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Abstract. Collaborative �ltering (CF) aims at predicting the user in-
terest for a given item. In CF systems a set of users ratings is used to
predict the rating of a given user on a given item using the ratings of a
set of users who have already rated the item and whose preferences are
similar to those of the user. In this paper we propose to use a framework
based on uncertain graphs in order to deal with collaborative �ltering
problems. In this framework relationships among users and items and
their corresponding likelihood will be encoded in a uncertain graph that
can then be used to infer the probability of existence of a link between
an user and an item involved in the graph. In order to solve CF tasks the
framework uses an approximate inference method adopting a constrained
simple path query language. The aim of the paper is to verify whether
uncertain graphs are a valuable tool for CF, by solving classical, complex
and structured problems. The performance of the proposed approach is
reported when applied to a real-world domain.

1 Introduction

The inherent uncertainty and complexity present in some real world domains
has led to the emerging of many probabilistic frameworks, such as probabilistic
graphical models [14] and statistical relational learning [6], able to deal with
uncertain and structured domains. Learning and reasoning on uncertain graphs1

has become an increasingly important research topic [19, 29, 9, 11]. In this model,
each edge is associated with a probability representing the likelihood of its exis-
tence in the graph, and the edges existence is assumed to be mutually indepen-
dent.

Collaborative �ltering (CF) aims at predicting the user interest for a given
item based on a collection of user pro�les. Collaborative �ltering is an approach
adopted in recommender systems that attracted much of attention in recent
years. In CF systems a set of users ratings is used to predict the rating of a
given user u on a given item i using the ratings of a set of users who have
already rated i and whose preferences are similar to the ones of u.

CF systems need to compare items against users and this task may be solved
with amemory based approach that may be divided into user-based or item-based

approaches. A typical example of memory based approaches are neighborhood

1 Uncertain graphs are also referred to probabilistic graphs as in [29, 9].



based CF methods centered on computing the relationships between items or
between users. Given an unknown rating to be estimated, memory-based CF
�rstly computes similarities between the given user and other users (user-based
approach), or between the given item and other items (item-based approach).
Then, the unknown rating is predicted by averaging the known ratings by similar
users or by similar items [4, 15].

In this paper we propose to use uncertain graphs to deal with collaborative
�ltering problems. In particular, relationships among users and items and their
corresponding likelihood will be encoded in a uncertain graph that can then be
used to infer the probability of existence of a link between an user and an item
involved in the graph.

The main questions that we want to answer in this paper are the following:

� Q1: are uncertain graphs a valuable tool for collaborative �ltering?
� Q2: can uncertain graphs solve classical CF user-based and item-bases tasks?
� Q3: can uncertain graphs unify user-based and item-based CF approaches?

2 Uncertain graphs

Let G = (V,E), be a graph where V is a collection of nodes and E ∈ V × V is
the set of edges, or relationships, between the nodes.

De�nition 1 (Uncertain graph). An uncertain graph is a system G = (V,E,
Σ, lV , lE , P ), where (V,E) is an undirected graph, V is the set of nodes, E is the

set of edges, Σ is a set of labels, lV : V → Σ is a function assigning labels to

nodes, lE : E → Σ is a function assigning labels to the edges, and P : E → [0, 1]
is a function assigning existence probability values to the edges.

The existence probability P (e) of an edge e = (u, v) ∈ E is the probability that
edge between u and v can exist in the graph. A particular case of uncertain
graph is the certain graph when the existence probability value on all edges is 1.
In this paper we use the possible world semantics. In particular, we can imagine
an uncertain graph G as a sampler of worlds, where each world is an instance of
G. A certain graph G′ is sampled from G according to P , denoted as G′ v G,
when each edge e ∈ E is selected to be an edge of G′ with probability P (e).
Edges labeled with probabilities are treated as mutually independent random
variables indicating whether or not the corresponding edge belongs to a certain
graph. Assuming independence among edges, the probability distribution over
certain graphs G′ = (V,E′) v G = (V,E) is given by

P (G′|G) =
∏
e∈E′

P (e)
∏

e∈E\E′

(1− P (e)). (1)

De�nition 2 (Simple path). Given an uncertain graph G, a simple path of

a length k from u to v in G is a sequence of edges pu,v = 〈e1, e2, . . . ek〉, such
that e1 = (u, v1), ek = (vk1

, v), and ei = (vi−1, vi) for 1 < i < k, and all nodes

in the path are distinct.



