
Attack-preserving Security Protocol Transformations

Binh Thanh Nguyen, David Basin, and Christoph Sprenger

Institute of Information Security, ETH Zurich, Switzerland
{thannguy,basin,sprenger}@inf.ethz.ch

Abstract. The rigorous incremental development of security protocols has so far
received much less attention than protocol verification techniques. In this work,
we study security protocol transformations. These can serve both for simplifying
protocols before verification and, in the other direction, for developing protocols
by stepwise refinement of simple abstract protocols into complex concrete ones.
The transformations preserve attacks on a class of security properties. Our work
aims to improve our understanding of modifications of existing protocols and
to enable the systematic development of entire families of new protocols. This
complements existing work on post-hoc protocol verification.

1 Introduction

It is well-known that security protocols are notoriously hard to get right. This moti-
vates the use of formal methods for their design and development. In the last decade,
we have witnessed substantial progress in the formal verification of security protocols.
However, methods for developing security protocols have received much less attention
and protocol development remains more an art than a science.

Sprenger and Basin [14,15] have recently proposed a hierarchical development
method for security protocols based on stepwise refinement that spans several levels
of abstraction. Each development starts from abstract models of security properties and
proceeds down to cryptographic protocols secure against a Dolev-Yao intruder. The de-
velopment process traverses intermediate levels of abstraction based on message-less
protocols and communication channels with authenticity and confidentiality properties.
Security properties, once proved for a given model, are preserved by further refine-
ments. They have applied their method to develop families of authentication and key
transport protocols. However, developers may not be familiar with these abstractions
and the underlying refinement framework. They are more familiar with cryptographic
messages and transforming these messages to create new protocols from existing ones.

This motivates our study of refinements in terms of protocol transformations at the
level of cryptographic messages. In particular, we are interested in protocol transfor-
mations that preserve attacks against a given set of security properties from concrete
protocols to abstract ones (or, equivalently, the satisfaction of such properties in the re-
verse direction). Such transformations can serve the systematic development of individ-
ual protocols and entire families of protocols. Moreover, they can be applied to modify
or compare existing protocols and understand their differences. The modification of se-
curity protocols is particularly error-prone (see, e.g., [2]). Security protocol standards

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

constitute another relevant application field for protocol transformations, since they typ-
ically comprise numerous protocol variants and options.

Security protocol transformations can also be considered as abstractions (i.e., from
concrete to abstract). Hui and Lowe [10] define several kinds of attack-preserving trans-
formations with the aim of simplifying protocols so that they can be effectively verified
using model checking. They define criteria for the preservation of secrecy and authenti-
cation properties, and prove for each kind of transformation that it satisfies these criteria.

Datta et al. [6,5] use protocol templates with messages containing function variables
to specify and prove properties of protocol classes. Their notion of refinement is based
on instantiating function variables and discharging the associated assumptions. Pavlovic
et al. [13,3] similarly refine protocols by transforming messages and propose special-
ized formalisms for establishing secrecy and authentication properties. Unfortunately,
their approach lacks a formal semantics.

Guttman [9,8] studies the preservation of security properties by a rich class of pro-
tocol transformations in the strand space model. His approach to property preservation
is based on the simulation of protocol analysis steps instead of execution steps. Each
analysis step explains the origin of a received message. However, he does not provide
syntactic conditions for the transformations to preserve security properties.

The objective of our work is to develop a comprehensive theory of protocol transfor-
mations covering a wide range of protocols and security properties. Our starting point
is Hui and Lowe’s work [10]. They work in a restricted protocol model with typed mes-
sages and atomic keys and show their results for ground messages. However, in order
to transform protocol descriptions, we have to consider messages with variables and
justify that a transformed attack is indeed an execution of the abstract protocol. They
only discuss this important point briefly and informally. We plan to address these issues
and obtain preservation results for relevant classes of security protocols (such as those
based on convergent subterm theories [1]) and expressive property specification lan-
guages (such as PS-LTL [4] or the language proposed in [11]). We aim to cover a large
class of protocol transformations including those described in the examples in [3,6,5].

