
Using OCL in Model Validation According to
Stereotypes?

Zdenek Rybola1 and Karel Richta2,3

1 Faculty of Information Technology, Czech Technical University in Prague
rybolzde@fit.cvut.cz

2 Faculty of Mathematics and Physics, Charles University in Prague
richta@ksi.mff.cuni.cz

3 Faculty of Electrical Engineering, Czech Technical University in Prague
richta@fel.cvut.cz

Using OCL in Model Validation According to
Stereotypes?

Zdenek Rybola1 and Karel Richta2,3

1 Faculty of Information Technology, Czech Technical University in Prague
rybolzde@fit.cvut.cz

2 Faculty of Mathematics and Physics, Charles University in Prague
richta@ksi.mff.cuni.cz

3 Faculty of Electrical Engineering, Czech Technical University in Prague
richta@fel.cvut.cz

Abstract. Model-Driven Development approach became popular in past
years. Domain-specific profiles are defined for various domains and tools
are used to transform models using these profiles to source code artifacts.
However, rules need to be defined for the profile elements usage so the
transformation can be effective and reliable.
This paper deals with an approach of expressing these rules using spe-
cial type of metamodel with UML class diagrams with the stereotypes
defined in the profile – we call them constraint diagrams. Each class in
this metamodel represent all classes in the model with the same stereo-
type. Using stereotyped associations, we can link classes with different
stereotypes and restrict the usage of such stereotype only to relations
between specific stereotyped classes in the model. OCL constraints can
be generated from the constraint diagram to enable validation of the
model according to the rules in the metamodel. This paper deals with
the description of the constraint diagram creation and OCL constraints
generation.

Keywords: UML, OCL, constraint, stereotype, validation

1 Introduction

Model Driven Development [10] is a modern and popular software development
approach. It is based on creation of model of different abstraction levels and
transformations between those models. It also includes forward and reverse engi-
neering methods. Forward engineering becomes especially popular for generation
of source code from models.

Models of software systems are usually created using UML and transformed
to source code using a tool that generates all required artifacts from the model.
For instance, many various artifacts for J2EE application such as Entities, Ses-
sion beans, Message-driven beans and many others can be generated from an
? This research was partially supported by Grant Agency of CTU No.

SGS12/093/OHK3/1T/18 and Czech Grant Agency (GAČR) No. GA201/09/0990

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 93–102, ISBN 978-80-7378-171-2.



94 Zdenek Rybola, Karel Richta

UML class model. Because of various domains of software systems, domain-
specific UML profiles are usually defined. UML profile [9] is a meta-model that
allows the definition of stereotypes and tagged values for model elements. If a
profile is defined and used, model transformation can be adapted according to
the specified stereotypes and tagged values. However, special rules usually come
with the profile to restrict usage of various profile artifacts that needs to be sat-
isfied by any model based on the profile. To make those adapted transformations
effective, model validation against the defined rules is required.

In our current research, we deal with an approach to generate OCL con-
straints for domain-specific profiles using an instance of the meta-model defined
in the profile. Creating a constraint diagrams using artifacts of the profile allows
us to graphically express domain-specific rules. These diagrams can be easily
transformed to OCL constraints that can be used for model validation using
various CASE and OCL tools. Whole process is shown in Fig. 1.

Fig. 1. Graphical description of the model validation process - model diagrams and a
constraint diagram are created using the profile; the constraint diagram is transformed
to OCL constraints; model diagrams are validated using OCL constraints resulting in
a set of constraints violation messages

In this particular paper, we deal with generation of OCL constraints for
rules restricting connections between various stereotypes. An example is based
on fundamental analysis class model specification [2]. In this specification, only
classes with Entity, Control and Boundary stereotypes can be used with some



Using OCL in Model Validation According to Stereotypes 95

restrictions for connections between various stereotypes. However, our approach
can be used for any profile defined for any domain.

The paper is structured as follows: Section 2 presents related work and their
difference from our approach. In section 3, we show an example of model with
a profile and definition of rules for stereotype usage. In section 4, we describe
the constraint diagram for expressing the rules. Generation of OCL invariants is
explained in section 5. Conclusions and further work plans are given in section
6.

2 Related work

There have been done some research on model checking and model validation
using OCL. Richters and Gogolla [11] presented an approach of animating model
snapshots and validating it against OCL constraints. The authors use USE tool
[12] for model animation and validation. The authors also introduced a method
of automatic model snapshot generation in USE tool [5]. However, the authors
only generate snapshot of the model and the constraints must be defined as
required directly in OCL.

