
Security of the OSGi platform ?

Anton Philippov, Olga Gadyatskaya, and Fabio Massacci

DISI, University of Trento, Italy
{name.surname} @unitn.it

Abstract. In the last few years we have seen how increasing compu-
tational power of electronic devices triggers the functionality growth of
the software that runs on them. The natural consequence is that modern
software is no longer single-pieced, it becomes, instead, the composition
of autonomous components that run on the shared platform. The ex-
amples of such platforms are web browsers (such as Google Chrome),
smartphone and smart card operating systems (e.g., Android and Java
Card), intelligent vehicle systems or smart homes (usually implemented
on OSGi). On one hand, these platforms protect components by isolation,
but at the same time, provide methods to share and exchange services. If
the components can come from different stakeholders, how do we make
sure that one’s services would only be invoked by one’s authorized sib-
lings? In this PhD proposal we illustrate the problems on the example of
OSGi platform. We propose to use the security-by-contract methodology
(S×C) for loading time security verification to separate the security from
the business logic while controlling access to applications.

1 Introduction

With the ever-increasing popularity of smart devices and rapid development of
Internet, the single application model is more and more often being replaced with
the service platforms. These include Java Card platform for multi-applicational
smart cards, Android for smartphones, OSGi for component-based Java applica-
tions and smart homes, Google Chrome platform for browser plugins. In general,
we say that service platform is a platform, on which applications are isolated,
but can share selected parts of their functionality with other applications on
the platform. Furthermore, such shared functionality we will call a service. In
the current proposal we will concentrate on Java-based service platforms and,
in particular, OSGi platform.

The Open Services Gateway Initiative (OSGi) framework [1] is one of the
most flexible solutions for the deployment of pervasive services in home, office,
or automobile environments [5, 7, 9]. The OSGi services are also the basic build-
ing blocks for service mash-ups extending the classical “smart homes” scenarios
to richer settings [8]. In a nutshell, the OSGi framework redefines the mod-
ular system of Java by introducing bundles: JAR files enhanced with specific

? This work is partially supported by EU-funded project FP7-257930 ANIKETOS and
EU-funded project FP7- 256980 NESSOS.

First Doctoral Symposium on 
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012



metadata. The services layer connects bundles in a dynamic way with a publish-
find-bind model for Java objects. As a result, an OSGi platform is expected to
be highly dynamic. All pervasive and mash-up applications expect that bundles
can be installed, updated or removed at any time. From a security perspective,
the possibility of bundle interactions is a threat for bundle owners. Since bundles
can contain sensitive data or activate sensitive operations (such as locking doors
and windows of somebody’s house), it is important to ensure that the security
policy of each bundle owner is respected by other bundles. However, such aspects
have been only partially investigated.

How do we make sure that one’s services are invoked by one’s authorized sib-
lings? A simple solution is to rely on service-to-service authentication to identify
the services and then interleave functional and security logic into bundles, for
example, by using aspect-oriented programming [9]. However, this decreases the
benefits of common platform for service deployment and significantly hinders
evolution and dynamicity: any change to the security policy would require rede-
ployment of the bundle (even if its functionalities are unchanged). Vice versa,
any changes in the bundle’s code would require redeployment of security as well.

Our solution is to use the security-by-contract methodology (S×C) [2, 3] for
loading time security verification in order to separate security and the business
logic while achieving a sufficient protection of applications among themselves.

In the next section we illustrate the problem by introducing a concrete case
study for home gateways (§2) and discuss the security issues that the plain OSGi
model cannot solve without ad-hoc security codes within each bundle. We then
introduce the solution (§3) and conclude in §4 with an overview of the paper.

2 Problem statement

Further we concentrate on OSGi platform, identify the flows of its security mech-
anisms. However, due to the similarities in the architecture, the problems can
be applied to other service platforms (e.g., Android) as well. Due to the pa-
per length constraints we skip the technical description of the OSGi platform
and assume the reader has at least a basic familiarity with the service platform
architecture.

The Scenario We consider as a case study an OSGi platform deployed as a
service gateway in a smart home. Let us consider Alice, the smart home res-
ident, and a telecom provider, the owner of the platform. Alice can download
bundles for entertainment (news RSS feeds, media bundles from TV providers)
or even bundles with traditional Internet content (like Facebook or Twitter), as
nowadays new TV sets can be used for all these purposes. The interested reader
can refer to [6] for more details on the news feed scenario. In this example we
have used fictional names, but they give an idea of realistic bundle interactions
and possible policies regarding these interactions.

Alice, a beginner stock market player, downloads and installs bundle A from
provider FSM.com that can provide her with an interface of the stock market

First Doctoral Symposium on 
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012



operations. This bundle includes service SA that retrieves updates about the
stock prices. However, Alice later finds and installs another stock market bundle
B from BH.fr provider, that also provides service for prices information retrieval
SB and service Sfr that allows Alice to transfer money from her stock market
account (registered on BH.fr) to her Happy Farm account on FB.com. Thus
Alice also installs Happy Farm bundle F .