We intend the following contributions. We want to significantly extend the scope
of existing work in terms of expressiveness of the protocol specifications, the protocol
transformations, and the preserved properties. Our work will provide a sound formal
underpinning to protocol transformations, which can serve as a foundation for rigorous
security protocol development, modifications, and comparisons of existing protocols.

2 A motivating example

We present the development of a key transport protocol as a motivating example. We
state the protocols in standard Alice&Bob notation and describe each refinement step
as a protocol transformation.

Consider a key transport protocol P1, where a key server S generates and distributes
a session key KAB to an initiator A and a responder B.

M1.1. A→ S : A, B
M1.2. S → A : {B,KAB}KAS

M1.3. S → B : {A,KAB}KBS

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

In order to prevent replays and guarantee the recentness of KAB, we refine this protocol
into P2 by adding a nonce and a timestamp to P1.

M2.1. A→ S : A, B,NA

M2.2. S → A : {B,TS ,NA,KAB}KAS

M2.3. S → B : {A,TS ,KAB}KBS

Next, we obtain P3 by refining the flow of protocol messages: the server now appends
B’s message in M2.3 to A’s in M2.2, which A then forwards to B.

M3.1. A→ S : A, B,NA

M3.2. S → A : {B,TS ,NA,KAB}KAS , {A,TS ,KAB}KBS

M3.3. A→ B : {A,TS ,KAB}KBS

In P3, B cannot be sure that A has received the key KAB. We refine P3 into P4 by having
the server encrypt B’s message inside A’s, which allows A to authenticate B on KAB.

M4.1. A→ S : A, B,NA

M4.2. S → A : {B,TS ,NA,KAB, {A,TS ,KAB}KBS }KAS

M4.3. A→ B : {A,TS ,KAB}KBS

Protocol P4 is a basic form of the Kerberos IV protocol (without authenticators). We
have started from a simple initial protocol guaranteeing only the secrecy of the session
key. We have then used refinement to add several features to this protocol in order to
obtain key freshness, recentness, and authentication properties.

For additional examples of protocol developments, we refer the reader to [3,6,5].

3 Approach and current work

Security protocol model We briefly summarize our security protocol model, which
is based on [11]. The model is parametrized by a message term algebra over a given
signature Σ and a set of variables V. Constants model nonces, keys, time stamps, and
agents. Function symbols typically include hashes h(t), pairs 〈t, u〉, and encryptions {t}u.
Let T be the set of all terms over Σ and V. The terms may be quotiented by an equa-
tional theory, e.g., to model the commutativity of exponentiation for a Diffie-Hellman
protocol. As is standard, we model a Dolev-Yao intruder [7] with full control over the
network using a deduction system. Its judgements have the form T ` u, meaning that
the intruder can derive the term u from a finite set of terms T . Encryption is perfect, i.e.,
the intruder can only decrypt with the intended key.

We specify protocols as finite sets of roles instead of the informal Alice&Bob no-
tation from Section 2. Each role R ∈ Role is a sequence of send and receive events
of the form snd(t) or rcv(t) for a term t. The semantics of a protocol is a transition
system with states of the form s = (tr, th, σ), where tr is a trace consisting of a se-
quence of pairs of thread identifiers and events, th : T ID ⇀ Role is a thread pool, and
σ = {σi | i ∈ dom(th)} is a family of ground substitutions σi, one for each thread i. The
transitions are defined by an operational semantics with rules for sending and receiving
messages. The receive rule includes a premise requiring that the received message is
deducible by the intruder from his initial knowledge and the sent messages. We write
R(P) for the set of reachable states of the protocol P.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

Protocol transformations Our protocol transformations are functions f : T → T on
terms, which we lift to events, roles, protocols, traces, and states. We consider a class
of nice transformations, which includes the following operations on messages:

1. remove encryptions and hashes,
2. remove fields from an encrypted message,
3. pull fields outside of an encryption,
4. split encryption into several ones, and
5. project pairs (under certain conditions) and reorder pairs.

