
Security Guarantees and Evolution: From
Models to Reality?

Mart́ın Ochoa1,2

1 Siemens AG, Germany
2 TU Dortmund, Germany

martin.ochoa@cs.tu-dortmund.de

Abstract. Achieving security in practical systems is a hard task. As it is
the case for other critical system properties (i.e. safety), security should
be a concern through all the phases of software development, starting
with the very early phases of requirements and design. Although the
arguments in favour of formal verification at the design level are many
(rigour and cost-benefit being at the top of the list), answers to two rel-
evant questions about the limitations of this approach are crucial for its
success and further application in industrial contexts: Is security verifi-
cation at the design phase scalable under continuous evolution? What
are the limits of the formal security guarantees achieved at the model
level when software is ultimately deployed? In this paper we report on
recent results and work in progress towards a better understanding of
these two fundamental questions.

1 Motivation

In recent years, information security has gained increasing attention from the
general public and there is a consensus about its paramount importance in so-
ciety. Examples include recent scandals on users private data [11], leaks of gov-
ernment secret documents and public threats from anonymous hacker groups to
corporate and governmental IT systems worldwide [1,2]. Long gone are the days
where the term ‘computer security’ was associated exclusively with spies, con-
spirational theories and cryptography. Today most successful attacks exploit vul-
nerabilities related to problems in design or implementation rather than vulner-
abilities in cryptographic mechanisms. And most of the attackers are motivated
teenagers, typically not interested in the mathematical aspects of cryptography.3

There are several reasons why security is difficult to achieve in practice.
On the one hand, the complexity of modern system architectures is constantly
increasing: software logic evolves, often driven by the market pressure to deliver
new functionalities, and different operating systems and hardware configurations

? PhD work supervised by Jan Jürjens at the Chair for Software Engineering of the
TU Dortmund and Jorge Cuéllar at Siemens Corporate Research.

3 Also social aspects of security result in attacks in many cases, but those are very
difficult to control by technological means and are out of the scope of this work.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

make each instantiation of an IT system unique. Moreover, software components
from different producers delivered without accurate (if at all) security guarantees
are used together to achieve customized solutions.

Techniques to tackle this ever ‘moving target’ exist in different areas of com-
puter science and engineering: from software and hardware formal verification to
testing, but also at the level of business-processes modelling and risk-analysis. In
fact, security plays a role at different levels of abstraction and at different phases
of the development cycle, and if one wants to have a high degree of assurance
about the security of a system one should consider them all.

In general, the strongest guarantees about software and hardware behaviour
are delivered by formal methods, due to their rigour and precision. It is thus nat-
ural to consider formal methods to validate a system with respect to well-defined,
mathematical descriptions of security. Nevertheless, formal methods are difficult
to apply in realistic software-development scenarios because they require highly
specialized designers and programmers in order to carry out the formalizations
and because many verification tools available hardly scale to realistic scenarios,
in particular at the level of implementations. Additionally, the security require-
ments of a system are not always precise, because often they are formulated in
natural language.

At the present time, the application of formal methods seems to be more rea-
sonable to take place at the level of system design, where models are abstracted
from implementation details and are more amenable to automated verification.
Since some security problems can be detected already at the specification level,
the cost-benefit of applying this methodology is typically better than repairing
design problems at later stages of development. Since the de-facto standard for
system modelling in industry is the Universal Modelling Language (UML), it is
natural to perform this formal verification on UML models, if one aims at in-
dustry acceptance. It is however not enough to have strong security guarantees
on system models to be able to judge the overall security of a deployed system,
which is the ultimate goal. As argued before, it is difficult to verify the code be-
cause of its size and the huge variety of programming languages and paradigms.
Moreover it can be the case that libraries or components from third parties are
used whose source code is unavailable.

Unfortunately, security is a never ending open loop, since no matter how
strong guarantees a given system has, new exploits appear that consider prop-
erties or interfaces that were not considered at design. This is prominently illus-
trated by side-channels: here the attacker exploits information such as electro-
magnetic radiation, timing and shared memory behaviour to gain possession
of confidential data. Many of these side-channels are difficult to capture since
they rely on micro-architectural configurations such as the duration of proces-
sor instructions or the cache behaviour. Closing these interfaces is sometimes
impossible or costly, because of the impact to other system requirements (i.e.
efficiency).

In summary, we believe that it is unrealistic to attempt to build complex
industrial systems with a 100% guarantee of security because logical or physical

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

interfaces that are vulnerable to attacks are often only exposed after real attacks
take place. To date there is also no standard single methodology, tool, or model to
tackle the whole Software Development Life-Cycle. It is thus necessary to provide
tools that help to cope with evolution problems at all levels of abstractions
and during the whole life-cycle. It is our believe that the idea that systems
are going to be secure because we commit to a single approach (for example
rigorous security requirements elicitation, industrial best-practices, strict patch
update policies etc.) is fallacious: we have to work on all phases and at different
abstraction levels, sometimes using different models and different methodologies.
In this work we propose a set of such tools, easy to use by end users, and
addressing the aforementioned problems on Models, Implementations and Micro-
architectures.

