
Movie Recommendation with DBpedia

Roberto Mirizzi1, Tommaso Di Noia1, Azzurra Ragone2, Vito Claudio Ostuni1,
Eugenio Di Sciascio1

1 Politecnico di Bari – Via Orabona, 4, 70125 Bari, Italy
{mirizzi,ostuni}@deemail.poliba.it, {t.dinoia,disciacio}@poliba.it

2 Exprivia S.p.A. – Viale A. Olivetti, 11/A, 70056 Molfetta (BA), Italy
azzurra.ragone@exprivia.it

Abstract. In this paper we present MORE (acronym of MORE than
MOvie REcommendation), a Facebook application that semantically
recommends movies to the user leveraging the knowledge within Linked

Data and the information elicited from her profile. MORE exploits the
power of social knowledge bases (e.g. DBpedia) to detect semantic sim-
ilarities among movies. These similarities are computed by a Semantic
version of the classical Vector Space Model (sVSM), applied to semantic
datasets. Precision and recall experiments prove the validity of our ap-
proach for movie recommendation. MORE is freely available as a Facebook

application.

1 Introduction

The field of recommender systems, from an Information Retrieval (IR) perspec-
tive, is in its maturity stage and many applications are available on the Web
that recommend items to the end user based on a combination of content-based,
collaborative filtering and knowledge-based approaches [16]. In this paper we
present MORE3: a movie recommender system in the Web of Data. Currently,
the system relies on one of the most relevant datasets in the Linked Data [3]
cloud: DBpedia [4], and on the semantic-enabled version of the Internet Movie
Database (IMDB): LinkedMDB [11]. It is developed as a Facebook application and
uses also a faceted-browsing approach to metadata navigation and exploration.
MORE basically exploits the information coming from Linked Data datasets to
compute a semantic similarity between movies and provide a recommendation to
the user. Since MORE has been implemented as a Facebook application, in order
to avoid the cold start problem typical of content-based recommender systems,
when the user starts using it, we may retrieve information about the movies she
likes by grabbing them from her Facebook profile. We use semantic information
contained in the RDF datasets to compute a semantic similarity between movies
the user might be interested in.

Main contributions of this paper are: (i) presentation of a Facebook appli-
cation for movie recommendation exploiting semantic datasets; (ii) a Semantic-
based Vector Space Model for recommendation of items in Linked Data datasets;
(iii) evaluation and validation of the approach with MovieLens dataset.

3 http://apps.facebook.com/movie-recommendation/

The remainder of the paper is structured as follows: in Section 2 we illustrate
how we exploit semantic information contained in RDF datasets to compute se-
mantic similarities between movies, then in Section 3 we describe the interface of
MORE. In Section 4 we show how to compute similarities between movies using a
semantic-adaptation of the Vector Space Model (VSM). Section 5 introduces the
recommender system we developed for Linked Data data while Section 6 shows
the results of our evaluation. In Section 7 we review relevant related work. Con-
clusion and future work close the paper.

2 Social knowledge bases for similarity detection

By exploiting its SPARQL endpoint4, it is possible to ask complex queries to
DBpedia with high precision in the results. For example, we may retrieve which
are the movies where Al Pacino and Robert De Niro starred together, and dis-
cover that Righteous Kill5 and Heat6 are two of these movies. Intuitively, we
assume that these movies are related with each other, since they share part of
the cast. Via SPARQL queries, we may also find that there are other characteris-
tics shared between the two movies, such as some categories (e.g. crime films).
Roughly speaking, the more features two movies have in common, the more they
are similar. In a few words, a similarity between two movies (or two resources in
general) can be detected if in the RDF graph:

– they are directly related: this happens for example if a movie is the se-
quel of another movie. In DBpedia this state is handled by the properties
dbpedia-owl:subsequentWork and dbpedia-owl:previousWork.

– they are the subject of two RDF triples having the same property and the same
object, as for example when two movies have the same director. In the movie
domain, we take into account about 20 properties, such as dbpedia-owl:starring
and dbpedia-owl:director. They have been automatically extracted via
SPARQL queries. The property dcterms:subject needs a dedicated discussion,
as we will see in the following.

