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Abstract. In the era of huge datasets, the top-  search becomes an effective 

way to decrease the search time of top-  objects. Since we suppose locally ac-

cessible data only, the multidimensional indexes containing all attributes to-

gether seem to be more effective than a distribution of each attribute to a sepa-

rate index. Therefore we introduce the top-  search algorithm over grid file – 

the multidimensional index not used for the top-  search yet. Grid file does not 

require computation with all attribute values together like R-tree, R*-tree (i.e. 

computation of area, perimeter) nor a metric like M-tree. Grid file can be used 

directly for indexing any type of attributes with natural ordering. Our experi-

ments show that grid file, R-tree and R*-tree offer much better performance of 

the top-  search than separated B+-trees and table scan. 

1   Introduction 

In our research we deal with the problem of searching top-  products in e-shops ac-

cording to user preferences. Current e-shops typically provide fulltext search, menu of 

product domains, single attribute value specification and products sorted usually ac-

cording to price or product name. We are not aware of any e-shop with more complex 

user preferences model e.g. a combination of selection techniques mentioned above. 

Our model of user preferences [6] consists of preferences to values of several at-

tributes in the form of fuzzy functions (see Figure 1) and a monotone combination 

function. Such complex user preference model approaches real life preferences and 

leads to more precise results than standard selection techniques. The preferences can 

be obtained implicitly by tracking user actions in the e-shop or explicitly by user 

specification. The top-  search with a query based on such preferences can be com-

puted over different index structures – a set of B+-trees [5, 6], MDB-tree [12] and R-

tree [13]. In this paper we introduce a top-  search algorithm over the next multidi-

mensional index – Grid file. 

In [12, 13] it was shown that the top-  search over multidimensional indexes 

(MDB-tree, R-tree, R*-tree) is faster over local data than over a combination of mul-

tiple indexes. The MDB-tree can hold all types of ordered attributes but the query 

cannot hold any subset of attributes. The R-tree structure allows a query to contain 

any subset of attributes but the metrics used in the R-tree requires having the num-

bered attributes only. The reason why we employed a grid file for the top-  search 

was the elimination of the limitations along with the preservation of the advantages of 

the mentioned indexes. 
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Fig.1. User’s local preferences to a floor and a price of a flat 

 

This paper is organized as follows. Section 2 presents the related work. Section 3 

formalizes the problem of the top-  search over our user preference model. Section 4 

presents the main contribution of this paper – the top-  search over grid file. Section 5 

reports the experiments results comparing the top-  search performance over several 

index structures. Section 6 concludes this paper. 

2   Related work 

The top-  search was introduced by R. Fagin [4] as a problem of finding   best ob-

jects according to a monotone aggregation function over distributed ordered lists of 

attribute values. The original Threshold algorithm (TA) [4] has many improvements 

and modifications for the similar distributed environment, e. g. [1, 2, 4, 6]. We call 

them the TA-like algorithms.  

The idea of the top-  search over data stored in several indexes was considered al-

so for local data, especially inside a RDBMS, e. g. [10]. These approaches are con-

cerned with augmenting the query optimizer to consider rank-joins (similar to TA) 

during a plan evaluation. Optimization can be effective especially in case of very 

selective attributes. The rank-join algorithm requires ordered data on input similarly 

to the middleware algorithms.  

The idea of using R-tree for top-  search is already presented in [14] where the al-

gorithm incremental nearest neighbour is exploited for that purpose. Nevertheless, 

this approach does not offer a query as complex as we offer in our query model. 

Originally in the top-  query, the simple monotone aggregation function was con-

sidered only [4]. The query composed of local preferences and monotone combination 

function (resulting in non-monotone aggregation function) was introduced in [5]. In 

[6] it was shown that the simulations of sorted accesses using separated indexes for 

each attribute allow using TA-like algorithms.  

The algorithm in [16] does a top-  search with an arbitrary non-monotone query 

analyzing the aggregation function with numerical methods. The algorithm supposes 

that the numerical methods can analyze any aggregation function over any domain 

sub-region (to find the maximum and possibly recognize monotonicity). In our opin-

ion this analysis is rather difficult to do in a reasonable time. Note that this approach 

uses multiple indexes. 

