
Enhancing Safety and Security of Distributed
Systems through Formal Patterns?

Jonas Eckhardt1,2,3, Tobias Mühlbauer1,2,3

Supervisors: José Meseguer4, Martin Wirsing1

1 Ludwig Maximilian University of Munich, 2 Technical University of Munich,
3 University of Augsburg, 4 University of Illinois at Urbana-Champaign

Abstract. Distributed systems are often safety- and security-critical
systems and have strong qualitative and quantitative formal require-
ments, equally important time-critical performance-based quality of ser-
vice properties, and need to dynamically adapt to changes in a poten-
tially hostile and often probabilistic environment. These aspects make
distributed systems complex and hard to design, build, test, and verify.
To tackle this challenge, we propose a formal pattern-based approach and
framework for the design of correct-, secure-, and safe-by-construction
distributed systems.

Key words: formal patterns, meta-object pattern, statistical model
checking, rewriting logic, distributed systems, cloud computing

1 Introduction

On June 20, 2011, the Cloud-based file storage service Dropbox reported that
“Yesterday we made a code update at 1:54pm Pacific time that introduced a bug
affecting our authentication mechanism. We discovered this at 5:41pm and a fix
was live at 5:46pm.” [4]. During these nearly four hours, the broken authentica-
tion mechanism granted access to possibly private data stored on some accounts
using any chosen password. Issues like this are not the exception which is also
reflected by the list of the top 10 obstacles for the adoption and growth of Cloud
Computing [5]; with data confidentiality and auditability, availability of service,
and bugs in large distributed systems being obstacles on this list. In fact, dis-
tributed systems (i) are safety- and security-critical systems which have strong
qualitative and quantitative formal requirements, (ii) have equally important
time-critical performance-based quality of service properties (e.g., availability),
and (iii) need to dynamically adapt to changes in a potentially hostile (e.g.,
distributed denial of service attacks) and often probabilistic environment they
operate in. These aspects make distributed systems complex and hard to design,
build, test, and verify.

Modular approaches tackle the aforementioned complexity in the early stages
of system design and analysis. These approaches include design patterns, which
are general, reusable solutions to commonly occurring software problems and

? This work has been partially sponsored by the Software Engineering Elite Graduate
Program and the EU-funded project FP7-256980 NESSoS.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

have been successfully used in different domains including object-oriented soft-
ware design [10], service-oriented computing [12,9] and security [16]; they clearly
define the programming context, the problem, and the advantages and disadvan-
tages of the design solution (see e.g., [10,16]).

In addition to “normal” design patterns, formal patterns are reusable solu-
tions that are formally specified with precise semantic requirements and come
with strong formal guarantees. Distributed systems can be specified as compo-
sitions of instances of such formal patterns.

Research Goals and Contributions. The main goal of the proposed research is
to contribute a formal pattern-based approach and framework for the design of
correct-, secure-, and safe-by-construction distributed systems, aided by a rich
tool environment. The approach is based on the ideas of (i) developing executable
formal models of distributed system designs, (ii) making these designs modu-
lar based on highly reusable formal patterns, and (iii) formally analyzing such
models to verify qualitative (e.g., invariants) and quantitative (e.g., expected
throughput) properties. This approach distinguishes itself by using executable
formal pattern-based system specifications and statistical model checking, which
allows the verification of larger system instances than with conventional model
checking techniques (state explosion).

Rewriting logic and Maude. In order to specify executable formal patterns, an
appropriate semantic framework is needed. We chose rewriting logic [13], a sim-
ple, yet powerful, computational logic and a general formalism that is a natural
model of computation and an expressive semantic framework for concurrency,
parallelism, communication, interaction, and object-orientation. It is capable of
logical and distributed object reflection and, through its probabilistic [2] and
real-time extensions [15], of modeling real-time, stochastic, and hybrid systems.

Maude [7] is a high-performance implementation of rewriting logic capable of
executing rewriting logic-based specifications. The key concept of Maude speci-
fications is that of a module. Object-oriented modules define objects, their state,
and messages; where objects communicate via asynchronous or synchronous
message passing. Distributed systems are modelled by object-oriented modules,
where the state of such a system is a multiset or “soup” of objects and mes-
sages, called a configuration. A parameterized module M [X :: P] has a formal
parameter X satisfying a parameter theory P ; M can be instantiated by another
module Q via a theory interpretation V : P −→ Q, called a view, with the usual
pushout semantics (see [7]). We denote the resulting module by M [V] or shorter
by M [Q] if V is clear from the context.

The Maude system has an extensive tool environment which, e.g., includes a
LTL model checker (see [7]) and the statistical model checker PVeStA [3]. The
Maude system and its tool environment are the foundation of our work.