– they are the object of two RDF triples having the same property and the same
subject.

Categories and genres. Categories in Wikipedia are used to organize the
entire project, and help to give a structure to the whole project by grouping
together pages on the same subject. The sub-categorization feature makes it
possible to organize categories into tree-like structures to help the navigation of
the categories. In DBpedia, the hierarchical structure of the categories is mod-
eled through two distinct properties, dcterms:subject and skos:broader. The
former relates a resource (e.g. a movie) to its categories, while the latter is used
to relate a category to its parent categories. Hence, the similarity between two

4 http://dbpedia.org/sparql
5 http://en.wikipedia.org/wiki/Righteous_Kill
6 http://en.wikipedia.org/wiki/Heat_(1995_film)

Fig. 1. A sample of an RDF graph related to the
movie domain.

Fig. 2. A screenshot of MORE.

movies can be also discovered in case they have some ancestor categories in
common (within the hierarchy). This allows one to catch implicit relations and
hidden information, i.e. information that is not directly detectable looking only
at the nearest neighbors in the RDF graph. As an example, thanks to the cate-
gories, it is possible to infer a relation between Righteous Kill and Heat, since
they both belong (indirectly) to the Crime films category, as shown with the
highlighted path in Fig. 1, which shows a sample of the RDF graph containing
properties and resources coming both from DBpedia and from LinkedMDB/IMDB..

3 MORE: More than Movie Recommendation

In this section we describe MORE, our Facebook application for movie recom-
mendation. A screenshot of the application is depicted in Fig. 2. Although the
application exploits semantic datasets, the complex semantic nature of the un-
derlying information is hidden to the end user. She does not interact directly
with Semantic Web languages and technologies such as RDF and SPARQL. Despite
the choice of the movie domain, we stress that, since our system relies on seman-
tic knowledge bases, it is potentially able to generate recommendations for any
areas covered by DBpedia and, more generally, for any dataset in the Linked

Data cloud.
After the application is loaded, the user may search for a movie by typing

some characters in the corresponding text field, as indicated by (a) in Fig. 2. The
system returns an auto-complete list of suggested movies, ranked by popularity
in DBpedia. In order to rank the movies in the auto-complete list, we adapted
the PageRank algorithm to the DBpedia subgraph related to movies. To this aim
we consider the property dbpedia-owl:wikiPageWikiLink which corresponds
to links between Wikipedia pages. In ranking the results shown in the auto-
complete list, we consider also non-topological information by weighting the

results coming from the previous computation with votes on movies from IMDB

users.
Once the list has been populated, the user can select one of the suggested

movies. Then, the chosen movie is placed in the user’s favorite movies area (see
(b) in Fig. 2) and a recommendation of the top-40 movies related to the
selected one is presented to the user (see (c) in Fig. 2). The relevance rankings
for the movies are computed (off-line) as detailed in Section 4. The user can
add more movies to her favorite list, just clicking either on its poster or on
its title appearing in the recommendation list. Then, the movie is moved into
the favorite area and the recommendation list is updated taking into account
also the item just added. Another way to add a movie to the favorite list is to
exploit the functionalities offered by the Facebook platform and the Graph API7.
Facebook users can add their favorite movies to their own Facebook profile. In
MORE, the user can obtain her preferred Facebook movies by clicking on the
icon indicated with (d) in Fig. 2. Then, the user can select a movie from the
returned list, in order to add it to the favorite area and to obtain the related
recommendation. Each of these actions are tracked by the system. In fact, our
long run goal is to collect relevant information about user preferences in order to
provide a personalized recommendation that exploits both the knowledge bases
such as DBpedia or LinkedMDB (content-based approach) and the similarities
among users (collaborative-filtering approach). The user is allowed to set her
personal preferences about the properties involved in the recommendation using
the sliders in the Options tab. In Section 4 we will detail how we automatically
compute a default value for the weights associated to each property.