The grid file was introduced in [11]. In many papers the grid file is considered to 

be a dynamic index with a directory structure mapping grid windows to the disk pages 
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[7, 11, 15]. In our pilot grid file implementation we considered static data only, thus 

we made some simplifications (see Section 4). First, we made the numbering of grid 

windows that can substitute the presence of directory structure and dramatically de-

crease the number of accesses, thus making most objects accessible in 1 I/O. Second, 

unlike the original grid file we employed the overflow pages to avoid dense grid 

structure with many empty windows over possibly skew data. We analyzed several 

bulk loading techniques [3, 8, 9]. The STR algorithm [9] has the best results for our 

top-  search. 

3   Top-  search problem definition 

For a given set   of objects we have to find   most preferred objects for the user. 

Each object     has the same   attributes with values               from at-

tribute domains           respectively (i.e.         for all          ). Query, 

i.e. input obtained from the user, consists of   fuzzy functions         (or less if 

user does not consider all attributes) and a monotone combination function  . The 

overall value of object   is                         . For example, if   is a 

weighted sum, user is expected to specify only nonnegative weights – one for each 

considered attribute to specify a non-descending combination function. Then we have:  

                                                     
where         are the weights. The bigger the overall value, the more preferred the 

object   is to user. The output is a list of   objects from   ordered from the most 

preferred objects to the less preferred ones. 

4   Grid file 

The grid file [9] is an index structure for multidimensional points designed to store 

the data on disk pages. Grid file is based on slicing space in each dimension, i. e. an 

attribute domain, to get a multidimensional grid. For the formal description we intro-

duce the following notation. Partition                
                 

  is 

determined by a sequence of intervals in each dimension. Each ( -th) sequence con-

sists of disjunctive intervals such that             
   . Picking one interval in 

each dimension specifies a window              . Each window is mapped to 

one data page on disk (these pages are called primary pages). The grid file contains as 

many primary pages as windows. All data pages have the same fixed size (i.e. the 

same fixed capacity). Overfilled windows are handled by creating a linked chain of 

overflow pages. 
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Fig. 2. An example of a two-dimensional grid with 20 windows and the overfilled window  . 

Window   is determined by the third interval in both dimensions. 

On the other hand, the grid file may contain empty windows. Each empty window 

refers to an empty primary page.  Reading empty pages (e. g. during query evaluation) 

is avoided by a set of numbers of non-empty windows held in memory. The windows 

are numbered in a fashion shown on Figure 2. Since we have a static grid, the map-

ping between a window and its number is easy to compute without the need of a di-

rectory structure. The extension of this idea to more dimensions is straightforward. 

We create the grid file with bulk loading algorithm STR [9]. Page capacity and the 

number of objects in   determine the final number of windows (primary pages). In a 

 -dimensional space the  -th root of the number of windows determines the number 

of intervals in each dimension. Each dimension is partitioned into intervals with the 

same number of objects falling in them. Since real data is rarely distributed uniformly 

we reduce the number of overfilled windows by increasing the number of windows by 

the multiplication with appropriate filling factor (we use filling factor 1.3). After the 

bulk loading of input data we are not restricted from adding more objects – it simply 

leads to higher utilization of pages and possibly to some new overflow pages. 

4.1   Top-k search over grid file 

A contribution of this paper is a top-  search algorithm over grid file. As shown in the 

experiments, this approach is much more effective than B
+
-trees based approach and 

it is comparable with the top-  search over R-tree [13]. 

Since each object   can be represented by the point                      in 

 -dimensional space (note that             is the function mapping objects 

to  -dimensional points), the set   of objects can be stored in multidimensional index 

such as grid file [8, 9]. Grid file does not require attribute domains to be sets of num-

bers. It can handle different types of attributes at once. For example the first attribute 

can be price represented by decimal numbers while the second attribute can be a 

manufacturer represented by strings (with alphabetical ordering). Grid file treats at-

tribute domains separately therefore they are not required to have any common prop-

erty. Attribute domain just needs to be an ordered set. 
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For searching top-  objects over a grid file we developed algorithm similar to the 

breadth first search in graphs. For formal description of our algorithm some concepts 

need to be defined first. 