Some research was made on model validation against fundamental properties
of models defined in UML. Chae et al. [2] focuses on analysis class model used
in many standard object-oriented processes where three basic stereotypes are
defined for analysis classes - boundary, control and entity. The authors define a
set of constraints in OCL that any analysis class model should satisfy includ-
ing constraints for associations between classes of particular stereotypes. The
authors also demonstrate a case study of validation of analysis models against
defined OCL constraints using OCLE tool [3]. However, the authors only define
particular constraints for these three basic stereotypes of analysis classes.

In [6], Guizzardi defines ontological extension of UML class diagram with
ontology stereotypes and constraints called OntoUML. He presents a fine-grained
approach for domain modelling using stereotypes to distinguish between various
types of domain artefacts and relationships. In [1], Benevides and Guizzardi
present a graphical editor for OntoUML and validation of OntoUML model using
OCL constraints. These constraints are based on stereotypes of model elements
and defined according to the specification of OntoUML.

In comparison to the approaches mentioned above, in our approach we do not
define any particular constraint for any particular domain. Instead, we propose
a general approach to create a constraint diagram using domain-specific and
user-defined profile to model domain-specific business rules. This diagram can
be used to generate OCL constraints for validation of any model based on the
user-defined profile. We deal with generating OCL constraints for UML class
diagrams in this particular paper.

There is also a lot of tools that support model transformation and validation
against OCL constraints. Dirigent [7] is an open-source MDA tool for generation
of source code from model. The tool reads model stored in XMI format and
generate source code files according to specified patterns in Apache Velocity.



96 Zdenek Rybola, Karel Richta

These patterns can be based on model element stereotype and generate a set
of source files. If extended appropriately, Dirigent would be able to parse the
proposed constraint diagram and generate OCL constraints for validation of a
model based on the same profile.

Dirigent could also be extended to validate the model using the generated
OCL constraints itself. However, there are also many other tools that support
model validation using OCL constraints. OCLE tool [3] can be used as mentioned
above. DresdenOCL [4] is a toolkit for creating and validating OCL constraints
for specified model. It also supports model validation and model transformation
together with the constraints to SQL and Java with AspectJ.

3 Defining rules

To make transformations of domain-specific model in UML to source code files
effective, domain-specific UML profile should be defined. This profile includes
mostly stereotypes of classes and associations for class diagrams and can de-
fine tagged values of such stereotypes as well. In the model, various defined
stereotypes are used to model various types of artifacts using classes and their
associations. During transformation to source files, various stereotyped classes
can be transformed to various source code artifacts such as J2EE entities, session
beans or servlets.

Lets imagine an example shown in Fig. 2 where a class model of a part of
a university information system is shown. The model is created using analysis
model profile with stereotypes entity, control and boundary to distinguish be-
tween three kinds of analysis classes. We use only a part of the analysis model
profile required for our model. The original analysis model profile with full set
of rules is defined in [2].

For each of these stereotypes, various source code artifacts can be generated
during transformation. For instance of a J2EE application:

– an entity class, a data access object class and a SQL creation script for each
entity-stereotyped class,

– a session bean local interface and implementation for each control-stereotyped
class,

– and a servlet for each boundary-stereotyped class can be generated.

With generation of source code artifacts for each model element, references be-
tween those generated artifacts can be also generated. For instance:

– relationships between entities for each association between entity-stereotyped
classes,

– reference between session beans,
– and reference to session bean from servlets can be generated.

However, to generate such artifacts and connections effectively and correctly, the
model must satisfy specific rules. These rules must be defined and obeyed during



Using OCL in Model Validation According to Stereotypes 97

Fig. 2. Model of a part of a university information system with analysis model stereo-
types

modeling. The rules for analysis class model are defined in [2]. However, for our
example with simplified profile, only some of these rules are important and they
can be expressed as follows:

1. Each entity class can be related by stereotype-free association only to another
entity class.

2. Each control class can be related by use-stereotyped association to entity
class.

3. Each control class can be related by stereotype-free association only to an-
other control class.

4. Each boundary class can be related by use-stereotyped association to control
class.

Notice, that the definition is always defined in the direction from the source
class in the relation. This is to eliminate redundancy and to make each relation
checked only once. If these rules are obeyed in the model, the transformation to
the source code artifacts will be correct and no error shall appear.

4 Modeling constraints

Unfortunately, developers and analysts make mistakes so we need to validate
and check the model before transformation and source code artifacts generation.



98 Zdenek Rybola, Karel Richta

Therefore, the rules must be defined in some formal way so a tool such as OCLE
[3] or DresdenOCL [4] can be used to validate the model against the defined
rules for stereotype usage and relations restrictions.

Object Constraint Language (OCL) [8] is the part of UML used to define
model constraints in a form of invariants that each instance of the element in
the context must satisfy. However, definition of the required OCL invariants can
be a bit tricky for unfamiliar developers. Not many developers or even analysts
posses the knowledge of OCL. Therefore, we propose an approach of creating a
special class diagram – we call it constraint diagram – to model the rules using
stereotypes used in the analysis model and to generate the OCL constraints for
model validation.