4 Semantic Vector Space Model

In order to compute the similarities between movies, we propose a semantic-
adaptation of one of the most popular models in classic information retrieval [1]:
the Vector Space Model (VSM) [17]. In VSM non-binary weights are assigned to
index terms in queries and in documents (represented as sets of terms), and are
used to compute the degree of similarity between each document in the collection
and the query. In our approach, we semanticized the classical VSM, usually
used for text retrieval, to deal with RDF graphs. In a nutshell, we represent the
whole RDF graph as a 3-dimensional tensor where each slice refers to an ontology
property. Given a property, each movie is seen as a vector, whose components
refer to the term frequency-inverse document frequency TF-IDF (or better, in
this case, resource frequency-inverse movie frequency). For a given slice (i.e. a
particular property), the similarity degree between two movies is the correlation
between the two vectors, and it is quantified by the cosine of the angle between
them. An RDF graph can be viewed as a labeled graph G = (V,E), where V is the
set of RDF nodes and E is the set of predicates (or properties) between nodes in
V . In our model, an RDF graph is then a 3-dimensional tensor T where each slice
identifies an adjacency matrix for an RDF property (see Fig. 3). All the nodes in

7 http://developers.facebook.com/docs/reference/api/

Fig. 3. Tensor representation of the RDF graph
of Fig. 1. Only the components on the first
slice (i.e. starring) are visible.

Fig. 4. Slices decomposition.

Fig. 5. Property transformation.

V are represented both on the rows and on the columns. A component (i.e. a cell
in the tensor) is not null if there is a property that relates a subject (on the rows)
to an object (on the columns). A few words need to be spent for the properties
dcterms:subject and skos:broader. As also shown in Fig. 1 every movie is
related to a category by the property dcterms:subject which is in turn related
to other categories via skos:broader organized in a hierarchical structure. In
order to catch such a relation, for each resource we computed the transitive
closure of the category it is related to and assign the whole set of computed
categories as the value of dcterms:subject of the corresponding movie. As an
example, going back to the small example depicted in Fig. 1, the set of values
assigned to dcterms:subject for Righteous Kill is {Serial Killer films, Crime
Films}. This can be viewed as an explicit representation of the two following
triples:

dbpedia:Righteous_Kill dcterms:subject dbpedia:Category:Serial_killer_films

dbpedia:Righteous_Kill dcterms:subject dbpedia:Category:Crime_films

Looking at the model, we may observe and remember that: (1) the tensor is
very sparse; (2) we consider properties as independent with each other (there is
no rdfs:subPropertyOf relation); (3) we are interested in discovering the sim-
ilarities between movies (or in general between resources of the same rdf:type

and not between any pair of resources). Based on the above observations, we can
decompose the tensor slices into smaller matrices. Each matrix of Fig. 4 refers to
a specific RDF property, and corresponds to a slice in the tensor. In other words,
for each matrix, the rows represent somehow the domain of the considered prop-
erty, while the columns its range. For a given property, the components of each

row represent the contribution of a resource (i.e. an actor, a director, etc.) to
the corresponding movie. With respect to a selected property p, a movie m is
then represented by a vector containing all the terms/nodes related to m via p.
As for classical Information Retrieval, the index terms kn,p, that is all the nodes
n linked to a movie by a specific property p, are assumed to be all mutually
independent and are represented as unit vectors of a t-dimensional space, where
t is the total number of index terms. Referring to Fig. 4, the index terms for the
starring property are Brian Dennehy, Al Pacino and Robert De Niro, while t = 3
is the number of all the actors that are objects of a triple involving starring. The
representation of a movie mi, according to the property p, is a t-dimensional
vector given by:

−−→mi,p = (w1,i,p, w2,i,p, ..., wt,i,p)

where wn,i,p is a non-negative and non-binary value representing the weight
associated with a term-movie pair (kn,p,