 

Definition 1: Point   is  -dimensional vector                    . 

 

Having     and point   such that        then          for all          . 
 

Definition 2: A window is defined as an  -tuple of intervals           where    is 

an interval within    for all          . 
 

Object   belongs to a window             if          for all          . 
 

Definition 3: We say that window                   is a neighbour to window 

                  iff there is a           such that           and for all 

              holds      . 

 

Note that window in a 2-dimensional grid has at most 4 neighbour windows – top, 

bottom, left and right. Window in the corner of the gird has two neighbour windows. 

 

For the top-  search over a grid file we need to know how to evaluate objects and 

also grid windows. For this purpose we define aggregation function   giving the 

overall value for an object and the maximal possible overall value for any object in a 

grid window. 

 

Definition 4: Function         where   is a set of windows of grid file is 

defined as follows:                 where 

             for all            if      OR  

                     if              . 

 

Lemma 1: If             is a window and   is an object such that      
         (i.e.   belongs to a window  ) then          . 

 

Proof: From definition 4 we have                               and      
                                    . Moreover for all           
holds:                           because         . Since combination func-

tion   is monotone (non-descending in each parameter) we get          . 

 

Lemma 2: If           (where   is an object and   is a window) then for any 

object   within   holds          . 

 

Proof: directly from Lemma 1 and the transitivity of relation  . 
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Fig. 3. Graphical representation of the aggregation function            giving the overall 

value               for a 2-dimensional data with user-defined fuzzy functions    and    on 

the right. 

Preferential top-  search algorithm over grid file: 

Input: grid file containing objects from S, fuzzy      

  functions f1,...,fm, combination function C and number k 

Output: ordered list of k objects with the highest value  

    of the h function 

1. queue = empty priority queue ordered by the value of  

   the h function of its elements in descending order 

2. result = empty list of objects 

3. for each local extreme of the function h do 

   a. choose arbitrary one window W containing the       

      extreme 

   b. if queue does not contain W then put W into queue   

      and label W as visited window 

4. while the result does not contain k objects do 

   a. let E be the first element of the queue, remove E  

      from the queue 

   b. if E is a window then 

      i. add all objects within E to the queue 

      ii. add all not visited neighbour windows of E to  

          the queue and label them as visited windows 

   c. if E is an object then add it at the end of the   

      result 

5. return result 

The estimation of time and space complexity can be reduced to an estimation of the 

number of visited windows, which is highly dependent on the grid partition, data 

distribution and query. The only estimation we can make are the lower and upper 

bounds, which is not very rewarding. In the best case we get the top-  objects after 

processing one window – the first one in the queue containing global extreme. In the 

worst case all the windows must be read – typically when a high   or low discriminat-

ing fuzzy functions or fuzzy functions containing many local extremes are obtained 
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from user. Fuzzy functions with many local extremes are not common in a queries 

made by people. 

Labeling visited windows can be realized by maintaining a set of numbers of visit-

ed windows starting with an empty set. Avoiding repetitive reading of visited win-

dows is implemented the same way as avoiding reading of empty windows – by main-

taining a set of window numbers in memory. 

4.2   Correctness of the top-  search over grid file 

The proof of correctness of presented algorithm can be reduced (without impact on 

generality) to the situation with just one local extreme of function  . If we prove that 

it works for the case of one local extreme then the generalization to more extremes 

can go as follows: we can prepare as many priority queues as windows with local 

extremes in step 3. Then in step 4.a we can pick the priority queue with the highest 

value of its first element and continue without any other changes. Using separated 

priority queues for each starting window picked in step 3 is not necessary. The same 

effect can be achieved by one priority queue managing windows of all local extremes 

because on the top there is always an element with the highest value from all top 

elements in imaginary separated priority queues. 

Let us focus on one local extreme of the function  . First of all we will show that 

the value of the first element in priority queue is non-ascending. Using mathematic 

induction we will show that each time the first element is removed from priority 

queue, the new top element of the priority queue (i.e. in the next iteration of while 

cycle) has lower or equal value to the previous top element.  