Given G an uncertain graph, and ps,t a path in G from node s to node t,
l(ps,t) = l(e1)l(e2) · · · l(ek) denotes the concatenation of the labels of all edges in
ps,t. Given a context free grammar (CFG) C a string of terminals s is derivable
from C i� s ∈ L(C), where L(C) is the language generated from C.

De�nition 3 (Language constrained simple path). Given an uncertain

graph G and a context free grammar C, a language constrained simple path is a

simple path p such that l(p) ∈ L(C).

Given an uncertain graph G a main task corresponds to compute the prob-
ability that there exists a path between two nodes u and v, that is, querying
for the probability that a randomly sampled certain graph contains a path be-
tween u and v. More formally, the existence probability Pe(q|G) of a path q in
an uncertain graph G corresponds to the marginal P (G′|G) with respect to q:

Pe(q|G) =
∑
G′vG

P (q|G′) · P (G′|G) (2)

where P (q|G′) = 1 if there exits the path q in G′, and P (q|G′) = 0 otherwise. In
other words, the existence probability of path q is the probability that the path
q exists in a randomly sampled certain graph.

De�nition 4 (Language constrained simple path probability). Given an

uncertain graph G and a context free grammar C, the language constrained sim-
ple path probability of L(C) is

P (L(C)|G) =
∑
G′vG

P (q|G′, L(C)) · P (G′|G) (3)

whereP (q|G′, L(C) = 1 if there exists a path q in G′ such that l(q) ∈ L(C), and
P (q|G′, L(C)) = 0 otherwise.

In particular, the previous de�nition give us the possibility to compute the prob-
ability of a set of simple path queries ful�lling the structure imposed by a context
free grammar. In this way we are interested in certain graphs that contain at
least one path belonging to the language corresponding to the given grammar.

2.1 Inference

Computing the existence probability directly using (2) or (3) is intensive and
intractable for large graphs since the number of certain graphs to be checked
is exponential in the number of probabilistic edges. It involves computing the
existence of the path in every certain graph and accumulating their probability. A
natural way to overcome the intractability of computing the existence probability
of a path is to approximate it using a Monte Carlo sampling approach [12]: 1)
we sample n possible certain graphs, G1, G2, . . . Gn from G by sampling edges
uniformly at random according to their edge probabilities; and 2) we check if the



path exists in each sampled graph Gi. This process provides the basic sampling
estimator

P̂e(q|G) ≈ Pe(q|G) =
∑n

i=1 P (q|Gi)

n
(4)

Note that is not necessary to sample all edges to check whether the graph
contains the path. For instance, assuming to use an iterative depth �rst search
procedure to check the path existence. When a node is just visited, we will sample
all its adjacent edges and pushing them into the stack used by the iterative
procedure. We will stop the procedure either when the target node is reached or
when the stack is empty (non existence).

3 Uncertain graphs for collaborative �ltering

The most common approach to CF is based on neighborhood models. User-
oriented methods estimate unknown ratings based on recorded ratings of similar
users, while in item-oriented approaches ratings are estimated using known rat-
ings made by the same user on similar items.