−−→mi,p). The weights wn,i,p we adopt in
our model are TF-IDF weights. More precisely they are computed as:

wn,i,p = fn,i,p ∗ log

(
M

an,p

)
where fn,i,p represents the TF, i.e. the frequency of the node n, as the object of an
RDF triple having p as property and the node i as subject (the movie). Actually,
this term can be at most 1, since two identical triples can not coexist in an RDF

graph. Then, in case there is a triple that links a node i to a node n via the
property p, the frequency fn,i,p is 1, otherwise fn,i,p = 0, and the corresponding
weight wn,i,p is set to 0. M is the total number of movies in the collection, and
an,p is the number of movies that are linked to the resource n, by means of the
predicate p. As an example, referring to Fig. 4, for the starring property, and
considering n = AlPacino, then aAlPacino,starring is equal to 2, and it represents
the number of movies where Al Pacino acted. Relying on the model presented
above, each movie can be represented as a t × P matrix (it corresponds to a
horizontal slice in Fig. 3), where P is the total number of selected properties.
If we consider a projection on a property p, each pair of movies, mi and mj ,
are represented as t-dimensional vectors. As for classical VSM, here we evaluate
the degree of similarity of mi with respect to mj , as the correlation between the
vectors −→mi and −→mj . More precisely we calculate the cosine of the angle between
the two vectors as:

simp(mi,mj) =
−−→mi,p • −−→mj,p

|−−→mi,p| × |−−→mj,p|
=

∑t
n=1 wn,i,p · wn,j,p√∑t

n=1 w
2
n,i,p ·

√∑t
n=1 w

2
n,j,p

Such a value is the building block of our content-based recommender system.
By means of the computed similarities, it is possible to ask the system questions
like “Which are the most similar movies to movie mi according to the specific
property p̃?”, and also “Which are the most similar movies to movie mi according
to the whole knowledge base?”. In the following we will see how to combine such
values with a user profile to compute a content-based recommendation.

5 Semantic content-based Recommender System

The method described so far is general enough and it can be applied when the
similarity has to be found between resources that appear as subjects or object of
RDF triples8. Another case is about how to discover a similarity between resources
that are directly related by some specific properties. In the considered movie
domain, this situation happens for example with the subsequentWork property.
In our approach we operate a matrix transformation to revert this situation to
the one considered so far. The transformation is illustrated in Fig. 5. In order to
use the VSM with two resources directly linked, the property p is transformed
into the property p′ and its domain remains unchanged. The object of the original
RDF triple for the new property p′ is mapped into a unique index associated to
the original object (in Fig. 5, index i is associated with The Godfather Part II),
and a new RDF triple is created having as subject the original object and as object
the index just created. Referring to Fig. 5, The Godfather Part II becomes the
subject of a new triple, where the predicate is subsequentWork’ and the object
is the index i. Now our semantic VSM can be applied straight.

If we want to provide an answer also to questions like “Which are the most
similar movies to movie mi according to the user profile?” we need a step further
to represent the user profile. In our setting, we model it based on the knowledge
we have about the set of rated movies. In MORE we have information on the
movies the user likes. Hence, the profile of the user u is the set:

profile(u) = {mj | u likes mj}

In order to evaluate if a new resource (movie) mi might be of interest for u —
with mi 6∈ profile(u) — we compute a similarity r̃(u,mi) between mi and the
information encoded in profile(u) via Equation (1).

r̃(u,mi) =

∑
mj∈profile(u)

1

P

∑
p

αp · simp(mj ,mi)

|profile(u)|
(1)

In Equation (1) we use P to represent the number of properties we selected (see
Section 4) and |profile(u)| for the cardinality of the set profile(u). The formula
we adopted to compute r̃(u,mi) takes into account the similarities between the
corresponding properties of the new item mi and mj ∈ profile(u). A weight
αp is assigned to each property representing its worth with respect to the user
profile. If r̃(u,mi) ≥ 0.5 then we suggest mi to u. We want to stress here that,
as discussed in the next section, setting a threshold different from 0.5 does not
affect the system results.

8 When the resources to be ranked appear as objects of RDF triples, it is simply a matter
of swapping the rows with the columns in the matrices of Fig. 4 and applying again
the same algorithm.

αsubject αdirector αwriter αstarring error

α1 0.123 0.039 0.080 0.159 3
α2 0.024 0.061 0.274 0.433 5
α3 0.267 0.356 0.188 0.099 3
α4 0.494 0.428 0.244 0.230 4
α5 0.082 0.457 0.484 0.051 1

Table 1. Example of values computed after the training.