State Name

Stateaction

Models Implementations Running system

class HelloWorldApp {
 public static void main(String[] args)
{
 System.out.println("Hello World!");
 }
}

Fig. 1. Roadmap from models to running systems

2 Roadmap and contributions

In the following we summarize the goals of this research and the achieved results
so far. Security is typically described as the conjunction of one or more security
requirements, abstractly classified as Confidentiality, Availability and Integrity.
In this work we consider mainly Confidentiality and Integrity: we want to un-
derstand how information is flowing from a group of users to another. There are
basically two ways to look at the problem and our proposed solutions: a) accord-
ing to the abstraction level modelled and b) according to the security properties
considered. First, we will take the first point of view (see Fig. 1).

Models We consider the problem of specification evolution for security at the
level of UML models. We extend the UMLsec [5] notation and verification
techniques to reason about changes in the specification by means of the novel
UMLseCh notation [7,6]. For some properties defined in static UML diagrams,
we describe sufficient conditions that soundly preserve the security of already
verified models by analysing the delta implied by the modifications. This fine-
grained incremental technique is a good choice for structural of properties be-
cause of their locality: changes of parts of the model usually affect the property
in a clearly identifiable, small subset of the specification. For behavioural mod-
els, incremental changes can affect security in non-trivial ways. Therefore we
propose to focus on compositionality results: if one or more components of a
given system evolves, the overall security of the system can be decided (effi-
ciently) by re-verifying the evolved components exclusively given an (efficient)

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

compositionality condition. We describe such a decision procedure for secrecy on
cryptographic protocols specified as Sequence diagrams [10] that is sound and
complete with respect to a previous verification technique proposed by Jürjens
[5]. We currently extend previous work on verifying non-interference in UML
state-charts and derive compositionality results for interacting objects.

Implementations For evaluating the security of implementations we consider
model-based testing of security requirements based on a black box model of the
system. The methodology proposed is well-founded with respect to the require-
ments considered, and extends previous work on security testing [4]. We also
discuss conditions under which the security relevant properties of the model are
preserved under incremental changes [3].

Micro-architecture At this detailed abstraction level, we focus on cache config-
urations and how they can act as a leaking channel for different adversaries.
Configurations of the CPU play a determinant role on the security of the sys-
tem with respect to side-channel attacks, and the change in configurations is a
typical phenomenon of system’s evolution. Avoiding the use of caches conflicts
with efficiency requirements and is therefore not realistic for a wide range of
systems. A promising technique to achieve formal guarantees about countermea-
sures striving for a trade-off between security and other conflicting requirements
is quantitative information flow analysis (for example [8]). We formalize heuristic
countermeasures proposed in the literature and give strong security guarantees
for arbitrary programs under a well-defined attacker model [9], and validate our
approach using an automatic tool chain that evaluates compiled programs for
various architectures.

Notice that we do not aim at a formal integration of the security guarantees
obtained at the discussed levels of abstraction: such a task, although interest-
ing, goes outside the scope of this work. On the other hand, current industrial
environments do not have a formally justified software development process. We
consider different layers of abstraction mainly due to necessity: any error found
in any of these layers would invalidate the over-all security of the system.

It is nevertheless interesting to informally discuss our contributions from the
perspective of the security properties considered and the assumptions they rely
on at different abstraction levels. In fact, when analysing information-flow at the
model level, we are assuming perfect mechanisms for access control, and among
others, perfect cryptography, which guarantees access control when information
is shared through insecure networks. To gain confidence in the correctness of
those mechanisms, we validate them locally using model-based testing and per-
forming a Dolev-Yao analysis for the cryptographic protocol logic. To gain even
more confidence about primitives, we consider the micro-architectural abstrac-
tion level, using quantitative information-flow related techniques. We can see
this as an (informal) chain of assumptions and guarantees across abstraction
levels, as depicted in Fig. 2.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

Information flow control

Cryptography

mechanisms

Cryptographic protocols

Access Control

Access Control

Communication channel

Local

guarantee

guarantee

assume

Access Control

assumes

assumes

System under
Validation

Model
Model-based Testing

Dolev-Yao Analysis

Quantitative information flow Analysis

Non-interference Verification

assurance

Model

Model

Model

assurance

assurance

assurance

Fig. 2. Access control and Information-flow control vs. model validation

The assumptions and guarantees discussed here are by no means complete:
for example we are not considering operating system access control mechanisms
or semantic security properties of the cryptographic primitives. As already dis-
cussed we believe that a complete and formally justified methodology is un-
realistic. It is nevertheless essential to consider different levels of abstraction
and development phases to achieve a good degree of confidence in the system,
since an error in any of them would invalidate the results at higher abstrac-
tion levels or previous phases. For example a faulty implementation of access
control would invalidate a secure abstract design w.r.t non-interference, and a
cryptographic implementation with side-channels would make a formally verified
protocol against the Dolev-Yao adversary meaningless.