Outline. This paper proceeds as follows: Sect. 2 introduces the concept of formal
patterns and gives the example of the general meta-object pattern. In Sect. 3 we
discuss our proposed approach for the design of correct-, secure-, and safe-by-
construction distributed systems in more detail. In Sects. 4 and 5, we respectively
discuss a research plan for future work and summarize our results.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

2 Formal Patterns

Formal patterns [8] enhance pattern descriptions with formal executable speci-
fications that can support the mathematical analysis of qualitative and quanti-
tative properties. Just as “normal patterns”, a formal pattern Pat is structured
in context, problem, solution, advantages and shortcomings (cf. e.g. [16,9]). In-
stead of using UML or Java we describe these patterns formally as a paramterized
module M [S] with a parameter theory S in Maude. The context of the pattern
typically includes a description of the assumptions of the parameter theory S.
Many of the advantages and shortcomings of the formal pattern can be gained
from formal analyses.

Two formal patterns Pat and Pat ′ can be composed by the pattern com-
position Pat + Pat ′. The problem statement and context of Pat + Pat ′ can be
systematically derived from those of Pat and Pat ′. As we will see, such a compo-
sition of patterns might combine advantages while cancelling out disadvantages.

Example: The Meta-Object Pattern. Many distributed systems need to function
in potentially hostile environments such as the Internet. Additionally, safety, real-
time and quality of service requirements need to be satisfied. Modularization is an
instrument that helps the designer or architect to cope with the high complexity
of such a system. The Meta-Object (MO) pattern provides an approach based
on modularization. It is defined as follows:

Context. A concurrent and distributed object-based system.
Problem. How can the communication behavior of one or several objects be

dynamically mediated/adapted/controlled for some specific purposes?
Solution. A meta-object is an object which dynamically mediates/adapts/

controls the communication behavior of one or several objects under it. In rewrit-
ing logic, a meta-object can be specified as an object with an inner configuration
that contains the object or objects that are controlled by the meta-object. Thus,
the parameterized module MO [X] introduces the meta-object constructor; the
parameter X specifies the controlled system.

Advantages and Shortcomings. MO defines a general control and wrapper
architecture; but may add communication indirection and the requirement for
language specific object visibility.

MO is a widely used pattern: The meta-object is sometimes called an onion-
skin meta-object [1] if the inner configuration contains a single object, which
itself could be wrapped inside another meta-object, and so on, like the skin
layers in an onion. More generally, the inner configuration may not only contain
several objects o1 . . . , om inside: it may also be the case that some of these oi are
themselves meta-objects that contain other objects, which may again be meta-
objects, and so on. That is, the more general reflective meta-object architectures
are so-called “Russian Dolls” architectures [14].

Figure 1 illustrates the idea of a hierarchical composition of meta-objects and
components according to the Russian Dolls model with boundary-crossing mes-
sages M,M ′, and M ′′. Messages addressed to the internal components C1 . . . CN

first need to cross the boundaries of the two outer meta-objects MO1 and MO′
2.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

Meta-Object MO1 (e.g., firewall)

Meta-Object MO2 (e.g., ASV)

C1 . . . CN

M

M ′

M ′′

Fig. 1. Example of a hierarchical composition of meta-objects and components
according to the Russian Dolls model with boundary-crossing messages.

Cloud

ASV Wrapper
ASV Wrapper

. . .

ASV Wrapper

Server Replicator Wrapper

REQn
REQ

ACK

REQ REQ

REQ

Client
Server1 ServerN

Fig. 2. Application of the ASV+SR meta-object composition on a Cloud-based
client-server request-response service.

The outermost meta-object MO1 may thereby be a firewall that forwards se-
lected messages to its inner configuration according to specific filter rules, and
the inner meta-object MO2 may be a Distributed Denial of Service (DDoS)
defense mechanism like the ASV protocol [11].

3 Approach: Enhancing Safety and Security through
Formal Patterns

In [8], two additional formal patterns, the Server Replicator (SR) and the ASV
pattern, are introduced. In cases of high demand (e.g., a raising number of re-
quests or a DDoS attack), the SR pattern replicates instances of a parametric
server on demand while the ASV pattern represents a modularized specification
of the ASV protocol, which provides a defense mechanism against DDoS attacks
for a parametric client-server request-response system. Under DDoS attacks, the
goal is to provide stable availability, i.e., that with very high probability service
quality remains very close to a threshold, regardless of how bad the DDoS attack
can get. Quantitative analysis of the two patterns has shown that the ASV pat-
tern does not provide stable availability and that the SR pattern cannot provide
stable availability at a reasonable cost. However, for the composition of ASV
and SR, ASV +SR (see Fig. 2), it has been shown that stable availability at a
reasonable cost can be achieved.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

Based on this example, we propose a general approach for enhancing safety
and security of distributed systems through formal patterns:

1. Develop executable formal models of distributed systems in rewriting logic,
supported by the Maude system.

2. Make these specifications modular and adaptive using instances of formal
patterns. A catalog thereby provides highly reusable formal patterns such as
the Meta-Object, ASV, and SR patterns.

3. Formally analyze these models to verify qualitative and quantitative prop-
erties using the Maude tool environment (e.g., parallelized statistical model
checking supported by PVeSTA is able to analyze large system models).

