
On General-purpose Textual Modeling Languages

Martin Mazanec and Ondřej Macek

Department of Computer Science, FEL, Czech Technical University,
Karlovo namesti 13, Praha, Czech Republic
{mazanma3, macekond}@fel.cvut.cz

On General-purpose Textual Modeling Languages

Martin Mazanec and Ondřej Macek

Department of Computer Science, FEL, Czech Technical University,
Karlovo namesti 13, Praha, Czech Republic

{mazanma3, macekond}@fel.cvut.cz

Abstract. Modeling is an important part of the software development
process because it allows for a better understanding of the domain as
well as an understanding of the software structure and function. Among
general-purpose modeling languages dominate the graphical ones such as
UML; textual modeling languages are not as popular though they have
a big potential. In this paper we define the important features of textual
modeling languages and then we compare existing general-purpose tex-
tual modeling languages according to these criteria to show if they meet
their potential. Based on the comparison results and our experience, we
propose our own modeling language called Earl Grey whose basics are
presented in this paper together with our experience from creating this
language.

Keywords: textual modeling, modeling languages, model driven development

1 Introduction

Modeling is an integral part of the software development process, where it helps
to explain the static part of the system (data the software works with and soft-
ware inner structures and states) and the dynamic part of the system (how the
software works). A lot of modeling languages exists; the best known and most
widespread is the Unified Modeling Language (UML) [12], which represents the
so called general purpose modeling languages. Besides the general purpose mod-
eling languages, domain specific languages (DSL) [3] exist, whose aim is to de-
scribe a concrete domain only, therefore their usage is limited. Nevertheless the
DSLs are very popular nowadays, in contrast with UML a lot of DSLs are tex-
tual. This may be caused by the fact that general purpose language is primarily
focused on the possibility to describe many various problems, where the graphi-
cal representation could be helpful even if it could cause a problem later with the
ambiguity of graphical structures and their meanings [2]; moreover many graph-
ical models are extended by some textual information which completes or refines
the model interpretation (e.g. together with UML models the Object Constraint
Language (OCL) [11] is used). On the other hand DSLs are focused on a single
domain and are often integrated into the software code so no ambiguity is al-
lowed. The textual modeling languages (TML) can benefit from the popularity
of DSLs and they can be improved by using DSL’s best practices.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 1–12, ISBN 978-80-7378-171-2.

2 Martin Mazanec, Ondřej Macek

The unambiguity of model symbols and constructs interpretation is particu-
larly important for Model Driven Development (MDD) because transformations
between various models and layers of software require clearly defined inputs in
order to maintain consistency between models. That is why there are attempts
to define the UML language formally [2] or to create a general-purpose modeling
language with exact specification and therefore with no problems with inter-
pretation of models. The attempts for new general-purpose language are often
created as textual languages because the textual languages allow easy formal
definition, and moreover they are not limited by modeling tool capabilities and
maturity [4].

The next reason why the new modeling languages are textual is that it is quite
easy to create a new language and integrate it into a development environment
such as Eclipse or NetBeans; another possible reason for the textual modeling
is the simplicity of creating a textual model (especially for developers which are
used to create programs this way) compared to intrusive form filling in graphical
modeling tools [4].

The textual modeling languages have big ambitions, but there is no frame-
work that could help to evaluate TML capability and maturity; therefore we
define a set of features a TML should have to help us decide which language is
the best one. Requested features are based on our experience and experiments
with existing TMLs and are discussed in detail later, as well as the evaluation
of existing TMLs. Based on the evaluation and experiments with TMLs we de-
cide to create an alternative TML, which will fulfill the defined requirements
better than existing TMLS - its name is Earl Grey (EG). The creation of the
EG language was not an easy task and we had to solve several serious problems
during the language proposal. There is a discussion of these problems together
with possible solutions in this paper.

The paper is organized as follows: a set of required features of TML is defined
in Section 2, then existing TMLs are evaluated in Section 3 and experimental
language is presented in Section 4 together with a discussion of problems con-
nected with the proposal of a general-purpose TML.