The bundle providers want to ensure that their security policies related to
bundles and services usage are enforced on the Alice’s platform. Their require-
ments are as follows:
FSM.com: Access to SA service is allowed only for bundles signed by FSM.com.
BH.fr: Access to SB service is allowed only for bundles signed by BH.fr. Only
bundles signed by BH.fr can import the package containing SB. Access to Sfr

service can be granted only for bundles signed by FB.com or by BH.fr.
The OSGi platform at Alice’s smart home has to ensure that the requirements

of each provider are respected. We will next discuss how the OSGi platform can
enforce these requirements and why this approach is not satisfactory. We will
also demonstrate that there can exist similar requirements of bundle providers
that cannot be enforced by the OSGi platform at all.

Security Challenges Let us first briefly present the relevant OSGi platform
details [1]. An OSGi bundle is a JAR file that includes the manifest.mf file con-
taining the necessary OSGi metadata including dependencies and the provided
libraries. Dependencies are expressed as requirements on capabilities. Capabil-
ities are attribute sets in a specific namespace and requirements are filter ex-
pressions that assert the attributes of the capabilities. A requirement is satisfied
when there is at least one capability that matches the filter. Bundles can interact
through two complementary mechanisms: the export/import of packages and the
service registration/lookup facility. A service is a normal Java object registered
under a Java interface with the service registry. Each bundle is associated with
a set of permissions, that are queried at runtime. The OSGi specification defines
ServicePermission, BundlePermission and PackagePermission, which are used for
getting/registering a service, importing/exporting bundles and packages respec-
tively. The platform can authenticate code by download location or by signer
(digital signature). The Conditional Permission Admin service manages the per-
missions based on a comprehensive conditional model.

We assume the framework can host multiple third-party bundles, and these
bundles can freely register services. The goal of the telecom provider running the
platform is to make sure that there are no undesired security or functionality
problems among different bundles installed by the end user (who most likely
does not even know what is a bundle and just sees the web interfaces of the
services). Thus a threat scenario under investigation is a case when a bundle gains
unauthorized access to the sensitive data of another bundle (security threat), or a
bundle is malfunctioning due to unavailability of a certain service (functionality
threat). We now discuss these threats separately in the light our scenario.

A confidentiality attack can be realized by the bundle A of provider FSM.com
getting access to the sensitive stock market prices service SB of provider BH.fr.

First Doctoral Symposium on 
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012



This might happen if A imports the package containing the service SB definition,
requires the bundle B (thus importing all its exported packages), or tries to get
a reference to this service from the Service Registry and then get access to the
object referenced.

We now discuss how the current OSGi security management can address this
security threat. Import of a package or a require-bundle action can be granted
if the requiring bundle has corresponding permissions. Simple reviewing of the
manifest file and permissions file of the bundle A can report about a (potential)
attempt to interact with the bundle B. However, there is no convenient and
simple way for the owner of the bundle B, the BH.fr provider, to declare which
other bundles are allowed to import its packages.

Package importing can be guarded by the permissions mechanism, as we dis-
cussed before. Currently only the platform owner (the telecom provider) can
define and manage policies in the Conditional Permission Admin policy file.
The BH.fr provider might contact the telecom provider to ask him to set the
required permissions, or its bundle B, being granted the necessary permissions,
can add new permissions to the Conditional Permission Admin policy file. These
approaches are organizationally cumbersome and costly, as they require the op-
erator to push the changes to its customers before any downloads of BH.fr
bundles, even the customers have no intention of using them.

Service usage is another, more trickier issue. Again, the necessary authoriza-
tions for the service usage (more precisely, GET permissions for service retrieval)
can be delivered within bundle contracts and incorporated into the policy file of
the system. But the invocations of the methods within a service, once the neces-
sary reference is obtained, are not guarded by the permission check, and usually
the security checks are placed directly within the service code, thus mixing the
security logic with the execution logic.

Another solution, that is traditional for mobile Java-based component sys-
tems, could be to ask Alice each time a specific permission is needed. But Alice
is not the owner of the bundles to make such decisions, nor is she interested to
do so. Let us consider a more complex scenario now.

Example 1 Alice wants to install the Sims add-on from the EA.com provider.
This add-on is packaged into the bundle C and it will provide an integration of
the Happy Farm account with her the Sims account. The functional requirement
of the EA.com provider is the following: “The bundle C can be installed if and
only if the F bundle is available on the platform and provides the Happy Farm
service SF .