Let U be a set of n users and I a set of m items. A rating rui indicates
the preference by user u of item i, where high values mean stronger preference.
Let Su be the set of items rated from user u. For user-based approaches, the
prediction of an unobserved rating r̂ui is computed as follows

r̂ui = ru +

∑
v∈U |i∈Su

suv · (rvi − rv)∑
v∈U |i∈Su

|suv|
(5)

where ru represents the mean rating of user u, and suv stands for the similarity
between users u and v, computed, for instance, using the Pearson correlation:

suv =

∑
a∈Su∩Sv

(rua − ru) · (rva − rv)√∑
a∈Su∩Sv

(rua − ru)2
∑

a∈Su∩Sv
(rva − rv)2

(6)

On the other side, item-based approaches predict the rating of a given item
using the ratings of the user on the items considered as similar to the target
item. Given a similarity measure, such as the Pearson correlation, the rating r̂ui
is estimated as:

r̂ui =

∑
j∈Su|j 6=i sij · ruj∑

j∈Su|j 6=i |sij |
(7)

These neighbourhood approaches see each user connected to other users or
consider each item related to other items as in a network structure. In par-
ticular they rely on the direct connections among the entities involved in the
domain. However, as recently proved, techniques able to consider complex rela-
tionships among the entities, leveraging the information already present in the
network, involves an improvement in the processes of querying and mining [24,
21]. In [24] the authors improved the accuracy of a similarity measures between



two annotated nodes in a graph by using link information. They showed that
the similarity between nodes annotations may be improved using also the net-
work context. Another approach [20] to enriched a graph representation is the
addition of semantic information improving link prediction results in network
datasets. In particular, a supervised learning method for building link predic-
tors from structural attributes of the underlying network using some semantic
attributes of the nodes has been adopted.

The approach used in this paper is to represent a dataset consisting of user
ratings, K = {(u, i, rui)|rui is known}, with an uncertain graph and then per-
forming inference on this graph to solve classical collaborative �ltering tasks.
Hence the question to be solved is how to build the uncertain graph from the
�at rating representation K. The formal characterization we have provided about
uncertain graphs gives us the possibility to represent heterogeneous objects and
connections.

3.1 Uncertain graph construction

Given the set of ratings K = {(u, i, rui)|rui is known}, we add a node with label
user for each user in K, and a node with label item for each item in K. The next
step is to add the edges among the nodes. Each edge is characterized by a label
and a probability value, which should indicate the degree of similarity between
the two nodes. Two kind of connections between nodes are added. For each user
u, we added an edge, labeled as simU, between u and the k most similar users to
u. The similarity between two users u and v is computed adopting a weighted
Pearson correlation between the items rated by both u and v.

In particular, the probability of the edge simU connecting two users u and v
is computed as:

P (simU(u, v)) = suv · wu(u, v),

where suv is the Pearson correlation between the vectors of ratings corresponding
to the set of items rated by both user u and user v, and

wu(u, v) =
|Su ∩ Sv|
|Su ∪ Sv|

,

where Su is the set of items rated from user u.
For each item i, we added an edge, with label simI, between i and the most

k similar items to i. In particular, the probability of the edge simI connecting
the item i to the item j has been computed as:

P (simI(i, j)) = sij · wi(i, j),

where sij is the Pearson correlation between the vectors corresponding to the
histogram of the set of ratings for the item i and the item j, and

wi(i, j) =
|Si ∩ Sj |
|Si ∪ Sj |

,



where Si is the set of users rating the item i.
Edges with probability equal to 1, and with label rk between the user u and

the item i, denoting the user u has rated the item i with a score equal to k, are
added for each element rui belonging to K.

After having de�ned the uncertain graph, now we can solve classical collabo-
rative �ltering task by computing the probability of some language constrained
simple paths. Since the goal is to predict an unknown rating between an user u
and an item i, let us assume that the values of rui are discrete and belonging
to a set R. Given the uncertain graph G, the approach we used to predict the
rating r̂ui is to solve the following maximization problem:

r̂ui = argmax
j
P (rj(u, i)|G), (8)

where rj(u, i) is the unknown link with label rj between the user u and the item
i. In particular, the maximization problem corresponds to compute the link
prediction for each rating value and then choosing the rating with maximum
likelihood.