2 Required Features of TML

The required features of a TML are defined and discussed in this section. The
list provides an overview of the most important ones and all mentioned features
should be considered during the creation of a TML so it can be used without
problems. Defined features should help with user experience with the language
as well as with its usage in MDD or other automatic processing. It is important
to realize the TML features are different from features of general programming
languages such as Java or C, because the TMLs have a different purpose, and
thus rather than focus on type system or object-orientation of the language, it
is important to focus on other features, such as readability and unambiguity,
which are similar to the features of DSLs [5] [4]. A lot of these features cannot

On General-purpose Textual Modeling Languages 3

be evaluated by an exact measurement, however they can help the user to decide
whether to use the language or not.

The Ability to Describe Whole Software As we focus on general purpose
TMLs the ability to describe whole Software is an important feature of such
a language. According to [6] there are five views on the software - use case,
logical view, process view, development view and physical view. This means each
TML has to be able to describe static and dynamic part of the system from the
customer and developer point of view. There is probably no such a language that
can describe all views at once; rather there is a set of languages each describing
one view of the software. This construction is similar to the UML, where there
are different kinds of models for different views. It is important that a meta-
model of the TML exists so that the constructs used in one view description
can be recognized in another view and so the dependencies between models can
be traced and used. TML has to provide enough expression power to describe
a modeled subject. This criterion is hard to evaluate because there is no way
how to measure the completeness of modeling language (what should be part of
the model and what exceeds models limits); sometimes a compromise between
completeness and easy or general usage has to be made.

The Ability to Describe Various Levels of Abstraction In the MDD we
differ four levels of model abstraction - a level describing a domain on comput-
ing independent level (CIM), a level describing a software independently on a
concrete implementation platform (PIM), a level describing the software in the
context of concrete implementation platform (PSM) and physical deployment;
the last level is the software code itself. In the situation when we use TML, the
last two levels can be considered the same - from our point of view it is not nec-
essary to distinguish between the source code (and configuration files) and the
PSM model, because both defines the same situation with respect to concrete
platform.

The description on the CIM level has to be able to cover the customer do-
main in a way in which the model could be understood by a customer, and at
the same time it should provide enough information for a software analyst or
developer. The description on the PIM level should extend the information from
CIM by adding some implementation details that explain how the software will
be implemented, however they will not be specific for a concrete platform or
framework.

Readability and Simplicity of Language The readability is very impor-
tant for each language especially if it should be used for communication with
a customer (CIM level). The TML has to be easy to read and easy to write so
that models can be created or validated by a customer with almost no technical
skills. The simplicity of a language is not only a customer requirement, because
developers appreciate a language that is easy to write and read, too.

4 Martin Mazanec, Ondřej Macek

Unambiguity of TML Expressions The lack of unambiguity is the main
problem of most graphical modeling languages therefore it is important for each
TML to provide expressions with no ambiguities. This criterion is important for
MDD because the ambiguities in models lead to misinterpretations during model-
to-model transformations or code generation. Part of the expression unambiguity
is the definition of relations between TML constructs - such as the meaning of
association between objects or the extension of one object by another.

Supportability and Integrability The requirement on supportability and
integrability is defined by [5], where supportability means TMLs feasible to pro-
vide DSL support via tools, for typical model and program management, e.g.,
creating, deleting, editing, debugging, transforming and integrability means the
language, and its tools, can be used in unison with other languages and tools
with minimal effort. This is essential to integrating the TML with other facilities
used in the engineering process. An alternative requirement for TML is exten-
sibility, i.e., that the TML can be extended to support additional constructs
and concepts. It means the stable core language that could be extended is over
frequent changes of the language.

We believe the most important features of a TML are readability for peo-
ple, unambiguity of language expressions and capability to describe the whole
software, because these features determines the acceptance of the TML by users.

