ChEBI represents these
biological activities of small molecules within a ‘role’ ontology which includes terms such as
‘cyclooxygenase inhibitor’. However, this ‘role’ ontology is not complete, and is not directly
interlinked with the biological ontologies which serve as the main source of concepts
describing biological entities. This makes it difficult to reason over the relationships
between chemical entities and their biological targets. To address this issue, we propose a
model for interrelating multiple ontologies and controlled vocabularies in the biomedical
domain in order to formally characterise the bioactivity of small molecules. In support of
this work, we have developed a method for analysing the scientific literature for textual
descriptions of bioactivity events linked to chemical entities. We examine the distribution
of terms from various controlled vocabularies (biological processes, proteins, organisms and
organ/body parts) in combination with the chemical entities in the literature, to better
understand reports of bioactivity. We find that proteins are the most commonly reported
type of target of small molecule bioactivity, and that organisms and organs are most

commonly reported in the literature as locational constraints rather than as targets.

1 Introduction

ChEBI is an ontology of chemical entities of
biological interest [3]. It describes chemical
entities such as molecules and ions together
with their structural and biologically relevant
properties. As of June 2011, it consists of
around 25,000 entities, divided into a
structure-based classification and a role-based

have positive effects, such as repressing the
development of disease, or they can have
negative (toxic) effects, leading to illness or
even death. The differentiation of bioactive
molecules from non-bioactive molecules is one
of the core requirements for in silico drug
discovery approaches [12], as are delineating
molecules which share similar activity profiles

[9].

classification. The role-based classification To properly formalise the description of
activities of chemical entities, such as contexts requires reference to multiple

‘cyclooxygenase inhibitor’ and ‘immunomodu-
lator’. These terms describe small molecule
bioactivity: the combined influence of a small
molecular entity on the components of a living
organism and on the organism as a whole.

On a molecular level, small molecule
bioactivity corresponds to the binding of the
molecule to a macromolecular receptor,
resulting in some observable physiological
effect on the biological systems involving that
macromolecule [4]. Bioactive molecules can
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terminological sources, some of which fulfill
the requirements for formal ontologies (such
as, e.g. the OBO Foundry ontologies [15]),
whereas other ones are better characterised as
thesauri, databases, or controlled vocabula-
ries. For example, to formalise a description of
enzymatic inhibitor activity requires reference
to the enzyme which is being inhibited; to
formalise participation in a in a particular
biological process requires reference to the
process; and bioactivity descriptions may
require reference to the exact location of the
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activity and the organism within which, or
against which, the activity took place.

The ChEBI role ontology does allow the
categorisation of chemical entities by their
bioactivities. However, in its present form it
suffers from two key limitations:

1. Role assertions are relatively sparse as
compared to the full ontology of chemical
entities (ust less than 3000 chemical
entities are mapped to just less than 500
roles, ca. 10% of the full chemical entity
ontology). The result is that many of the
chemical entities included in the ontology
are not adequately described in terms of
their biological context.

2. Bioactivity descriptions in the role
hierarchy of the ontology are not explicitly
linked to a primary reference source for the
biological entities themselves. For example,
the term ‘cyclooxygenase inhibitor’ describes
the inhibition of a cyclooxygenase enzyme,
yet this term is not explicitly linked to a
reference for enzymes such as UniProt.

The aim of the present work is to use the
automated analysis of literature as a means to
address these limitations. The remainder of
this paper is organised as follows. Firstly, we
present our methods, which include the
definition of a language model for bioactivity
description and its application to extract
mentions of bioactivity events from publicly
available literature resources, in Section 2.
Section 3 describes and discusses our results,
including the implications of our literature
analysis on the ontology model for
interrelating chemical entities and biological
objects and processes. In the final section we
conclude with the relevance of this work both
for biomedical research generally and for
improved curation tools in the context of the
ChEBI project.

2 Methods and Models

We first defined a language model for
bioactivity terminology based on the ex-
amination of relevant portions of the
Metathesaurus of the Unified Medical Lan-
guage System (UMLS) [1] and the ChEBI
biological roles. This is described further in
Section 2.1.