5.1 Training the system

Although MORE allows the user to manually set a value for each αp, the system
automatically computes their default value by training the model via a genetic
algorithm. Similarly to an N-fold cross validation [16], we split profile(u) in
five disjoint sets and used alternatively each of them as a validation set and
the items in the remaining sets as the training set of the genetic algorithm. We
selected N = 5 because, based on our experimental evaluation, it represents a
good trade-off between computational time and accuracy of results. As a matter
of fact, every time a new movie is added to profile(u), we re-compute the values
of αp related to u and train again the model for N times. Hence, the higher
is N, the more is the time needed to update the result set of the user. During
the training step, in order to classify the movies as “I like” for u we imposed
a threshold of 0.5 for r̃(u,mi). It is noteworthy that the threshold can be set
arbitrarily since the genetic algorithm computes αp to fit that value. Hence, if
we lower or we raise the threshold the algorithm will compute new values for
each αp according to the new threshold value. After this procedure is completed,
we have a set of five different values Ap = {α1

p, . . . , α
5
p} for each αp. Each value

of Ap corresponds to a different round of training. An example of a possible
outcome for a small subset of the properties we have in our model is represented
in Table 5.1. The last column represents the misclassification error computed by
the genetic algorithm, i.e., how many resources mi are not classified as “I like”
since r̃(u,mi) < 0.5. Please note that, ideally, the perfect values for αp would
be those returning a misclassification error equal to 0. Indeed, in this step, the
movies we consider in our validation sets come directly from the user profile.
In order to select the best value for each αp, we considered different options
and we tested which one performed better in terms of precision and recall (see
Section 6) in the recommendation step. In particular, we evaluated the system
performances in the following cases:

αp =



min(αk
p ∈ Ap)

max (αk
p ∈ Ap)

avg(αk
p ∈ Ap)

αk
p is the median of Ap

αk
p with the lowest error

The first three options consider an aggregated value computed starting from
Ap while the last one consider the tuple with the lower misclassification error.
In Figure 6(a) we show how precision and recall of the final recommendation

(a) (b)

Fig. 6. (a) Precision and recall of the recommendation algorithm with respect to the
computation of αp. (b) Comparison of precision and recall curves with and without
dcterms:subject.

algorithm vary according to the five cases shown above. We see that the best
results are obtained if we consider αkp with the lowest misclassification error.

6 Evaluation

In order to evaluate the quality of our algorithm, we performed the evaluation
on MovieLens, the historical dataset for movie recommender systems. The 100k
dataset contains 100,000 ratings from 943 users on 1,682 movies. MovieLens

datasets are mainly aimed at evaluating collaborative recommender systems in
the movie domain. Since our approach is based on a content-based recommen-
dation, in order to use such datasets to test the performances of our algorithms,
we linked resources represented in MovieLens to DBpedia ones. We extracted
the value of rdfs:label property from all the movies in DBpedia, together with
the year of production, via SPARQL queries. Then, we performed a one-to-one
mapping with the movies in MovieLens by using the Levenshtein distance and
checking the year of production. We found that 78 out of 1,682 (4.64%) movies
in MovieLens have no correspondence DBpedia. After this automatic check we
manually double-checked the results and we found that 19 out of 1,604 mappings
(1.18%) were not correct and we manually fixed them. Once we had MovieLens

and DBpedia aligned, we tested our pure content-based algorithm by splitting,
for each user, the dataset in a training set and in a test set as provided on
the MovieLens web-site (80% of the movies rated by the user as belonging to
the training set and the remaining 20% as belonging to the test set). Before we
started our evaluation, we had to align also the user profiles in MORE with the
ones in MovieLens. Indeed, while in more we have only “I like” preferences, in
MovieLens the user u may express a rate on a movie mj based on a five-valued
scale: r(u,mj) ∈ [1, . . . , 5]. Hence, following [2] and [15] we build profile(u) as