3 Comparison of Existing TMLs

This section provides an overview of existing textual modeling languages and
their comparison according the criteria defined in Section 2. The overview pro-
vided in this paper could not cover all existing languages; on the other hand
it should provide an representative overview (for next languages evaluation see
[9]).

To provide a comparison we decide to create a set of UML models that repre-
sent different views on a system and that contains several nontrivial constructs
of the language. Three of the used models can be seen in Figure 1 there is a
class model, a model of activities and a state model. The models do not cover
the whole expressive capability of UML, rather they represent only a part from
all models we used for evaluation. The purpose of this chapter is to illustrate
the method and show the basic concepts of presented TMLs.

3.1 PlantUML

PlantUML [13] is a language that allows the describing of UML models directly
within the source code of software. The UML models are then part of the code
(as specialized comments) which is useful as there is one source of information.
PlantUML can describe all required views on the software on different levels
of abstraction; it contains definitions for modeling of use cases, class models,

On General-purpose Textual Modeling Languages 5

+x : int
+y : int

Shape

Point

+add(Shape) : void

ComposedShape

+red : int
+green : int
+blue : int

Color
0..*

0..1

0..*1

+background

(a)

Bulb onBulb off

blow out

on

off

off/turn off

on [is night]/light up

(b)

Eat food

Read a bookRelax on a sofa

still hungry?

[still hungry]

[had enough]

(c)

: House

: Pig: Wolf

3: die

2: collapse

2.1: run

1: create

(d)

Fig. 1: A selection from the set of UML models used for TMLs evaluation. There
is a class model (1a), state model (1b), activity model (1c) and sequence model
(1d) in the figure; together these models represent both the static and dynamic
view on the software.

state and activity models. The integrability is guaranteed by the integration of
PlantUML into Eclipse IDE.

The problem of PlantUML is its readability, as the language copies not only
the UML standard, but also the graphical constructs (see Listing 1) that expect
the user to be familiar with UML. The next problem is with the usage of state
or activity models that become confusing and unreadable.
class Color {

+red : int
+green : int
+blue : int

}
class Shape { ... }
class Point {}
class ComposedShape { ... }

Shape <|-- Point
Shape <|-- ComposedShape
ComposedShape "0..1" o-- "0..*" Shape
Shape "0..*" --> "1" Color

Listing 1: The class model from Figure 1a in the PlantUML language, the usage
of arrows expects the user is familiar with the UML syntax.

6 Martin Mazanec, Ondřej Macek

state "Bulb Off" as bulbOff
state "Bulb On" as bulbOn

[*] --> bulbOff
bulbOff --> bulbOff : off
bulbOff --> bulbOn : on [is night]/light up
bulbOn --> bulbOff : off/turn off
bulbOn --> bulbOn : on
bulbOn --> [*] : blow out

Listing 2: The state model from Figure 1b in the PlantUML language, usage of
pseudostates could be confusing.

(*) --> "Eat food"
if "still hungry?" then

-->[still hungry] "Eat food"
else

->[had enough] === Fork ===
endif
=== Fork === --> "Relax on a sofa"
=== Fork === --> "Read a book"
"Read a book" --> === Join==
"Relax on a sofa" --> === Join==
=== Join== --> (*)

Listing 3: The activity model from Figure 1c in the PlantUML language is hard
to read for larger models.

package testpackage;
class Color

attribute red : Integer;
attribute green : Integer;
attribute blue : Integer;

end;
class Shape end;
class Point specializes Shape end;
class ComposedShape specializes Shape end;

association
navigable role background : Color [1];
role shape : Shape [*];

end;
aggregation

navigable role child : Shape [*];
navigable role parent : ComposedShape [0, 1];

end;
end.

Listing 4: TextUML version of the class model from Figure 1a is quite verbose
therefore it is not simple to create a model.

3.2 TextUML

Text UML [1] is TML that is specialized only at class model, therefore the
capability of describing various views on the software is of course limited. This
limitation is partially compensated by the readability of its models that are read-
able even for non-developers. The grammar of the language can be understood
intuitively as it refers to UML and common programming language, however we
were not able to find any formal definition of the language. In contrast with Plan-
tUML, TextUML does not suppose the user knows UML concepts; on the other

On General-purpose Textual Modeling Languages 7

hand it could be considered verbose as it requires a large amount of information
about classes and relations, even though some of them are not necessary.