We then used this language model to
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extract bioactivity descriptions for ChEBI
entities from MEDLINE abstracts. The text
mining methods used are described in Section
2.2. After examining the sentences returned,
we defined an ontology model for characterising
the formal relationships between ChEBI
entities and other biological entities.

2.1 Bioactivity Language Model

Basic Phraseal Patterns. Bioactivity of a
chemical entity (CE) is described using given
a set of language features: “inhibitor” and
“activator”, “modulator”, “agonist” and
“antagonist”, “toxin”, “regulator”, “suppressor”,
“adaptor”, “stimulator”, “factor”, “messenger”
and “blocker”; these will be called trigger words.

Any of these features can occur as a head
noun in a phrase structure leading to the
following type of phrasal patterns for their
identification: a head noun preceded by a
noun phrase, as follows: <modifier> <head>.

Ideally, the phrase composing
(<modifier>) is constituted by one or more
tokens which denote the target of the
bioactivity, whereas the head word specifies
the nature of the interaction between the
small molecule and the target. For example,
‘beta-adrenergic receptor inhibitor’ has as
modifier ‘beta-adrenergic receptor’ (the target)
and as head word ‘inhibitor’ (the nature of the
interaction is inhibition).

The basic language model was further
extended to include alternative, compatible
language patterns such as ‘inhibition of X,
where X’ corresponds to the modifier and
‘inhibition’ the head word [8]. We identified

four different syntactical structures for
bioactivity descriptions, namely:
1. Noun  phrase or  adjective/adverb

compositions as modifier. This is the most
commonly seen structure of the basic noun
phrase, and we find a considerable
number of bioactivity terms presented in
this way. For example:

HIV transcriptase inhibitor

2. Prepositional  phrase as modifier.
Prepositional phrases are generally
formed by a preposition followed by a
prepositional complement. We also find
this structure is often represented in
bioactivity terms. For example:
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Suppressor of fused protein Oct-1
CoActivator in S phase protein, human

3. Verb phrase as noun phrase modifier.
When the verb phrase functions as a
modifier in a bioactivity noun phrase, it
presents the way in which the activation
of the described subject results in a kind of
influence to its object. For example:

TIR domain containing adaptor
inducinginterferon-beta protein

4. Relative clauses as modifier. Relative
clauses are defined as subordinate clauses
that consist of a clause beginning with a
relative pronoun. This type of modifier is
also used in the bioactivity presentation.
For example:

Factor that binds to inducer of short
transcripts protein 1

2.2 Bioactivity Term Extraction
from MEDLINE Abstracts

The method used to extract bioactivity
descriptions from MEDLINE abstracts is a
simple procedure which identifies noun phrase
structures by matching syntactical language
patterns. These hand-crafted language patterns
form an alternative to syntactic parsing, which
requires significant compute resources and is
still error prone in several extraction tasks [7].

After Dbioactivity noun phrases were
identified using the above patterns, we pruned
outliers which had the trigger word as other
parts of the phrase. For example, Mononuclear
cell growth inhibitor assay is not considered to
represent a valid bioactivity phrase because
the activity term inhibitor is not the head
noun (which in this case 1s assay). The
solution for the identification of the noun
phrases is based on hierarchically organised
language patterns developed for the extraction
of protein noun phrases in the protein-protein
interaction pipeline [14]. The syntactical
structures of the matching patterns have been
tailored to fit the language model used in the
approach of this manuscript.

The purpose of this analysis was to
investigate the target types for bioactivity
descriptions. To this end, four taggers for
named entity and concept label identification
(UniProtKB [10], Organ [6], Organisms [16]
and GO [13]) were applied on the modifier of
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candidates extracted from MEDLINE. The
unique count of tagging was cross analysed by
features provided in Section 2.1. We collected
tabulated statistics which are presented in the
results section.

Classifying Bioactivity Terms. After
extracting bioactivity descriptions from
MEDLINE, we aimed to find an efficient
method of classifying all the candidates with a
high rate of recall.

When the process results in the entire
modifier being annotated by a tagger, this
consequently indicates its semantic type. For
example, CaM kinase I activator is easily
classified as a protein activator since the
modifier has been annotated as a protein from
making reference to UniProtKB.