3 Conclusions and Work in Progress

Software security is a difficult problem because it is a moving target, and it should
be addressed at different levels of abstraction and in all phases of software de-
velopment. Although a promising methodology to achieve practical security is
formal verification at design time, to date there a number of limitations to this
approach, in particular when the system undergoes continuous evolution. We
have reported on results towards a scalable security verification at the model
level, and pinned down many assumptions made at different levels of abstrac-
tions, that are vital for the formal model analysis to be sound. Our focus is to
devise methodologies supporting intuitive tools, aiming at minding the gap be-
tween formal methods and industrial acceptance. At this point of our research,

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

we have already achieved many of the original goals, and promising work in
progress is being done on the missing items. Concretely, at this stage work in
progress is being done for information flow analysis: at the model level, we are
interested in the automatic and efficient verification of UML state-charts; at the
micro-architectural level novel formal quantification techniques are being studied
that provide strong security guarantees on realistic modern processor models for
powerful attackers and multiple hardware configurations. Submissions to inter-
national conferences in software engineering and automatic verification in both
of these subjects are on preparation at the time of writing this manuscript.

Acknowledgements This research was partially supported by the MoDelSec Project
of the DFG Priority Programme 1496 “‘Reliably Secure Software Systems – RS3”
and the EU project NESSoS (FP7 256890).

References

1. LulzSec hackers claim CIA website shutdown. BBC news http://www.bbc.co.uk/
news/technology-13787229, 2011. Online, accessed 04-Feb-2012.

2. LulzSec takes down Brazil government sites. Cnet news http://news.cnet.com/

8301-1009_3-20073219-83/lulzsec-takes-down-brazil-government-sites/,
2011. Online, accessed 04-Feb-2012.

3. E. Fourneret, F. Bouquet, M. Ochoa, J. Jürjens, and S. Wenzel. Vérification et
test pour des systèmes évolutifs. In Approches Formelles dans l’Assistance au
Dveloppement de Logiciels (AFADL), 2012.

4. E. Fourneret, M. Ochoa, F. Bouquet, J. Botella, J. Jürjens, and P. Yousefi. Model-
based security verification and testing for smart-cards. In Proceedings of the 6th
International Conference on Availability, Reliability and Security (ARES), pages
272–279. IEEE, 2011.

5. J. Jürjens. Secure Systems Development with UML. Springer, 2005.
6. J. Jürjens, L. Marchal, M. Ochoa, and H. Schmidt. Incremental Security Verifica-

tion for Evolving UMLsec models. In Proceedings of the 7th European Conference
on Modelling Foundations and Applications (ECMFA), volume 6698 of Lecture
Notes in Computer Science, pages 52–68. Springer, 2011.

7. J. Jürjens, M. Ochoa, H. Schmidt, L. Marchal, S. H. Houmb, and S. Islam. Mod-
elling secure systems evolution: Abstract and concrete change specifications. In
Proceedings of the 11th International School on Formal Methods for the Design of
Computer, Communication and Software Systems (SFM), volume 6659 of Lecture
Notes in Computer Science, pages 504–526. Springer, 2011.

8. B. Köpf and M. Dürmuth. A provably secure and efficient countermeasure against
timing attacks. In Proceedings of the 22nd IEEE Computer Security Foundations
Symposium (CSF), pages 324–335. IEEE Computer Society, 2009.

9. B. Köpf, L. Mauborgne, and M. Ochoa. Automatic quantification of cache side-
channels. Cryptology ePrint Archive, Report 2012/034, 2012. http://eprint.

iacr.org/.
10. M. Ochoa, J. Jürjens, and D. Warzecha. A sound decision procedure for the com-

positionality of secrecy. In Proceedings of the 4th International Symposium on
Engineering Secure Software and Systems (ESSoS), 2012.

11. M. J. Schwartz. Sony sued over playstation network hack. Information Week, http:
//www.informationweek.com/news/security/attacks/229402362, 2011. Online,
accessed 04-Feb-2012.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

http://www.bbc.co.uk/news/technology-13787229
http://www.bbc.co.uk/news/technology-13787229
http://news.cnet.com/8301-1009_3-20073219-83/lulzsec-takes-down-brazil-government-sites/
http://news.cnet.com/8301-1009_3-20073219-83/lulzsec-takes-down-brazil-government-sites/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.informationweek.com/news/security/attacks/229402362
http://www.informationweek.com/news/security/attacks/229402362

	Security Guarantees and Evolution: From Models to Reality