3.3 Umple

The main goal of the Umple language [8] is model-oriented programming that is
based on class and state modeling and code generation into Java, Ruby and other
languages. The mentioned models are the only one that can be used for modeling
so some views on software are missing (use cases, processes). The Umple is the
only language that provides the definition of its grammar.

The models are readable and no major complication with language usage
were observed. The Umple language is integrated in Eclipse IDE or the online
service Umple Online [7] can be used.
class Color { class Point {

int red; isA Shape;
int green; }
int blue;

} association {
class Shape { ... } 0..1 ComposedShape -- 0..* Shape;
class ComposedShape { }

isA Shape; association {
void add(Shape e); 0..* Shape -> 1 Color;

} }

Listing 5: Umple version of the class model from Figure 1a, there are no serious
problems.

class Bulb {
state {

Initial {
init -> BulbOff;

}
BulbOff {

on [isNight] -> / {lightUp ();} BulbOn;
off -> BulbOff;

}
BulbOn {

off -> / {turnOff ();} BulbOff;
on -> BulbOn;
blowOut -> Final;

}
Final { }

}
}

Listing 6: Umple version of the state model from Figure 1b, there are no serious
problems.

3.4 yUML

The purpose of the yUML [15] tool is fast and easy creation and publication
of UML class model and activity model diagrams. The language is focused on
only two languages, and its syntax does not allow for modeling large models in a
readable way. Therefore yUML will probably remain a tool for the creation and
sharing of small code snippets rather than become a widely accepted standard
for general-purpose TML.

8 Martin Mazanec, Ondřej Macek

[Color|red;green;blue]<1-0..*[Shape]
[Shape]^[Point]
[Shape]^[ComposedShape]
[ComposedShape] < >0..1 -0..*[Shape]

Listing 7: The yUML version of the class model from Figure 1a shows that a
definition of a class with many attributes could be confusing.

(start)->(Eat food)
(Eat food)-><if>had enough ->|fork|
<if>still hungry ->(Eat food)
|fork|->(Relax on a sofa) ->|join|
|fork|->(Read a book) ->|join|->(end)

Listing 8: The yUML activity model is quite verbose and becomes confusing for
large models.

3.5 Comparison Summary

The experiments show that existing TMLs do not meet the defined criteria and
so the potential of TMLs. The main problem is that the TMLs designer tries
to describe the UML model, not the domain (classes, states etc.) and that is
in contrast with the recommendations of [16] and it reduces the usability and
readability of large models.

Feature PlantUML TextUML Umple yUML EG UML
Multiple views on software yes no no no yes yes
Readability and Simplicity no yes yes no yes yes
Provided Language Definition Grammar - Grammar - Grammar MOF
Integrability Eclipse Eclipse Eclipse/Online Online Eclipse many

Table 1: The overview of experiments with existing TMLs and UML. Most of
the tested TMLs could not describe all views on software; some of them have
problems with readability.

4 Experimental Modeling Language

The previous sections show that the existing TMLs do not meet the potential of
textual modeling and they are not usually able to cover all requested views on
software and their semantic was not specified, rather it was based on a previous
knowledge of UML or common programming languages and intuitive understand-
ing of concepts such as generalization, association or aggregation. Moreover, the
TMLs are often hard to read and write and they are not usable for large models.
Therefore we decide to create our own textual modeling language called Earl
Grey (EG), whose concepts and creation is explained in the following text. In

On General-purpose Textual Modeling Languages 9

this paper we do not focus on formal specification, as it is beyond the scope of
this paper; instead we will focus more on user experience with the language. The
main purpose of this section is to show Earl Grey’s fundamental differences from
other textual modeling languages.