However, in the majority of cases, we
found that the result is a nested case, in which
the semantic tagger annotates just part of the
modifier, i.e. the tagged result resides within
the boundaries of the whole phrase for the
modifier. For instance, Agkistrodon blomhoffi
ussuriensis protein C activator. In this case,
ussuriensis protein C is the authentic target of
the activation, though Agkistrodon blomhoffi
is identified. As previously mentioned, a
simple method to rule out un-associated
tagging is used. We retain the tag which is in
the last position within the modifier, ignoring
other tags. In this example, the target type is
not species but protein.

2.3 Text Mining Methods for
Bioactivity Triple Extraction

We used a dictionary-based approach to
extract names of small molecules and their
targets together with their relation types from
the whole MEDLINE resource. The approach
processed text on a sentence level, extracting
triples which contain (1) a small molecule
term, (2) the ‘feature’ trigger word, which
presents the relation type, and (3) a term
representing the target of the small molecule.

To identify the small molecules, we
compared results from using two different
chemical taggers, namely the newest versions
of Oscar3 [2] and Jochem [5]. Jochem, being
dictionary-based, has the advantage that all
chemical entities it recognises are known
entities, whereas Oscar3 can recognise non-
known strings that resemble syntactical
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structures denoting chemical entities (higher
recall).

All the possible combinations of small
molecule terms, features and target terms in
each sentence are generated. We found that
false positive cases were significant, and
therefore applied three stages of rule-based
filtering:

1. Remove triples from the candidate list
when the putative small molecule term is
actually a role term according to the
ChEBI ontology (e.g. ‘antibiotic’)

2. Filter out those triples where the small
molecule term has the suffix “-ase”, since
these terms are normally enzyme names.

3. Remove triples when the string that
supposedly denotes a small molecule has
less than three characters.

3 Results and Discussion

3.1 Evaluation of Language Model

The evaluation of our approach is ongoing
work and requires a gold standard corpus
(GSC). The GSC would enable us to test
supervised learning methods against our
existing feature-based extraction method.
However, the named entity recognition
methods have all been evaluated. The
identification of proteins and genes performs
at 52.37%/61.63%/56.62% (Rec,Prec,F-Meas)
on PennBiolE and 50.26%/61.63%/56.62%
(Rec,Prec,F-Meas) on BC-II [11]. The method
applied for the identification of genes and
proteins was based on the UniProtKB
dictionary with basic disambiguation and was
not trained on one of the different gold
standard corpora, since methods trained on
gold standards show high differences in their
performance when being tested against other
gold standard corpora. Trained methods for
gene mention identification are available and
show higher performance, but do not allow
linking results to data from biomedical data
resources, e.g. UniProtKB and EntrezGene.

3.2 Results of Running Language
Model on MEDLINE Abstracts

Table 1 shows an overview of target type
associated with feature trigger words. Each
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cell shows the unique count of semantic
tagging for a certain feature. Both nested and
exact matching on the modifier of bioactivity
terms are considered.

Feature Protein Organ Organism Biological
Process
stimulator 2,526 3,303 500 1,808
adaptor 3,729 100 133 1,016
modulator 7,847 1,468 536 4,204
messenger 10,056 1,186 1,151 3,876
agent 10,522 10,292 19,374 8,744
blocker 13,588 1,371 9,235 4,203
toxin 16,890 1,583 10,265 3,276
suppressor 18,534 1,301 2,382 2,988
regulator 27,724 5,469 2,802 27,270
factor 40,427 21,959 11,152 77,670
agonist 48,973 3,633 13,154 12,353
activator 71,165 1,745 3,895 19,376
antagonist 80,932 9,483 11,740 19,486
inhibitor 336,420 12,102 30,839| 142,289

Table 1. Identifying target type of
small molecule on MEDLINE abstracts.

From this table, the main target types of
bioactivity are identified based on a two-
feature driven method.

In general, protein names are mostly
nested in the modifier of bioactivity terms.
UniProtKB tagging and ‘inhibitor’ gives a high
number of hits: 336,420 unique combinations.
This suggests that bioactivity descriptions in
text usually refer to activities against a
protein or enzyme. Two such examples are:

»  Other Ilysosomal hydrolases are not
inhibited by N-bromoacetyl-beta-D-galac-
tosylamine, with the exception of ‘neutral’
beta-glucosidase glucohydrolase.