profile(u) = {mj | r(u,mj) ∈ [4, 5]}

In other words, we consider that u likes mj if they rated it with a score greater or
equal to 4 and then they are considered as relevant to u. The same consideration
holds when we evaluate the recommendation algorithm in terms of precision and
recall. In recommender systems, precision and recall are defined respectively as:
precision: fraction of the top-N recommended items that are relevant to u; recall :
fraction of the relevant items that are recommended to u. In our experiments,
since we focus on the test set to find the actual relevant items of the target
user, the top-N list we compute only contains items that are in the target user’s
test set. We varied N in {3, 4, 5, 6, 7} and computed the so-called precision@N
and recall@N [1]. We did not consider values with N> 7 since in the MovieLens

dataset we used there are only a few users who rated more than 7 movies as
relevant. Precision and recall results for MORE are shown in Figure 6(a). We also
ran our algorithm without taking into account the property dcterms:subject

in the movie description. The aim of this experiment was to evaluate how im-
portant is the ontological information contained in the DBpedia categories in
the recommendation process. After all, this information can be found only in
ontological datasets. In Figure 6(b) we compare precision and recall graphs both
when we consider the knowledge carried by dcterms:subject and when we do
not use it. As we expected, if we do not consider ontological information, the
recommendation results get worse drastically.

7 Related Work

MORE is intended to be a meeting point between exploratory browsing and content-
recommendation in the Semantic Web, exploiting the huge amount of informa-
tion offered by the Web of Data. Several systems have been proposed in lit-
erature that address the problem of movie recommendations, even if there are
very few approaches that exploit the Linked Data initiative to provide semantic
recommendations. In the following we give a brief overview of semantic-based
approaches to (movie) recommendation. Szomszor et al. [19] investigate the use
of folksonomies to generate tag-clouds that can be used to build better user pro-
files to enhance the movie recommendation. They use an ontology to integrate
both IMDB and Netflix data. However, they compute similarities among movies
taking into account just similarities between movie-tags and keywords in the
tag-cloud, without considering other information like actors, directors, writers
as we do in MORE. Filmtrust [9] integrates Semantic web-based social networking
into a movie recommender system. Trust has been encoded using the FOAF Trust
Module and is exploited to provide predictive movie recommendation. It uses a
collaborative filtering approach as many other recommender systems, as Movie-
Lens [12], Recommendz [8] and Film-Consei [14]. Our RDF graph representation
as a three-dimensional tensor has been inspired by [7]. Tous and Delgado [20]
use the vector space model to compute similarities between entities for ontology
alignment, however with their approach it is possible to handle only a subset
of the cases we consider, specifically only the case where resources are directly
linked. Eidon et al. [6] represent each concept in an RDF graph as a vector con-

taining non-zero weights. However, they take into account only the distance from
concepts and the sub-class relation to compute such weights. Effective user inter-
faces play a crucial role in order to provide a satisfactory user experience during
an exploratory search or a content recommendation. Nowadays, there are some
initiatives that exploit the Linked Data cloud to provide effective recommen-
dations. One of these is dbrec [13], a music content-based recommender system
that adopts an algorithm for Linked Data Semantic Distance. It uses DBpedia as
knowledge base in the Linked Data cloud. The recommendation is link-based,
i.e. the “semantics” of relations is not exploited since each relation has the same
importance, and it does not take into account the links hierarchy, expressed in
DBpedia through the DCTERMS and SKOS vocabulary.

One of the main issues collaborative-filtering recommenders suffer from is
the well known cold-start problem [18], where no user preference information is
known to be exploited for recommendations. In such cases, almost nothing is
known about user preferences [10]. Being our system developed as a Facebook

application, it is able to automatically extract the favorite movies from the user
profile and to provide recommendations also for new users. In [5] the authors
propose a hybrid recommender system where user preferences and item features
are part of a semantic network. Partially inspired by this work, we offer the
capability of inferring new knowledge from the relations defined in the underlying
ontology. One of the most complex tasks of their approach is the building of the
concepts within the semantic network. Being MORE based on Linked Data and
DBpedia, we do not suffer from this problem since it is quite easy to extract, via
SPARQL queries, a DBpedia subgraph related to the movie domain.