The previous link prediction task is based on querying the probability of some
language constrained simple path. For instance, user-based CF may be simulated
by querying the probability of the paths, starting from a user node and ending to
an item node, belonging to the context free language Li = {simU1r1i }. In partic-
ular, predicting the probability of the rating j as P (rj(u, i) in (8) corresponds to
compute the probability P (q|G) for a query path in Li, i.e., computing P (Li|G)
as in (3):

r̂ui = argmax
j
P (rj(u, i)|G) ≈ argmax

j
P (Li|G). (9)

In the same way, item-base CF could be simulated by computing the proba-
bility of the paths belonging to the CFL Li = {r1i simI1}.

The power of the proposed framework gives us the possibility to construct
more complex queries such as that belonging to the CFL Li = {risimIn : 1 ≤
n ≤ 2}, that gives us the possibility to explore the graph by considering not only
direct connections. Finally, we can implement hybrid CF systems solving queries
belonging to the CFL Li = {risimIn : 1 ≤ n ≤ 2} ∪ {simUmr

1
i : 1 ≤ m ≤ 2}.

4 Experiments

In order to validate the proposed approach two versions of the MovieLens2

dataset has been used. The MovieLens data sets were collected by the Grou-
pLens Research Project at the University of Minnesota. The �rst version called
MovieLens 100K consists of 100,000 ratings (1-5) from 943 users on 1682 movies,
where each user has rated at least 20 movies and there are simple demographic
info for the users (age, gender, occupation, zip). The data was collected through
the MovieLens web site during the seven-month period from September 19th,
1997 through April 22nd, 1998. The second version called MovieLens 1M consists

2 http://www.grouplens.org/



of 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040
MovieLens users. In this paper we used the ratings only without considering the
demographic information.

MovieLens 100K dataset is divided in 5 fold, where each fold present a train-
ing data (80000 ratings) and a test data (20000 ratings), while MovieLens 1M is
divided in 10 fold. For each training/testing fold the validation procedure follows
the following steps:

1. creating the uncertain graph from the training ratings data set as reported
Section 3;

2. de�ning a context free language corresponding to a speci�c CF task;
3. testing the ratings reported in the testing data set T by computing, for each

pair (u, i) ∈ T the predicted rating as in (9) and comparing the result with
the true prediction reported in T .

In this particular dataset we have a uncertain graph with nodes labeled as
user or as film. There are edges between two film nodes labeled as simF,
and there are edges with label simU between two user nodes. These edges are
added using the procedure presented in the previous section, where we set the
parameter n = 30, indicating that an user or a �lm is connected, respectively, to
30 most similar users, resp. �lms . Finally, for each rating (u, i, rui = k) belonging
to the training set there is an edge between the user u and the �lm i whose label
is rk. The goal is to predict the correct rating for each instance belonging to
the testing set T . The predicted rating has been computed using a Monte Carlo
approach by sampling 100 certain graphs and adopting the function reported in
(9).

The accuracy of the proposed framework has been evaluated according to
the mean absolute error (MAE) a most commonly applied evaluation metric for
CF rating predictions. Assuming N computed rating predictions:

MAE =
1

N

N∑
i=1

|r̂ui − rui|. (10)

4.1 Results

In order to evaluate the framework, we proposed to query the paths belonging
to the context free languages reported in Table 1. The �rst language constrained
simple paths L1 reported in Table 1 corresponds to solve a user-based CF prob-
lem, while the second language L2 gives us the possibility to simulate a item-
based CF approach. As we can see from Table 2 results improve when we go
from a user-based approach to a item-based one.

Then we try to build a basic hybrid system by combining both the languages
L1 and L2 into the language L3. Now, as we can see in Table 2 results are better
than that obtained when we used a single language only. Then, we propose to
extend the basic languages L1 and L2 in order to consider a neighbourhood with
many nested levels. In particular, instead of considering the direct neighbours



L1 = {simU1r1k}
L2 = {r1ksimF1}
L3 = {simU1r1k} ∪ {r1ksimF1}
L4 = {simUnr1k : 1 ≤ n ≤ 2}
L5 = {r1ksimFn : 1 ≤ n ≤ 2}
L6 = {r1ksimFn : 1 ≤ n ≤ 3}
L7 = {simUnr1k : 1 ≤ n ≤ 2} ∪ {r1ksimFn : 1 ≤ n ≤ 2}
L8 = {r1ksimFn : 1 ≤ n ≤ 4}