= At the biochemical level cardiac guanyl
cyclase activity is enhanced 2-3 times with
acetylcholine and this enhancement is
completely blocked by atropine.

There are not as many hits in the Organ
and Organisms groups. We can find a few true
positive examples such as bothrops jararaca
inhibitor and thyroid stimulator. However,
there are many examples in which the organ
or organism appears in the sentence only to
denote the location of the bioactivity being
described. For example:

antagonism to
and L-dopa-produced

1. Caesium ion
chlorpromazine
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behavioural depression in mice.

The changes in the contents of glycolytic
intermediates in the livers indicate that
the phosphoenolpyruvate carboxykinase [EC
4.1.1.32] reaction is inhibited by tryptophan
administration in all groups of rats.

The oral administration of meta-proteranol
increased the leukocyte adenyl cyclase
activity which was stimulated by NaF and
decreased the count of peripheral eosinophils
in some of the monkeys.

We conclude that in the literature, organ
and organism most commonly provide the
contextual information about where a bioactivity
takes place, rather than being themselves the
target of the bioactivity. This will influence
our ontology model, described in Section 3.4.

We also analysed the case where GO terms
were tagged in bioactivity terms. For example,
inhibitor of DNA transcription. Here, a biological
process is the target of the bioactivity term.

Limitations. As is the norm in this type of
text mining approach, there are also typical
‘noisy’ false positives in the result, such as
‘hand’ being tagged as a body part in the
sentence ‘On the other hand, ..., and ‘dialysis’
being tagged as a species in the sentence
‘Influence of peritoneal dialysis on factors
affecting oxygen transport.” (Dialysis is,
indeed, a species: a kind of bug.). Care also
needs to be taken in that some of the results
reflect sentences in which the bioactivity being
described in the extracted triple is explicitly
not reported as taking place, such as:

1. Without influence on WDS were:
physotigmine, atropine, ganglionic-or
adrenergic-blocking drugs, Dopa, MAO-
inhibitors, serotonin- and histamin-
antagonists and nonnarcotic analgesics.

The cellulase component was not markedy
inhibited by most metal ions tested.

3.3 Comparison of Chemical Taggers

To identify chemical entities, we compared a
dictionary-based approach using Jochem with
the results generated using Oscar3 which is
able to identify novel chemical names in text
using a machine learning approach.

Table 2 shows the frequency of each triple
mentioned in text together with the unique
count of triples before and after the rule-based
filtering described in Section 2.3.

Oscar3 yields many more triples than
Jochem does. This is expected, since Oscar3
recognises any chemical-like string. However,
Oscar3’s approach also results in a
considerable number of false positives due to
its recognition of chemical-like nomenclature
appearing as a component in larger strings
(such as protein names). Furthermore, we can
observe a smaller number of triples identified
by UniProtKB and Oscar3 compared to the set
identified by UniProtKB and Jochem. This is
because Oscar3 produces annotations that
nest within a protein mention in the sentence
and thus lowers the subsequent annotation
protein mentions. Jochem performs more long-
form matching than Oscar3 does, therefore
the following protein identification has a
higher likelihood of identifying a protein term
within the sentence, hence yielding a greater
number of triples.

The comparison of before and after
filtering show whether the triple mention is
by chance and the association between the
chemical and the other semantic group is
more than contextually related. Between
chemicals and proteins the ratio is smaller
than the other groups. The non-unique
number of triples is less than twice the
number of unique ones, while it is more than
this ratio in other groups (specifically in the
chemical organ group). The number of non-
unique triples identified by Jochem after
filtering i1s almost three times the unique
count.