The EG is implemented as an Eclipse plugin using Xtext [14] and the latest
version of its grammar is available on-line [9]. There is an implementation of
class and state model at the moment. Use case and activity model languages
should be finished in the near future, therefore EG should cover all requested
views on the software. All EG models are connected with the CIM or PIM group
of models and the PSM is represented by the code itself.

The next sections discuss problems we have to solve during the Earl Grey
implementation. The majority of the problems are caused by differences in pre-
sentation of information in graph and textual environment. We will compare our
construct mostly with PlantUML because from the aforementioned TMLs, it is
the most complex one.

4.1 Language for Class Modeling

When creating each model we focus on creating a language that will fit the
modeling problem, whereas a lot of TMLs try to rewrite the UML models by text.
A typical example is the PlantUML language and its description of associations
between classes in a class model. There are examples of PlantUML associations
in Listing 1, and you can see the symbols are visually close to the UML symbols,
which is good if users already understand UML but for users who will meet
modeling for the first time these symbols will be confusing. In contrast we decide
to use a textual representation of each association type as you can see in Listing
4.
class Color aggregation

red : int 0..1 ComposedShape /*start */
green : int 0..* Shape /*end*/

end end
class Shape

/*...*/ association
end 0..* Shape
class Point isA Shape 1 Color
end end
class ComposedShape isA Shape

/*...*/
end

Listing 9: EG version of the class model

We believe the representation proposed in Listing 9 is more readable for users
of the language, and they obtain much more information than from PlantUML
symbols. The associations are represented as a sentence so it can be read and
understood with no need to know the meanings of pseudo-graphical symbols
in PlantUML. Next we prefer isA for inheritance indication over extends or
graphical symbol <|--, the reason is educational and expression isA should help
with inheritance usage (the problem of bad inheritance usage is described e.g.
in [10]). We believe the isA construct will improve the design of future code.

10 Martin Mazanec, Ondřej Macek

4.2 Language for State Model

The PlantUML state model language (in Listing 2) does not allow logic struc-
turing of a created model; all states and transitions are in one large cluster that
decreases the readability of the model.

The proposed language allows the splitting of the model into small sections –
one section for each state and its transitions. This structure improves not only the
readability of a model but also the change of transitions. In a PlantUML model
a user has to check the whole model to find the changed transition, whereas in
the EG state model the information is right in the state, where the transition
starts.

The next change we made against PlantUML is that we omit the usage of
graphical symbols – arrows (as in class model) and asterisk that PlantUML uses
for representation of initial and final (pseudo)state of the machine. Instead of
asterisk symbol (*) we use the keywords initial or final.
initial "Init" state "Bulb on"

do off do
light up -> "Bulb off" turn off -> "Bulb off"

end end
end on do

-> "Bulb on"
state "Bulb off" end

off do blow Out do
-> "Bulb off" -> End

end end
on do end

if is night then
light up -> "Bulb on" final "End"

end end
end

Listing 10: EG version of the state model

4.3 Language for Behavior Modeling

To model the behavior is an important part of software modeling. The UML
language provides two models - activity and sequence model; we use them as
templates because we want to preserve user experience with these models and
their expression abilities.

The first sequence model describe the communication (message sending)
among objects (for example of a model see Figure 1d). In the case that we
try to describe the same information textually, we face the problem of low read-
ability of the model because it is hard to provide a textual description of object
interactions so that the model is logically structured and allows easy orientation.
There is the textual version of the model from Figure 1d created according EG
grammar in Listing 11. We believe the list of messages in the EG model becomes
confusing for large models and it will not satisfy the condition of readability. The
expression capability of UML sequence model lies in the lifelines representation
of objects and in the time ordering of messages in left-to-right and top-to-bottom
directions; therefore we try to create a similar user experience in TML, but all
attempts end up with constructs that were unreadable even for small models.

On General-purpose Textual Modeling Languages 11

The visual representation of messages and their sequences provides the next
level of user experience that the textual language cannot provide.
sequence WolfAndPig

Pig creates House
Wolf calls House.collapse

House calls Pig.run
Wolf calls Pig.die

end

Listing 11: The textual sequence model is not as readable as the graphical; in
the case of parallelism or conditional branches it becomes confusing.