These protocol transformations simplify messages (and hence protocols) and can
therefore be understood as abstractions. However, the same transformations can be used
for protocol refinements, which proceed in the opposite direction, from abstract to con-
crete. For example, in Section 2, the refinement of P1 into P2 uses transformations of
the second type, and the one from P3 into P4 uses a transformation of the third type.

So far we do not cover structural transformation of protocol like the message relay-
ing transformation (cf. the refinement of P2 to P3), but we plan to do so in the future.

Property specification language We consider a property specification language with
formulas of the following shape.

φ = ∀i1, . . . , im.
∧
A∈Γ

A ⇒ ∃ j1, . . . , jn.
∧
B∈∆

B (1)

The quantifiers range over thread identifiers and ∆, Γ are sets of atomic predicates.
These predicates include learns(m) for expressing intruder knowledge in secrecy prop-
erties, and event orderings e ≺ e′ and equations m = m′ for authentication properties.
To achieve attack preservation, the learns(m) is only allowed to occur in Γ. A state
s = (tr, th, σ) that does not satisfy a property φ, written s 6|= φ, is called an attack on φ.

Attack preservation Suppose we are given a class of security protocols, properties,
and transformations such as those sketched above. The main result we want to achieve
is the preservation of attacks on a property φ of protocol P to attacks on the transformed
protocol f (P) and property f (φ). We formalize this property as follows.

∀(tr, th, σ) ∈ R(P). (tr, th, σ) 6|= φ
⇒ (f (tr), f (th), f (σ)) ∈ R(f (P)) ∧ (f (tr), f (th), f (σ)) 6|= f (φ) (2)

We decompose the proof of such results into two parts: the preservation of (i) exe-
cutability (first conjunct) and (ii) attacks (second conjunct).

Executability The proof that for each reachable state (tr, th, σ) of P the transformed
state (f (tr), f (th), f (σ)) is reachable in f (P) is based on the following deducibility
preservation result.

Tθ ` uθ ⇒ f (T) f (θ) ` f (u) f (θ) (3)

This follows from two simpler properties. The first one is a simpler version of (3).

T ` u ⇒ f (T) ` f (u) (4)

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

The second one requires that f satisfies the following substitution property, that is, for
all terms t and substitutions θ,

f (tθ) = f (t) f (θ) (5)

In particular, since the operational semantics of receive events requires the deducibility
of the received message from previously sent messages, we can use (3) to show that
each receive event of P can be simulated by a corresponding receive event in f (P).

Attack preservation Since secrecy is expressed in terms of deducibility of messages,
we obtain the preservation of secrecy for free from the above. For other properties, like
those expressible in the language sketched above, a separate proof is needed.

We have proved property (4) for all nice transformations. However, the substitu-
tion property (5) turns out to be quite restrictive. It rules out transformations that look
more than one level into the term structure (such as, e.g., for splitting an encryption).
Our initial solution restricts the set of substitutions to simple ones, whose range con-
tains no composed terms. This set covers typed substitutions, which are (implicitly)
used in [10]. We have proved (5) (hence executability) and attack preservation for this
restricted setting and a subclass of nice transformations specified by pattern matching.
Unfortunately, this solution rules out untyped variables such as those required for for-
warding messages (cf. Section 2).

4 Planned work and conclusions

Generalizing the results An alternative solution is based on the observation that exe-
cutability depends on constraints T ` u where the terms in T stem from send events and
u from a receive event. Therefore, a restricted form of (5) where t ranges over the set of
terms in the protocol roles suffices for executability. Since this form of (5) is protocol-
dependent, we cannot use induction to establish it. Instead, we need to formulate criteria
to check that a protocol has this property. For attack preservation, the substitution prop-
erty must also hold for the terms occurring the properties we are interested in.