Definition 1. A constraint diagram is a UML class diagram with classes and
relations using domain-specific stereotypes used to define domain-specific rules
for relations allowed between various used stereotypes and to generate OCL in-
variants to validate domain-specific UML class diagrams.

In the constraint diagram, we have to model all relations allowed in the
model between classes with particular stereotypes. Therefore, we add classes
with defined stereotypes as required and add relations with defined stereotypes
and direction. Names of the classes and multiplicity values are not important in
this diagram, they just represent any instance of a particular stereotype and any
relation of a particular type and stereotype in the model. Each relation in the
constraint diagram stands for a rule that restricts relations between particular
stereotypes. Each of them can be transformed to OCL constraint as described
later in section 5.

Fig. 3. Constraint diagram for the used part of analysis model profile

In Fig. 3, constraint diagram is shown for the rules defined in section 3. We have
created two classes with stereotype entity. These represent any class with that
stereotype used in the model. We add an association between AnyEntity and
AnotherEntity – in this direction – with no stereotype to express that any class
with stereotype entity can be related by stereotype-free association to any other
class with stereotype entity. This relation stands for the rule 1.



Using OCL in Model Validation According to Stereotypes 99

To define rule 2 in the constraint diagram, we add a class with stereotype con-
trol. Then we connect it with a class with stereotype entity by a use-stereotyped
association to express that each control class can be related to any entity by a
use-stereotyped association. In our case on Fig. 3 we connected AnyControl to
AnyEntity class.

Similar to the rule 1, to define rule 3 in the constraint diagram, we add an-
other class with stereotype control and connect it from the class AnyControl
to express the allowed stereotype-free association between control-stereotyped
classes. Finally, similar to rule rule:control-entity, a class with stereotype bound-
ary is added to the diagram with a connection to class AnyControl by a use-
stereotyped association to define the rule rule:boundary-control.

Notice that for correct rules definition and constraint generation, some con-
straints for the constraint diagram must be obeyed as well. For instance, only
one relation of each partial type and stereotype can be connected from each
particular-stereotyped classes, otherwise there would be redundant rules defined
in the diagram for the same relation and the same source artifact. Also, no di-
rected relations can be used in the diagram. As mentioned in section 3, only out-
going relations stand for a rule to eliminate redundancies. If a relation of both
directions between two various-stereotyped classes can be used in the model,
two distinct relations must be created in the constraint diagram, each with the
different direction – source and target classes – of the relation.

Although we have to check the constraint diagram for these rules satisfaction,
we do this only for this single constraint diagram, while all the model diagrams
based on the same profile with the rules defined in the constraint diagram can
be validated and checked automatically by the generated constraints.

5 Generating OCL constraints

A set of OCL constraints can be generated from a constraint diagram using a
tool such as Dirigent [7] to parse the model diagrams. The tool traverses the
model and for each relation in the diagram, an OCL invariant is generated. To
explain the constraint structure, let us define several terms used in the constraint
first.

Definition 2. Source Class Stereotype is the stereotype of the source class of
the relation in the constraint diagram just being processed by the generation tool.
Target Class Stereotype is the stereotype of the target class of that relation.
Relation Stereotype is the stereotype of that relation.

The structure of such constraint is shown in Fig. 4. The invariant is defined in
the context of Class with its name generated from the Source Class Stereotype,
the RelationStereotype and the type of the relation. Then, two functions are
defined – sts() return a set of names of stereotypes of the classifier parameter –
i.e. a class or an association –; associationSet() return a set of associations – that
have no stereotype or include the given stereotype according to the stereotype
given as parameter – from the given classifier. Then, the main constraint body is



100 Zdenek Rybola, Karel Richta

defined – if the class in context includes the Source Class Stereotype then target
classes of all associations with the same stereotype as the RelationStereotype
must include the Target Class Stereotype.

context c:Class inv <SourceClassStereotype><RelationStereotype>Association:

let sts(c:Classifier) : Set(String) =

c.stereotype->collect(name)->asSet()

let associationSet(c:Classifier, s:String) : Set(Association) =

c.association.association.connection->

select(isNavigable = true)->

select(a:Association | (s = "" and sts(a)->empty())

or sts(a)->includes(s))->asSet()

sts(self)->includes(<SourceClassStereotype>) implies

associationSet(self, <RelationStereotype | "">)->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes(<TargetClassStereotype>))

Fig. 4. General form of OCL invariant generated from a constraint class diagram with
wildcards for Source Class Stereotype, Target Class Stereotype and RelationStereotype

When parsing the constraint diagram shown in Fig. 3, the tool will find four
associations to generate OCL invariants – stereotype-free associations between
two entities and two control classes, respectively, a use-stereotyped association
from AnyControl class to AnyEntity class and a use-stereotype association from
AnyBoundary class to AnyControl class. Therefore, four OCL invariants are
generated as shown in Fig. 5. All generated invariants use the same functions
sts() and associationSet as defined in Fig. 4, however, they are not displayed in
the figure because of limited space in the paper.