UniProtKB Organ Organism GO
Chemical tagger |Filtering uniq non uniq uniq non uniq uniq non uniq uniq non uniq
before 4,114,286 7,853,314| 2,666,468| 7,148,677 1,785,771| 4,076,253| 1,244,099| 2,947,289
Jochem after 2,912,756| 5,457,529| 1,632,855| 5,302,115| 1,394,310 3,085,056 935,864| 2,089,163
before 11,599,131 23,988,686 4,344,247| 11,855,944| 2,672,206| 5,836,725| 1,864,403| 4,607,315
Oscar3 after 7,827,737 12,776,542 | 2,222,450| 4,598,353| 1,347,442| 2,338,487 945,320 1,804,411

Table 2. Triples analysis from MEDLINE
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3.4 Ontology Model for Interrelating
Small Molecules and Biological Entities

The relationship between the chemical entity
and its bioactivity which is already used in
ChEBI is has_role.

Based on our analysis of bioactivity
phrases in the literature, we have identified
macromolecules and biological processes as
the most common types of targets for the
bioactivity of small molecules. We could
therefore introduce a has_target relationship
to relate a bioactivity description to either a
macromolecule or a Dbiological process.
However, strictly speaking, the range of the
has_target relationship should be restricted to
those entities with which the chemical entity
can physically interact — macromolecules. We
can assume that biological processes are
mentioned where the exact macromolecular
target 1s unknown. In the same way,
anatomical or subcellular locations may be
mentioned when the exact target is unknown.
Therefore, we can further formalise the
has_target relation link to processes: in this
case the target is a macromolecule and
participant_of some Process (Manchester syntax).

Examples:

m1l is a betaadrenergic receptor inhibitor:
ml subclassOf bearer_of some
(realized_by only
(Inhibition and
(has_target some BetaAdrenergicReceptor)))

m2is a mitosis stimulator:
m2 subclassOf bearer_of some
(realized_by only
(Stimulation and
(has_target some
(participant_of some Mitosis))))

m3is a thyroid stimulator:
m3 subclassOf bearer_of some
(realized_by only
(Stimulation and
(has_target some
(has_locus some ThyroidGland))))

m4 is a mouse thyroid stimulator:
m4 subclassOf bearer_of some
(realized_by only
(Stimulation and
(has_target some
(has_locus some (ThyroidGland and
part_of some Mouse)))))
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We have noted that organisms, organs and
bodily parts appear frequently as contextual,
locational modifiers for the bioactivity
descriptions in the literature. In these cases,
the above formalism is too strict, since the
location is assumed to contribute to the
definition of the bioactivity. We therefore
introduce an additional relationship, has_context,
which may hold between a bioactivity
description and an organism, bodily organ or
component to  express non-definitional
information: the bioactivity can take place in
many organisms, but was discovered through
investigations in one specific organism.

An important limitation of Description
Logic-based ontology representation
formalisms is that they are unable to elegantly
express the fact that the context applies not to
a bioactivity description per se, but rather to a
small molecule-bioactivity association. This
would require a ternary relationship. However,
for our purposes it will be sufficient to assume
that we can get around this problem through
the standard method of reification.

Finally, we note that the different head
nouns used in our analysis (inhibitor, antagonist
and so on) correspond to different types of
bioactivity, such as are delineated by upper-
level distinctions in the ChEBI role ontology.

4 Conclusions

We have presented a language model for
bioactivity descriptions which we have used to
examine the distribution of bioactivity
descriptions in the scientific literature. From
this analysis we derive insights into the model
needed to accurately formalise an ontology for
bioactivity, appropriately distinguishing between
bioactivity targets and contextual (locational)
information. Such an ontology will serve as a
bridge between small molecules, their
biological targets, and the locations and contexts
in which they act, allowing automated
reasoning about the activities of chemical
entities in a biological context.

This work should be understood as a first
step in the direction of such a formalisation, a
pressing goal in the context of ChEBI’s
participation in the OBO Foundry effort to
interrelate ontologies in the biomedical
domain. Future work will develop our text
analysis platform further as a support utility
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for ChEBI curation, and aim to incorporate
the increased formalisation described here di-
rectly into the ChEBI ontology. Since ChEBI
1s a manually curated resource, we cannot pre-
populate ChEBI with extracted relationships
based on the text mining methods described
here. However, such automatically identified
bioactivity descriptions in the literature can
be used to provide semantically enriched
information in our ontology curation workbench,
which allows a much improved and more
rapid curation experience.
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