A different approach could replace the substitution f (θ) in (3) by some θ′. The
construction of such a θ′ would require a stronger proof technique, possibly based on
symbolic constraint reduction [12]. This approach produces non-ground substitutions
as solutions of constraint systems. Therefore, we would have some freedom to derive
different ground substitutions θ′.

Outlook on future work In a longer-term perspective, we plan to extend the scope of
transformations in several directions. First, we want to cover structural transformations,
which not only modify messages, but also events and roles (e.g., relaying messages;
splitting, merging, and deleting events). Second, we would like to cover a larger class
of protocols, in particular, by including equational theories (e.g., Diffie-Hellman expo-
nentiation, convergent subterm theories [1]). Third, we intend to extend the property
language to include additional properties such as forward secrecy and also consider
stronger adversary models (e.g., compromising session keys and local states). Finally,
we also plan to implement a tool that supports the definition and application of protocol
transformations and the guarantee of their soundness.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

Conclusions In this work, we study attack-preserving security protocol transforma-
tions. These can be used for the abstraction, the refinement, and the comparison of
protocols. Therefore, we consider this technique as a useful complement to verification.

So far, we have defined a subclass of transformations and proved the preservation
of attacks with respect to a particular security property language. We have discussed
the problems that we have encountered and proposed possible solutions. We have also
sketched our plans for future work.

Acknowledgements This work is partially supported by the EU FP7-ICT-2009.1.4
Project No. 256980, NESSoS: Network of Excellence on Engineering Secure Future
Internet Software Services and Systems.

References
1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational theo-

ries. Theor. Comput. Sci., 367(1-2):2–32, 2006.
2. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal analysis of

SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on for Google
apps. In V. Shmatikov, editor, FMSE, pages 1–10. ACM, 2008.

3. I. Cervesato, C. Meadows, and D. Pavlovic. An encapsulated authentication logic for reason-
ing about key distribution protocols. In CSFW ’05: Proceedings of the 18th IEEE workshop
on Computer Security Foundations, pages 48–61, Washington, DC, USA, 2005.

4. R. Corin, S. Etalle, and A. Saptawijaya. A logic for constraint-based security protocol anal-
ysis. In IEEE Symposium on Security and Privacy, pages 155–168, 2006.

5. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Abstraction and refinement in protocol
derivation. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), pages
30–, 2004.

6. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositionl
logic for security protocols. Journal of Computer Security, 13:423–482, 2005.

7. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

8. J. D. Guttman. Transformations between cryptographic protocols. In P. Degano and L. Vi-
ganó, editors, ARSPA-WITS, volume 5511 of LNCS, pages 107–123. Springer, 2009.

9. J. D. Guttman. Security goals and protocol transformations. In Theory of Security and
Applications (TOSCA), an ETAPS associated event, volume 6993 of LNCS. Springer, 2011.

10. M. L. Hui and G. Lowe. Fault-preserving simplifying transformations for security protocols.
Journal of Computer Security, 9(1/2):3–46, 2001.

11. S. Meier, C. J. F. Cremers, and D. A. Basin. Strong invariants for the efficient construc-
tion of machine-checked protocol security proofs. In Proc. 23th IEEE Computer Security
Foundations Symposium (CSF), pages 231–245, 2010.

12. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In ACM Conference on Computer and Communications Security, pages 166–
175, 2001.

13. D. Pavlovic and C. Meadows. Deriving secrecy in key establishment protocols. In Proc. 11th
European Symposium on Research in Computer Security (ESORICS), pages 384–403, 2006.

14. C. Sprenger and D. Basin. Developing security protocols by refinement. In Proc. 17th ACM
Conference on Computer and Communications Security (CCS), pages 361–374, 2010.

15. C. Sprenger and D. Basin. Refining key establishment. Technical Report 736, Computer
Science Department, ETH Zurich, Sept. 2011.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

	Attack-preserving Security Protocol Transformations