Table 1. Language constrained simple paths used for the MovieLens dataset.

only, we inspect the uncertain graph following a path with a maximum length
of two edges, labeled respectively as simU for the language L4 and simF for the
language L5. Their corresponding results are better than that obtained with the
basic language L1 and L2 thus proving the validity of the approach. Language
L6 extends language L5 in order to inspect the uncertain graph following a path
with a maximum length of three edges by obtaining better results than others
languages.

Finally, the language L7 combines both the user-based and item-based ap-
proach, and the large neighbourhood explored with paths whose length is greater
than one. As we can see, this language is the best among all the others in pro-
viding a good MAE value.

Path

Fold L1 L2 L3 L4 L5 L6 L7

1 0.9419 0.8458 0.8228 0.8661 0.7928 0.7837 0.7663
2 0.9337 0.8366 0.8119 0.8513 0.7777 0.7800 0.7670
3 0.9189 0.8141 0.8063 0.8505 0.7739 0.7700 0.7584
4 0.9275 0.8273 0.8096 0.8608 0.7784 0.7724 0.7678
5 0.9528 0.8421 0.8312 0.8637 0.7824 0.7754 0.7785

Mean 0.9349 0.8332 0.8164 0.8585 0.7810 0.7763 0.7676

Table 2. MAE error on MovieLens 100K adopting di�erent path type

Table 3 shows the results on the MovieLens 1M dataset, using a 10-fold cross-
validation, comparing the proposed framework with respect to a neighborhood-
based recommendation method [4] adopting as similarity weight the Mean Squared
Di�erence (MSD), the Spearman Rank Correlation (SRC) or the Pearson Cor-
relation (PC). In this case we adopted another language, L8, that extends the
neighborhood of the explored graph. As we can see, the obtained results adopt-
ing our system are better than those obtained with the neighborhood-based
approach. Furthermore, more the portion of the explored graph is considered,
adopting the languages L2, L5, L6 and L8, and more is the predictive accuracy
reached by the system.



Method MAE

MSD 0.7602
SRC 0.7529
PC 0.7518
L2 0.7916
L5 0.7381
L6 0.7293
L8 0.7198

Table 3. MSE error on MovieLens 1M

5 Related works

Given a snapshot of a graph (network), the goal we are dealing with is to ac-
curately predict edges that could be added to the network in future, sometime
called link prediction problem [5]. There are a lot of application where link pre-
diction can be used such as identifying the structure of a criminal network,
overcoming the data-sparsity problem in recommender systems using collabora-
tive �ltering [25], analyzing users navigation history to generate users tools that
increase navigational e�ciency [26]. A problem close to link prediction is link
completion [8]. The data, collected from the real life sources, is usually noisy
and might contain gaps, i.e. links may be incomplete, containing one or more
unknown members. The problem of link completion addresses the task of de-
termining the missing member given a partial link. This question is similar to
those found in the collaborative �ltering domain [2]. The link prediction problem
is also related to the problem of inferring missing links from an observed net-
work: in a number of domains, one constructs a network of interactions based on
observable data and then tries to infer additional links that, while not directly
visible, are likely to exist [7, 18, 22].

All these methods assign a connection weight score(x, y) or a similarity
s(x, y) to pairs of nodes x, y, based on the input graph, and then produce a
ranked list in decreasing order of s(x, y). This approach may be viewed as com-
puting a measure of proximity or a similarity between nodes. The most basic
approach to compute this ranked list could be that to rank pairs x, y by the
length of their shortest path in the network G . Such a measure follows the
notion that collaboration networks are small worlds, in which individuals are
related through short chains [17]. Shortest path between two nodes de�nes the
minimum number of edges connecting them. If there is no such connecting path
then, the value of this attribute is taken as in�nite.