If the top element in the priority queue is an object then the condition holds trivial-

ly, since no new element is added into priority queue and the next top element was 

already in the priority queue in previous iteration.  

Let’s assume that there is a window at the top of the priority queue. We have to 

show that all new elements added into priority queue in steps 4.b.i and 4.b.ii have the 

overall value lower or equal to the window just removed from the top. For better 

imagination we will use the example on Figure 4.  

The first induction step is as follows: at the beginning, the priority queue contains 

just one window   – the one containing a local extreme of function  . Window   is 

to be removed from the queue directly in the first iteration of while cycle (step 4). 

After that, the algorithm inserts the objects within window   and its neighbour win-

dows  ,  ,   and   to the priority queue. In Lemma 1 we showed that objects be-

longing to window   have the overall value lower or equal to the overall value of 

window  . Trivially, the neighbour windows  ,  ,  ,   do not have the overall val-

ue greater than window   because the algorithm started with window containing the 

only local extreme. 
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Fig. 4. On the left, there is a window   containing local extreme and its neighbour windows  , 

 ,   and  . On the right, there is an example of the second inductive step with local extreme 

somewhere in left top corner. The darker shade means higher overall value. 

For the second induction step we assume the following induction assumption: in 

each of previous iterations of while cycle, the overall value of the top element in the 

priority queue decreases or does not change. Let window   (Figure 4 on the right) be 

the first element in the queue. After removing the window   from the priority queue, 

the objects from E and not visited neighbour windows ( ,  ,  ,  ) are inserted into 

the priority queue. In each dimension there is one direction in which the respective 

fuzzy function is non-descending and the opposite direction oriented off the local 

extreme in which the fuzzy function is non-ascending. In the example on Figure 4 the 

local extreme is somewhere in the top left corner. Therefore we can trivially say that 

         ,          ,          ,          ,           and 

         . We are left to show that windows   and   have been already visited 

and therefore they are not to be inserted to priority queue now. From the induction 

assumption we get that window   was added to priority queue as neighbour when 

either window   or   was removed from the top. Without impact on generality let us 

suppose that window   is the removed window. Since we know that window   has 

been already visited we are left to discuss window  . Since window   has higher 

value than window   and   is its neighbour, from the induction assumption we get 

that window   must have been visited before  . Moreover only top windows from the 

priority queue are processed. Therefore window   must have been processed before 

window   and window   must have been added into priority queue when window   

was being processed. Hence windows L and M had been visited before window E was 

processed and are not inserted into the priority queue.  

Although we described the second induction step on an example in a 2-dimensional 

space the generalization to more dimensions is straightforward. Even in 2D we can 

imagine a situation slightly different from the one drawn on Figure 4 on the right. Let 

us imagine the following change:          . In this situation window   has only 

one neighbour with higher overall value – window  . The discussion for this case is 

even simpler. From the induction assumption we know that window   must have 

been visited prior to window E.  

Since value of the element at the top of the priority queue is non-ascending the first 

object that appears at the top is the best object of all. Each object which would appear 
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in the priority queue later will be at most as good as any object in the result set. Since 

we look at all neighbour windows, processing the rest of the priority queue leads to 

acquiring all objects within grid file in order from the best to the worst. 

Note that the presented grid file expansion strategy in the top-  search works cor-

rectly for our user preferences model, however it cannot be used for arbitrary aggre-

gation function in general. For arbitrary aggregation function it requires a modifica-

tion of the neighbour windows definition to two windows with a common point and it 

leads to exponentially more priority queue insertions according to number of dimen-

sions than in the presented algorithm. 

5   Experiments 

Average time of top-  query evaluation is the basic measure we surveyed. We used a 

real data set containing approximately 27 000 flat or house advertisements in Slovakia 

having 6 attributes: price, area, floor, the highest floor of building, year of approba-

tion and the number of rooms. Since the real data set was small we generated bigger 

pseudo real sets by generation of several similar objects for each one from the original 

set. This way we generated two sets, one with about 550 000 objects (the 20-multiple 

set) and second one with about 2 700 000 objects (the 100-multiple set). 