Next possibility for the behavior modeling in UML is an activity diagram
that focuses on business processes modeling and workflow representation. The
representation of workflow is quite hard in TML; the existing languages yUML
and PlantUML only rewrite the workflow as a set of activities and transitions be-
tween them, and the resulting model has no logical structure and it is unsuitable
for large models.

The TML is capable of describing activities and transitions in sufficient de-
tail in a single swim-lane; on the other hand there are difficulties with modeling
of decisions (conditional branching), parallelization and cross swim-lanes tran-
sitions and relationships. The reason is the loss of graphical information during
the rewriting of a model from graphical to textual form. When the model is
rewritten we are able to capture the processes, however we lose the information
about their flow.

There is not a solution that will help to solve problems with capturing the
sequence or flow in TML in a readable and structured way. The compromise can
be made between flow capturing and logical structure of a textual model.

5 Conclusion and Future Work

The textual modeling languages are said to have a great potential, and in this
paper we discussed features required for the success of a general-purpose TML
among users, the most important are readability for people and unambiguity of
language expressions.

Already existing TMLs suffer from lack of both important features, which is
often caused by a usage of UML-like symbols in textual language. The UML-like
symbols and concepts are hard to read and often hard to interpret ambiguously.
Therefore we decided to create our own TML that does meet defined criteria.
There are presented several basic language grammar constructions that should
improve the requested features.

Our experience is that it is easy to create a language for class and state
modeling, but on the other hand the creation of a language describing behavior is
very complicated, because it is hard to textually represent sequences of messages
in a structured, well-arranged way. The future work in the area of TML should
focus on finding a way of sufficient behavior modeling, and at the moment a
pseudocode looks to be the best way.

12 Martin Mazanec, Ondřej Macek

References

1. R. Chaves. TextUML Toolkit - textuml. http://sourceforge.net/apps/
mediawiki/textuml/index.php?title=TextUML_Toolkit, 2011.

2. A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal modeling
notation. The Unified Modeling Language.«UML»’98: Beyond the Notation, pages
514–514, 1999.

3. M. Fowler. Domain-Specific Languages. Addison-Wesley Professional, 1st edition,
2010.

4. H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. Text-based
Modeling. 4th International Workshop on Software Language Engineering, 2007.

5. D. Kolovos, R. Paige, T. Kelly, and F. Polack. Requirements for Domain-specific
Languages. Proc. of ECOOP Workshop on Domain-Specific Program Development.

6. P. Kruntchen. The 4+1 View Model of Architecture. IEEE Software, 12:42–50,
1995.

7. T. Lethbridge. Umple Online. http://try.umple.org/, 2012.
8. T. Lethbridge, A. Forward, and O. Badreddin. Umplification: Refactoring to In-

crementally Add Abstraction to a Program. Reverse Engineering (WCRE), 2010
17th Working Conference on, pages 220–224, 2010.

9. O. Macek and M. Mazanec. tea-pot/earl-grey - GitHub. https://github.com/
tea-pot/earl-grey, 2012.

10. B. Meyer. The many faces of inheritance: a taxonomy of taxonomy. IEEE Com-
puter, 29(5):105–108, 1996.

11. Object Management Group. Object Constraint Language 2.0, 2006.
12. Object Management Group. Unified Modeling Language Specification 2.3, 2011.
13. A. Roques. PlantUML. http://plantuml.sourceforge.net/index.html, 2012.
14. The Eclipse Foundation. Xtext. http://www.eclipse.org/Xtext/, 2012.
15. H. Tobbin. Create UML diagrams online in seconds, no special tools needed.

http://yuml.me/, 2012.
16. D. Wile. Lessons learned from real DSL experiments. System Sciences, 2003.

Proceedings of the 36th Annual Hawaii International Conference on, pages 1–10,
2003.