Now, having these OCL invariants describing rules for the use of the profile
stereotypes, we can use any tool supporting model validation using OCL con-
straints such as OCLE or DresdenOCL Toolkit. Using such a tool, we can validate
any part of a model of a system using the same profile against the defined rules.
The tool will find any classes that does not satisfy any of our invariants pointing
the class is connected to some other class using wrong-stereotyped association
or the target class have wrong stereotype attached.

6 Conclusions

Model-Driven Development approaches for software development became popu-
lar in last years. Many software development processes use a tool to transform
models and to generate source code artifacts. Many domain-specific UML pro-
files are also created for various domains or software projects and generation
tools are adapted to utilize these profiles during transformation and generation.
However, this approach brings the need of domain rules definition of how the
profile should be used.



Using OCL in Model Validation According to Stereotypes 101

-- rule 1

context c:Class inv EntityAssociation:

sts(self)->includes("entity") implies

associationSet(self, "")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("entity"))

-- rule 2

context c:Class inv ControlUseAssociation:

sts(self)->includes("control") implies

associationSet(self, "use")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("entity"))

-- rule 3

context c:Class inv ControlAssociation:

sts(self)->includes("control") implies

associationSet(self, "")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("control"))

-- rule 4

context c:Class inv EntityAssociation:

sts(self)->includes("boundary") implies

associationSet(self, "use")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("control"))

Fig. 5. OCL invariants for the rules to check and validate the model



102 Zdenek Rybola, Karel Richta

In this paper, we presented an approach of modeling these domain rules for
the use of user-defined stereotypes and relations between each other using UML
class diagram. We presented a method how such diagram can be created for
a set of example rules. We also presented a technique how to generate OCL
invariants from the diagram to be used for model validation. Whole process
was illustrated on an example using analysis model profile with standard class
stereotypes entity, control and boundary.

In our further research, we would like to extend our approach to enable to
model directed association constraints to validate usage of directed associations
in the model, other types of relations such as generalization or dependency. Some
research can also be done to define multiplicity constraints for the number of
related classes using each particular stereotyped relation. Finally, extending the
approach by other types of model artifacts such as actors, components or use
cases can be researched.

References

1. Benevides, A.B.: A Model-based Graphical Editor for Supporting the Creation,
Verification and Validation of OntoUML Conceptual Models. Ph.D. thesis, Federal
University of Esṕırito Santo (UFES), Vitória, E.S., Brazil (Feb 2010)

2. Chae, H.S., Yeom, K., Kim, T.Y.: Specifying and validating structural con-
straints of analysis class models using OCL. Information and Software Technology
50(5), 436–448 (Apr 2008), http://www.sciencedirect.com/science/article/B6V0B-
4NVH7T5-1/2/02217cd36c68c34c93fc63253c28bf62

3. Chiorean: OCLE 2.0 - object constraint language envi-
ronment. http://lci.cs.ubbcluj.ro/ocle/index.htm (Feb 2012),
http://lci.cs.ubbcluj.ro/ocle/index.htm

4. Demuth, B.: DresdenOCL. http://www.reuseware.org/index.php/DresdenOCL
(Jan 2011)

5. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Software and Systems Modeling 4(4), 386–398
(2005)

6. Guizzardi, G.: Ontological foundations for structural conceptual models.
PhD thesis, University of Twente, Enschede, The Netherlands (Oct 2005),
http://eprints.eemcs.utwente.nl/7146/

7. Hubl, K.: Dirigent (Jan 2012), code.google.com/p/dirigent/
8. OMG: Object constraint language, version 1.3.

http://www.omg.org/spec/OCL/2.2/PDF (Feb 2010)
9. OMG: UML 2.4. http://www.omg.org/spec/UML/2.4/ (Aug 2011),

http://www.omg.org/spec/UML/2.4/
10. OMG, Miller, J., Mukerji, J.: MDA guide version 1.0.1. http://www.omg.org/cgi-

bin/doc?omg/03-06-01.pdf (Jun 2003)
11. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. UML

2000 - THE UNIFIED MODELING LANGUAGE, PROCEEDINGS - ADVANC-
ING THE 1939, 265–277 (2000)

12. Richters, M., Buettner, F., Gutsche, F., Kuhlmann, M.: USE - a UML-based spec-
ification environment. http://www.db.informatik.uni-bremen.de/projects/USE/
(Jan 2011)