4. Identify reusable formal patterns in the model and add their formal specifi-
cations to the pattern catalog.

4 Research Plan for Future Work

The main goal of the proposed research is to contribute a formal pattern-
based approach and framework for the design of correct-, secure-, and safe-by-
construction distributed systems, aided by a rich tool environment. We propose
three main areas of future research: (i) build a rich and comprehensive catalog
of formal patterns, (ii) identify security, safety, and other properties that are
preserved by pattern composition and proof their preservation, and (iii) improve
the existing tool support.

To build a rich and comprehensive catalog of formal patterns, existing pat-
terns that are not yet explicitly modelled as a formal pattern need to be identified
and formally specified.

In [6], it has been shown that the cookies protocol (a DDoS defense proto-
col), if wrapped around a system, preserves the safety properties of the wrapped
system. We conjecture that the same is true for the ASV and ASV +SR proto-
cols. In a first step, we want to prove that the ASV protocol also retains safety
properties of the wrapped client-server request-response system. In the future,
we want to identify such properties of other patterns and prove that they are
preserved when the pattern is applied to a system. Having property preserving
formal patterns improves their composability and reduces the formal verifica-
tion effort as specific properties are, by construction, preserved in the composed
model.

Furthermore, we propose to improve existing tool support in two main ar-
eas: (a) the robustness of existing tools and (b) code generation from executable
formal models. Since we want to build systems in which many participants are
communicating with each other and perform quantitative analyses on such sys-
tems, we need analysis and verification tools that scale with the size of these
systems. In particular, analysis tools such as the PVeStA [3] statistical model
checker, which drastically increases the scalability of statistical model checking
through parallelization, need to be improved in terms of fault tolerance. Finally,
to incorporate the proposed approach in an software engineering process, code
generation techniques are needed. Thereby, based on correct-, secure-, and safe-
by-construction specifications, correct-, secure-, and safe-by-construction imple-
mentations are generated.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

5 Conclusion

In this paper we have presented the research goal of a formal pattern-based ap-
proach and framework for the design of correct-, secure-, and safe-by-construction
distributed systems, aided by a rich tool environment. We gave a description of
formal patterns, including the example of the Meta-Object pattern, and gave
references to existing work that shows that formal patterns can help deal with
security and safety issues and that formal analysis can help evaluate patterns
in various contexts. In particular, we gave a description of the general formal
pattern-based approach and concluded this paper with a summary of a research
plan for future work.

References
1. G. Agha, S. Frolund, R. Panwar, and D. Sturman. A Linguistic Framework for

Dynamic Composition of Dependability Protocols. IEEE ICPADS, 1:3–14, 1993.
2. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language

for probabilistic object systems. ENTCS, 153(2):213–239, 2006.
3. M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model checking and

quantitative analysis tool. In CALCO, volume 6859 of LNCS, pages 386–392, 2011.
4. Arash Ferdowsi. Yesterday’s Authentication Bug.

http://blog.dropbox.com/?p=821 (01/2012).
5. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley
View of Cloud Computing. Technical report, University of California at Berkeley,
2009.

6. R. Chadha, C. A. Gunter, J. Meseguer, R. Shankesi, and M. Viswanathan. Modular
Preservation of Safety Properties by Cookie-Based DoS-Protection Wrappers. In
FMOODS, volume 5051 of LNCS, pages 39–58, 2008.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude - A High-Performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic, volume 4350 of LNCS. Springer,
2007.

8. J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer, and M. Wirsing. Stable
Availability under Denial of Service Attacks through Formal Patterns. In FASE,
volume 7212 of LNCS, 2012.

9. T. Erl. SOA Design Patterns. Prentice Hall, 2008.
10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
11. S. Khanna, S. Venkatesh, O. Fatemieh, F. Khan, and C. Gunter. Adaptive Selective

Verification. In IEEE INFOCOM, pages 529–537, 2008.
12. M. Wirsing et al. Sensoria Patterns: Augmenting Service Engineering. In ISoLA,

volume 17 of CCIS, pages 170–190, 2008.
13. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.

TCS, 96(1):73–155, 1992.
14. J. Meseguer and C. Talcott. Semantic models for distributed object reflection. In

ECOOP, volume 2374, pages 1–36. LNCS, 2002.
15. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.

HOSC, 20(1–2):161–196, 2007.
16. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Som-

merlad. Security Patterns. Wiley, 2005.

First Doctoral Symposium on
Engineering Secure Software und Systems

 ESSoS-DS 2012 Feb 15, 2012

http://blog.dropbox.com/?p=821

	Enhancing Safety and Security of Distributed Systems through Formal Patterns
	 Jonas Eckhardt , Tobias Mühlbauer Supervisors: José Meseguer , Martin Wirsing
	Introduction
	Formal Patterns
	Approach: Enhancing Safety and Security through Formal Patterns
	Research Plan for Future Work
	Conclusion