We compared the following approaches for top-  search problem: grid file based 

approach, R-tree and R*-tree based approach [13], local TA on B
+
-trees [6] and table 

scan (on heap file).  

There are several algorithms based on ordered lists presented in [6]. All of them 

work with distributed data and sorted access. Moreover the original TA requires also 

the random access. Since we presuppose only locally accessible data (not distributed) 

we slightly adapted the TA in the following way: each B
+
-tree which represents one 

ordered list (providing sorted access for one attribute) will contain all the data i.e. 

values of all attributes. Thus no random access is necessary because one sorted access 

to any ordered list provides complete information about all attribute values of one 

object. Such version of TA does not longer suffer from the handicap of distributed 

data. We made a small experiment which showed that algorithms NRA [6] and origi-

nal TA are significantly less efficient than the local version of TA. Due to this handi-

cap we have not involved algorithms NRA and original TA to the tests. 

Each of the tests consists of the same set of 1100 random queries (i.e. about 200 

random queries containing gradually 2, 3, 4, 5 and all 6 attributes). Not all  -attribute 

queries consist of the same attributes. 

All of the compared approaches manage data file on disk differently. The page size 

is the only adjustable parameter common to all of them. Since we wanted to compare 

them objectively we had to find the most suitable page size for each one. For the 

brevity we do not present graphs showing the time dependency on page size. We 

found out that the best page sizes for top-  search over 20-multiple set are the follow-

ing: 1 kB for R-tree, 2 kB for R*-tree, 8 kB for grid file, 4 MB for heap file (table 

scan) and 64 kB for B
+
-trees (local TA). For the 100-multiple set we found out the 

following: 2 kB for R-tree, 1 kB for R*-tree, 4 kB for grid file, 2 MB for heap file 

(table scan) and 128 kB for B
+
-trees (local TA). We strongly recommend to do such a 
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survey for all application domains and not to consider these results to be universal. 

Different size of objects leads to a different capacity of page sizes and probably a 

different best page sizes. We compared average time of top-  query just for the best 

page sizes. 

 

 
 

Fig. 5. The average time of top-25 query evaluation in milliseconds over 20-multiple data set 

(about 550 000 objects). On the right graph the table scan and the local TA are omitted for 

detailed comparison. 

 

 
 

Fig. 6. The average time of top-50 query evaluation in milliseconds over 100-multiple data set 

(about 2 700 000 objects). On the right graph the table scan and the local TA are omitted for 

detailed comparison. 

 

On the left graphs we see that number of attributes in query has a very low impact 

on time of table scan and very high impact on time of local TA. Moreover we can say 

that table scan is significantly less efficient than R-tree, R*-tree and grid file based 

approaches. The local TA is quite efficient for queries with only 2 attributes. Local 

TA loses its efficiency when 3 or more attributes are required. 

R-tree, R*-tree and grid file based approaches seem to be faster therefore the 

graphs on the right bring the detailed look just on them. We can see that R*-tree of-

fers a better efficiency than grid file in all cases. Moreover R*-tree with normalized 

data does not offer better search performance than R*-tree with original data. We did 
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not use R-tree with normalized data because normalization of data has no effect when 

quadratic split algorithm is used [13]. 

6   Conclusion 

In this paper we introduced the top-  search algorithm over grid file. Grid file is a 

multidimensional index structure in which we can store objects with arbitrary ordered 

attributes (numbers, strings, hierarchies) and which allows using a query with any 

subset of attributes.  

Grid file organizes data by means of multidimensional intervals (windows) which 

are used also in R-tree as hyper-rectangles of nodes. In grid file there is no hierarchy 

or overlaps as it is in case of nodes of R-tree. Hence there was a question: can grid file 

offer better top-  search performance than R-tree or R*-tree? It would be premature 

to say no just because our introductory tests showed that the top-  search over R*-tree 

is faster. Our grid file implementation is quite simple. We have found many overflow 

pages and many empty windows because of the real data distribution. The results are 

quite promising and encourage us to look for more sophisticated ways of creating and 

organizing grid file. 
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126 Martin Šumák, Peter Gurský
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