8 Conclusion and Future Work

The use of Linked Data datasets poses new challenges and issues in the devel-
opment of next generation systems for recommendation. In this paper we have
presented MORE, a Facebook application that works as a recommender system
in the movie domain. The background knowledge adopted by MORE comes exclu-
sively from semantic datasets. In particular, in this version of the tool we use
DBpedia and LinkedMDB to collect information about movies, actors, directors,
etc.. The recommender algorithm relies on a semantic version of the classical
Vector Space Model adopted in Information Retrieval. We are willing to better
integrate MORE in the Linked Data cloud by publishing our recommendation us-
ing the Recommendation Ontology9. From a methodological perspective, we are
collecting information from MORE users to implement also a collaborative-filtering
approach to recommendation. This is particularly relevant and challenging since
the application is integrated with Facebook.

Acknowledgments. The authors acknowledge partial support of HP IRP 2011.
Grant CW267313.

9 http://purl.org/ontology/rec/core#

References

1. R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Con-
cepts and Technology behind Search. Addison-Wesley Professional, 2011.

2. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social
and content-based information in recommendation. In In Proc. of the 15th National
Conf. on Artificial Intelligence, pages 714–720. AAAI Press, 1998.

3. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst, 5(3):1–22, 2009.

4. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. Dbpedia - a crystallization point for the web of data. Web Semant., 7:154–
165, September 2009.

5. I. Cantador, A. Belloǵın, and P. Castells. A multilayer ontology-based hybrid
recommendation model. AI Commun., 21:203–210, April 2008.

6. Z. Eidoon, N. Yazdani, and F. Oroumchian. A vector based method of ontology
matching. In Proc. of 3rd Int. Conf. on Semantics, Knowledge and Grid, pages
378–381, 2007.

7. T. Franz, A. Schultz, S. Sizov, and S. Staab. Triplerank: Ranking semantic web
data by tensor decomposition. In Proc. of 8th ISWC, pages 213–228, 2009.

8. M. Garden and G. Dudek. Semantic feedback for hybrid recommendations in
recommendz. In IEEE Int. Conf. EEE’05, pages 754–759, 2005.

9. J. Golbeck and J. Hendler. Filmtrust: Movie recommendations using trust in web-
based social networks. In Proceedings of the IEEE CCNC, 2006.

10. H. Guo. Soap: Live recommendations through social agents. In 5th DELOS Work-
shop on Filtering and Collaborative Filtering.

11. O. Hassanzadeh and M. P. Consens. Linked Movie Data Base. In Proceedings of
the WWW2009 Workshop on Linked Data on the Web (LDOW2009), April 2009.

12. J. Herlocker, J. A. Konstan, and J. Riedl. Explaining collaborative filtering recom-
mendations. In Proceeding on the ACM 2000 Conference on Computer Supported
Cooperative Work, pages 241–250, 2000.

13. A. Passant. dbrec: music recommendations using dbpedia. In Proc. of 9th Int.
Sem. Web Conf., ISWC’10, pages 209–224, 2010.

14. P. Perny and J. Zucker. Preference-based search and machine learning for collab-
orative filtering: the film-consei recommender system. Information, Interaction,
Intelligence, 1:9–48, 2001.

15. A. Rashid, S. Lam, A. LaPitz, G. Karypis, and J. Riedl. Towards a scalable nn
cf algorithm: Exploring effective applications of clustering. In Advances in Web
Mining and Web Usage Analysis, LNCS, pages 147–166. 2007.

16. F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems
Handbook. Springer, 2011.

17. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18:613–620, November 1975.

18. A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics
for cold-start recommendations. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’02, pages 253–260. ACM, 2002.

19. M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldassarri, V. Loreto, and
V. D. Servedio. Folksonomies, the semantic web, and movie recommendation. In
4th European Semantic Web Conference, 2007.

20. R. Tous and J. Delgado. A vector space model for semantic similarity calculation
and owl ontology alignment. In DEXA, pages 307–316, 2006.