Other methods try to compute the similarity between two nodes by looking
their corresponding neighborhoods. Given a node x, let N(x) be the set of neigh-
bours of x in a graph G. Given two nodes x and y, there are several approaches
that follow the natural intuition that if the set of neighbours N(x) and N(y)
have a large overlapping then the node x and the node y should be very similar.



Common neighbours measure the number of neighbors that node x and node
y have in common, in particular s(x, y) = |N(x)∩N(y)|. Newman in [16] shows
a correlation between the number of common neighbours of x and y at the time
t, and the probability they will be similar in the future.

Jaccard's coe�cient, used in information retrieval, measures the probabil-
ity that both x and y have a feature f in common, for a randomly selected
feature f . Using neighbours we can compute this as follow s(x, y) = |N(x) ∩
N(y)|/|N(x) ∪ N(y)|. [1] considers the similarity problem between two entities
as s(x, y) =

∑
z∈N(x)∩N(y)

1
log|N(z)| where z is a set of features shared both by x

and y. Finally, preferential attachment is based on empirical evidence that the
probability of x and y being connected is correlated with the product of the
number of connections of x and y (N(x) and N(y)). The measure is computed
as s(x, y) = |N(x)| · |N(y)|.

Other methods are based on ensemble of paths. Katz [13] de�nes a similarity
measure that directly sums over a collection of paths, exponentially damped by
length in order to count short paths more heavily. This leads to the measure

s(x, y) =
∑∞

l=1 β
l · |paths〈l〉x,y| where paths〈l〉x,y is the set of all lengh-l paths from

x to y. There exists two variants of the Katz measure: unweighted, in witch

paths
〈1〉
x,y = 1 if x and y have collaborated and 0 otherwise, and weighted, in

witch paths
〈1〉
x,y is the number of times that x and y have collaborated.

Another method uses random walks on the graph G [23], where starting
from a node x, the selection of next node to visit is done by choosing among
the neighbors of x at random. Using this approach it is possible to compute
the hitting time Hx,y as the expected number of steps required for a random
walk starting at x to reach y. SimRank [10] supposes that two nodes are similar
to the extent that they are joined to similar neighbors. In particular s(x, y) =

γ ·
∑

a∈N(x)

∑
b∈N(y) s(a,b)

|N(x)|·|N(y)| for some γ ∈ [0, 1].

All the methods described above consider the space of representation as a
graph with nodes of the network indicating the objects of the world and edges
with a numeric value that indicates their weight. Over the last few years un-
certain graphs have become an important research topic [19, 27, 28]. In these
graphs each edge is associated with an edge existence probability that quanti�es
the likelihood that the edge exists in the graphs. Using this representation it is
possible to adopt the possible world semantics to model it. One of main issue in
uncertain graphs is how to compute the connectivity of the network. The net-

work reliability problem [3] is a generalization of pairwise reachability, in which
the goal is to determine the probability that all pairs of nodes are reachable from
one another. Unlike a deterministic graph in which the reachability function is a
binary function indicating whether or not there is a path that connects the two
provided vertices, in the case of the reachability on uncertain graphs the func-
tion assumes probabilistic values. In [19], the authors provide a list of alternative
shortest-path distance measures for uncertain graphs in order to discover the k
closest vertices to a given vertex. Another work [12] try to deal with the concept
of x − y distance-constraint reachability problem. In particular, given two ver-
tices x and y, they try to solve the problem of computing the probability that



the distance from x to y is less than or equal to a user-de�ned threshold. In order
to solve this problem, they proposed an exact algorithm and two reachability
estimators based on probability sampling.

6 Conclusions

In this paper a framework based on uncertain graphs able to deal with collab-
orative �ltering problems has been presented. The evaluation of the proposed
approach has been reported by applying it to a real world dataset and proving
its validity in solving simple and complex collaborative �ltering tasks. As future
development we will conduct further experiments in order to accurately vali-
date the framework. We will study how the size of the neighbourhood of each
node, during the graph construction phase, could in�uence the quality of the
predictions.
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