The requirement in Example 1 means that bundle C can be installed only if
the service SF is already provided on the platform. This requirement prevents
the denial of service by the Sims bundle. The bundles are running on top of a
single JVM, thus the denial of service attack can cause a restart of the whole
system [4]. This functional requirement is, in fact, unsupported by the current
OSGi specification. Requirements/capabilities model cannot provide guarantees
on the provided services (except that their definition exists on the platform).

First Doctoral Symposium on 
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012



3 Proposed solution

Our proposed solution is to adopt the Security-by-Contract that was initially
investigated and implemented by Bielova et al. for mobile Java-based devices [2]
and by Dragoni et al. for the Java Card platforms [3]. Further we provide details
on possible architecture of S×C for OSGi.

The S×C framework consists of two main components: the ClaimChecker and
the PolicyChecker. The verification workflow is described on Figure 1.

Informally, the S×C process starts when a new bundle B is loaded. The
ClaimChecker component then accesses the manifest file, retrieves the informa-
tion about imported and exported packages and obtains the bundle contract.
Then the ClaimChecker reads the permissions.perm file, which contains local
bundle permissions, extracts permissions requested by the bundle B and re-
lated to services retrieval, packages importing, requirements of bundles, etc.,
and combines this information into the overall “security claims and needs” of
the bundle. Having these claims, the ClaimChecker then analyzes the bytecode of
the bundle to verify that the claims match actual code. If the verification fails,
meaning that the claims are not supported by the code, the bundle is removed
from the platform. Otherwise, the PolicyChecker component receives the result
from the ClaimChecker and matches it with the security policy of the platform,
that aggregates the security policies of all the installed bundles, and with the
functional state of the platform (installed bundles, running services, etc.). If the
PolicyChecker failed on either of the checks, the bundle is removed from the plat-
form. Otherwise, it is installed and the security policy of the platform is updated
by including the security requirements of B.

Fig. 1. SxC Workflow

In terms of technical realization, the S×C steps can be integrated with the
OSGi framework. The key requirement is getting the correct and up-to date
information about the state of the platform and being able to access the received
bundle before it is deployed on the platform. The S×C framework itself can be

First Doctoral Symposium on 
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012



a bundle, provided it can access the service registry, the framework policy file,
the lifecycle layer and the manifests of the bundles.

4 Conclusions

In this proposal we have identified the security problems of some of the Java-
based service platforms on the example of OSGi platform. We have presented and
idea of solution, which is a Security-by-Contract paradigm for the OSGi plat-
form. We discussed the security and functionality challenges and proposed how
to enable the bundle providers with ability to effectively express their security
and functional requirements on the platform.

The main benefits that the S×C approach can bring to service platforms are
the following. From the security aspect, the bundle providers can now specify
the authorizations for access to their bundles, packages and services. The policies
can be updated easily and the update does not require an interaction from the
platform owner, an access to the framework policy file or an update of the execu-
tion logic of the bundle. For the functionality aspect, the bundle providers have
now a more powerful tool for expressing their functional requirements than the
requirement/capability model of OSGi. The contracts can express requirements
on the current state of the platform (including requirements on the states of the
bundles or certain services provision, or absence of the competitor’s resources).

References

1. T. O. Alliance. OSGi service platform core specification. Version 4.3, 2011.
2. N. Bielova, N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Matching in

security-by-contract for mobile code. Journal of Logic and Algebraic Programming,
78(5):340 – 358, 2009.

3. N. Dragoni, O. Gadyatskaya, and F. Massacci. Can we support applications evo-
lution in multi-application smart cards by Security-by-Contract? In WISTP-2010,
LNCS 6033, pages 221–228.

4. N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot, and B. Folliot. I-JVM:
a Java Virtual Machine for Component Isolation in OSGi. In DSN’2009. IEEE.

5. T. Gu, H. Pung, and D. Zhang. Toward an OSGi-based infrastructure for context-
aware applications. IEEE Perv. Computing, 3:66–74, 2004.

6. F. Innerhofer-Oberperfler, S. Löw, R. Breu, M. Breu, M. Hafner, B. Agreiter,
M. Felderer, P. Kalb, R. Scandariato, and B. Solhaug. D2.2: A configuration man-
agement process for lifelong adaptable systems. Public deliverable of the Secure
Change project, 2011.

7. C. Lee, D. Nordstedt, and S. Helal. Enabling smart spaces with OSGi. IEEE Perv.
Computing, 2(3):89 – 94, 2003.

8. A. Ngu, M. Carlson, Q. Sheng, and H. Paik. Semantic-based mashup of composite
applications. IEEE Tran. on Services Computing, 99:2–15, 2010.

9. P. Phung and D. Sands. Security policy enforcement in the OSGi framework using
aspect-oriented programming. In COMPSAC’2008, pages 1076–1082.

First Doctoral Symposium on 
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012




